Interaction of CO2 with Electron-Rich Moieties



In this chapter the direct, non-metal-mediated interaction of carbon dioxide with electron-rich elemental or molecular species is discussed. Anionic species such as H, OH, and R3C and covalent species such as amines have been taken into consideration, in view of their relevance to systems of potential or real industrial interest.


Alkyl Halide Electrophilic Attack Ionic Hydride Carbamic Acid Alkylammonium Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Faurholt C (1924) Studies on aqueous solutions of carbonic anhydride and carbonic acid. J Chim Phys 21:400–401Google Scholar
  2. 2.
    Faurholt C (1927) Studies on monoalkylcarbonates. Z Physik Chem 126:85–86Google Scholar
  3. 3.
    Heston BO, Dermer OCV, Woodside JA (1942) Acad Sci 67–68Google Scholar
  4. 4.
    Pinsent BRW, Pearson L, Roughton FJW (1956) The kinetics of combination of carbon dioxide with hydroxide ions. Trans Faraday Soc 52:1512–1514CrossRefGoogle Scholar
  5. 5.
    Himmelblau DM, Babb AL (1958) Kinetic studies of carbonation of reactions using radioactive tracers. AIChE J 4:143–147CrossRefGoogle Scholar
  6. 6.
    Sirs JA (1958) Electrometric stopped flow measurements of rapid reactions in solution. Trans Faraday Soc 54:201–205CrossRefGoogle Scholar
  7. 7.
    Astarita G, Savage DW, Bisio A (1983) Gas treating with chemical solvents. Wiley, New York, NYGoogle Scholar
  8. 8.
    Kenig EI, Kucka L, Gorak A (2002) Rigorose Modellierung von Reactiveabsorptionprozesses. Chem Ing Tech 74:745–750CrossRefGoogle Scholar
  9. 9.
    Kucka L, Kenig EY, Gorak A (2002) Kinetics of gas-liquid phase reaction between carbon dioxide and hydroxide ions. Ind Eng Chem Res 41:5962–5967CrossRefGoogle Scholar
  10. 10.
    Quaranta E, Aresta M (2010) The chemistry of N-CO2 bonds: synthesis of carbamic acids and their derivatives, isocyanates, and ureas. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley-VCH, Weinheim, pp 121–167CrossRefGoogle Scholar
  11. 11.
    Belli Dell’Amico D, Calderazzo F, Labella L, Marchetti F, Pampaloni G (2003) Converting carbon dioxide into carbamato derivatives. Chem Rev 103:3857–3897CrossRefGoogle Scholar
  12. 12.
    Masuda K, Ito Y, Horiguchi M, Fujita H (2005) Studies on the solvent dependence of the carbamic acid formation from ω-(1-naphthyl)alkylamines and carbon dioxide. Tetrahedron 61:213–229CrossRefGoogle Scholar
  13. 13.
    McGhee WD, Riley D, Kevin C, Pan Y, Parnas B (1995) Carbon dioxide as a phosgene replacement: synthesis and mechanistic studies of urethanes from amines, CO2, and alkyl chlorides. J Org Chem 60:2820–2830CrossRefGoogle Scholar
  14. 14.
    Aresta M, Dibenedetto A, Quaranta E (1995) Reaction of alkali-metal tetraphenylborates with amines in the presence of CO2: a new easy way to aliphatic and aromatic alkali-metal carbamates. J Chem Soc Dalton Trans 3359–3363Google Scholar
  15. 15.
    Aresta M, Quaranta E (1995) Novel, CO2-promoted synthesis of anhydrous alkylammonium tetraphenylborates: a study of their reactivity as intra- and inter-molecular proton transfer agents. J Organomet Chem 488:211–222CrossRefGoogle Scholar
  16. 16.
    Aresta M, Ballivet-Tkatchenko D, Bonnet MC, Faure R, Loiseleur H (1985) Synthesis and structural characterization of Co(NO)2[PhP(OCH2CH2)2NH]Cl: a novel carbon dioxide carrier. J Am Chem Soc 107:2994–2995Google Scholar
  17. 17.
    Aresta M, Ballivet-Tkatchenko D, Belli Dell’Amico D, Bonnet MC, Boschi D, Calderazzo F, Faure R, Labella L, Marchetti F (2000) Isolation and structural determination of two derivatives of the elusive carbamic acid. Chem Commun 1099–1100Google Scholar
  18. 18.
    Aresta M, Quaranta E (1992) Role of the macrocyclic polyether in the synthesis of N-alkylcarbamate esters from primary amines, CO2 and alkyl halides in the presence of crown-ethers. Tetrahedron 48:1515–1530CrossRefGoogle Scholar
  19. 19.
    Hampe EM, Rudkevich DM (2003) Exploring reversible reactions between CO2 and amines. Tetrahedron 59:9619–9625CrossRefGoogle Scholar
  20. 20.
    Khanna RK, Moore MH (1999) Carbamic acid: molecular structure and IR spectra. Spectrochim Acta Part A 55:961–967CrossRefGoogle Scholar
  21. 21.
    Remko M, Rode BM (1995) Ab initio study of decomposition of carbamic acid and its thio and sila derivatives. J Mol Struct (THEOCHEM) 339:125–131CrossRefGoogle Scholar
  22. 22.
    Wen N, Brooker MH (1995) Ammonium carbonate, bicarbonate, and carbamate equilibria: a Raman study. J Phys Chem 99:359–368CrossRefGoogle Scholar
  23. 23.
    Vaydya PD, Kenig EY (2007) CO2-alkanolamine reaction kinetics: a review of recent studies. Chem Eng Technol 30:1467–1474CrossRefGoogle Scholar
  24. 24.
    Danckwerts PV (1979) The reaction of CO2 with ethanolamines. Chem Eng Sci 34:443–446CrossRefGoogle Scholar
  25. 25.
    Caplow M (1968) Kinetics of carbamate formation and breakdown. J Am Chem Soc 90:6795–6803CrossRefGoogle Scholar
  26. 26.
    Crooks JE, Donnellan JP (1988) Kinetics of formation of N,N-dialkylcarbamate from diethanolamine and carbon dioxide in anhydrous ethanol. J Chem Soc Perkin Trans 2:191–194CrossRefGoogle Scholar
  27. 27.
    Crooks JE, Donnellan JP (1989) Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution. J Chem Soc Perkin Trans 2:331–333CrossRefGoogle Scholar
  28. 28.
    da Silva EF, Svendsen HF (2004) Ab initio study of the reaction of carbamate formation from CO2 and alkanolamines. Ind Eng Chem Res 43:3413–3418CrossRefGoogle Scholar
  29. 29.
    Yu W-C, Astarita G, Savage DW (1985) Kinetics of carbon dioxide absorption in solutions of methyldiethanolamine. Chem Eng Sci 40:1585–1590CrossRefGoogle Scholar
  30. 30.
    Crooks JE, Donnellan JP (1990) Kinetics of the reaction between carbon dioxide and tertiary amines. J Org Chem 55:1372–1374CrossRefGoogle Scholar
  31. 31.
    Schaefer WH (2006) Reaction of primary and secondary amines to form carbamic acid glucuronides. Curr Drug Metab 7:873–881CrossRefGoogle Scholar
  32. 32.
    Walther D, Ruben M, Rau S (1999) Carbon dioxide and metal centres: from reactions inspired by nature to reactions in compressed carbon dioxide as solvent. Coord Chem Rev 182:67–100CrossRefGoogle Scholar
  33. 33.
    Bara JE, Camper DE, Gin DL, Noble RD (2010) Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc Chem Res 43:152–159CrossRefGoogle Scholar
  34. 34.
    Brennecke JF, Gurkan BE (2010) Ionic liquids for CO2 capture and emission reduction. J Phys Chem Lett 1:3459–3464CrossRefGoogle Scholar
  35. 35.
    Choi S, Watanabe T, Bae T-H, Sholl DS, Jones CW (2012) Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases. J Phys Chem Lett 3:1136–1141CrossRefGoogle Scholar
  36. 36.
    Yang Z-H, He L-N, Gao J, Liu A-H, Yu B (2012) Carbon dioxide utilization with C-N bond formation: carbon dioxide capture and subsequent conversion. Energy Environ Sci 5:6602–6639CrossRefGoogle Scholar
  37. 37.
    Kovvali AS, Sirkar KK (2001) Dendrimer liquid membranes: CO2 separation from gas mixtures. Ind Eng Chem Res 40:2502–2511CrossRefGoogle Scholar
  38. 38.
    Fadhel B, Hearn M, Chaffee A (2009) CO2 adsorption by PAMAM dendrimers: significant effect of impregnation into SBA-15. Micropor Mesopor Mat 123:140–149CrossRefGoogle Scholar
  39. 39.
    Carretti E, Dei L, Baglioni P, Weiss RG (2003) Synthesis and characterization of gels from polyallylamine and carbon dioxide as gellant. J Am Chem Soc 125:5121–5129CrossRefGoogle Scholar
  40. 40.
    George M, Weiss RG (2006) Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc Chem Res 39:489–497CrossRefGoogle Scholar
  41. 41.
    Stastny V, Anderson A, Rudkevivh DM (2006) Supramolecular structures from lysine peptides and carbon dioxide. J Org Chem 71:8696–8705CrossRefGoogle Scholar
  42. 42.
    Rudkevivh DM, Xu H (2005) Carbon dioxide and supramolecular chemistry. Chem Commun 2651–2659Google Scholar
  43. 43.
    Ki CD, Oh C, Oh S-G, Chang JY (2002) The use of a thermally reversible bond for molecular imprinting of silica spheres. J Am Chem Soc 124:14838–14839CrossRefGoogle Scholar
  44. 44.
    Phan L, Andreatta JR, Horvey LK, Edie CF, Luco AL, Mirchandani A, Darensbourg DJ, Jessop PJ (2008) Switchable-polarity solvents prepared with a single liquid component. J Org Chem 73:127–132CrossRefGoogle Scholar
  45. 45.
    Jessop PG, Mercer SM, Eldebrant DJ (2012) CO2-triggered switchable solvents, surfactants, and other materials. Energy Environ Sci 5:7240–7253CrossRefGoogle Scholar
  46. 46.
    Aresta M, Quaranta E (1997) Carbon dioxide, a potential substitute for phosgene. ChemTech 27:32–40Google Scholar
  47. 47.
    Carafa M, Quaranta E (2009) Synthesis of organic carbamates without using phosgene: carbonylation of amines with carbonic acid diesters. Mini-Rev Org Chem 6:168–183CrossRefGoogle Scholar
  48. 48.
    Aresta M, Quaranta E (1988) Reactivity of phosphacarbamates: transfer of the carbamate group promoted by metal assisted electrophilic attack at the carbon dioxide moiety. J Org Chem 53:4153–4154CrossRefGoogle Scholar
  49. 49.
    Aresta M, Quaranta E (1992) Alkali-metal-assisted transfer of carbamate group from phosphocarbamates to alkyl halides: a new easy way to alkali-metal carbamates and to carbamate esters. J Chem Soc Dalton Trans 1893–1898Google Scholar
  50. 50.
    Belforte A, Calderazzo F (1989) Formation of alkylurethanes from carbon dioxide by regioselective O-alkylation of alkali-metal N,N-diethylcarbamates in the presence of complexing agent. J Chem Soc Dalton Trans 1007–1009Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chemical and Biomolecular Engineering DepartmentNUSSingaporeSingapore
  2. 2.CIRCCPisaItaly
  3. 3.Department of Chemistry and CIRCCUniversity of BariBariItaly

Personalised recommendations