Skip to main content

Abstract

In this chapter the direct, non-metal-mediated interaction of carbon dioxide with electron-rich elemental or molecular species is discussed. Anionic species such as H, OH, and R3C and covalent species such as amines have been taken into consideration, in view of their relevance to systems of potential or real industrial interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faurholt C (1924) Studies on aqueous solutions of carbonic anhydride and carbonic acid. J Chim Phys 21:400–401

    CAS  Google Scholar 

  2. Faurholt C (1927) Studies on monoalkylcarbonates. Z Physik Chem 126:85–86

    CAS  Google Scholar 

  3. Heston BO, Dermer OCV, Woodside JA (1942) Acad Sci 67–68

    Google Scholar 

  4. Pinsent BRW, Pearson L, Roughton FJW (1956) The kinetics of combination of carbon dioxide with hydroxide ions. Trans Faraday Soc 52:1512–1514

    Article  CAS  Google Scholar 

  5. Himmelblau DM, Babb AL (1958) Kinetic studies of carbonation of reactions using radioactive tracers. AIChE J 4:143–147

    Article  CAS  Google Scholar 

  6. Sirs JA (1958) Electrometric stopped flow measurements of rapid reactions in solution. Trans Faraday Soc 54:201–205

    Article  CAS  Google Scholar 

  7. Astarita G, Savage DW, Bisio A (1983) Gas treating with chemical solvents. Wiley, New York, NY

    Google Scholar 

  8. Kenig EI, Kucka L, Gorak A (2002) Rigorose Modellierung von Reactiveabsorptionprozesses. Chem Ing Tech 74:745–750

    Article  CAS  Google Scholar 

  9. Kucka L, Kenig EY, Gorak A (2002) Kinetics of gas-liquid phase reaction between carbon dioxide and hydroxide ions. Ind Eng Chem Res 41:5962–5967

    Article  Google Scholar 

  10. Quaranta E, Aresta M (2010) The chemistry of N-CO2 bonds: synthesis of carbamic acids and their derivatives, isocyanates, and ureas. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley-VCH, Weinheim, pp 121–167

    Chapter  Google Scholar 

  11. Belli Dell’Amico D, Calderazzo F, Labella L, Marchetti F, Pampaloni G (2003) Converting carbon dioxide into carbamato derivatives. Chem Rev 103:3857–3897

    Article  Google Scholar 

  12. Masuda K, Ito Y, Horiguchi M, Fujita H (2005) Studies on the solvent dependence of the carbamic acid formation from ω-(1-naphthyl)alkylamines and carbon dioxide. Tetrahedron 61:213–229

    Article  CAS  Google Scholar 

  13. McGhee WD, Riley D, Kevin C, Pan Y, Parnas B (1995) Carbon dioxide as a phosgene replacement: synthesis and mechanistic studies of urethanes from amines, CO2, and alkyl chlorides. J Org Chem 60:2820–2830

    Article  CAS  Google Scholar 

  14. Aresta M, Dibenedetto A, Quaranta E (1995) Reaction of alkali-metal tetraphenylborates with amines in the presence of CO2: a new easy way to aliphatic and aromatic alkali-metal carbamates. J Chem Soc Dalton Trans 3359–3363

    Google Scholar 

  15. Aresta M, Quaranta E (1995) Novel, CO2-promoted synthesis of anhydrous alkylammonium tetraphenylborates: a study of their reactivity as intra- and inter-molecular proton transfer agents. J Organomet Chem 488:211–222

    Article  CAS  Google Scholar 

  16. Aresta M, Ballivet-Tkatchenko D, Bonnet MC, Faure R, Loiseleur H (1985) Synthesis and structural characterization of Co(NO)2[PhP(OCH2CH2)2NH]Cl: a novel carbon dioxide carrier. J Am Chem Soc 107:2994–2995

    Google Scholar 

  17. Aresta M, Ballivet-Tkatchenko D, Belli Dell’Amico D, Bonnet MC, Boschi D, Calderazzo F, Faure R, Labella L, Marchetti F (2000) Isolation and structural determination of two derivatives of the elusive carbamic acid. Chem Commun 1099–1100

    Google Scholar 

  18. Aresta M, Quaranta E (1992) Role of the macrocyclic polyether in the synthesis of N-alkylcarbamate esters from primary amines, CO2 and alkyl halides in the presence of crown-ethers. Tetrahedron 48:1515–1530

    Article  CAS  Google Scholar 

  19. Hampe EM, Rudkevich DM (2003) Exploring reversible reactions between CO2 and amines. Tetrahedron 59:9619–9625

    Article  CAS  Google Scholar 

  20. Khanna RK, Moore MH (1999) Carbamic acid: molecular structure and IR spectra. Spectrochim Acta Part A 55:961–967

    Article  Google Scholar 

  21. Remko M, Rode BM (1995) Ab initio study of decomposition of carbamic acid and its thio and sila derivatives. J Mol Struct (THEOCHEM) 339:125–131

    Article  CAS  Google Scholar 

  22. Wen N, Brooker MH (1995) Ammonium carbonate, bicarbonate, and carbamate equilibria: a Raman study. J Phys Chem 99:359–368

    Article  CAS  Google Scholar 

  23. Vaydya PD, Kenig EY (2007) CO2-alkanolamine reaction kinetics: a review of recent studies. Chem Eng Technol 30:1467–1474

    Article  Google Scholar 

  24. Danckwerts PV (1979) The reaction of CO2 with ethanolamines. Chem Eng Sci 34:443–446

    Article  CAS  Google Scholar 

  25. Caplow M (1968) Kinetics of carbamate formation and breakdown. J Am Chem Soc 90:6795–6803

    Article  CAS  Google Scholar 

  26. Crooks JE, Donnellan JP (1988) Kinetics of formation of N,N-dialkylcarbamate from diethanolamine and carbon dioxide in anhydrous ethanol. J Chem Soc Perkin Trans 2:191–194

    Article  Google Scholar 

  27. Crooks JE, Donnellan JP (1989) Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution. J Chem Soc Perkin Trans 2:331–333

    Article  Google Scholar 

  28. da Silva EF, Svendsen HF (2004) Ab initio study of the reaction of carbamate formation from CO2 and alkanolamines. Ind Eng Chem Res 43:3413–3418

    Article  Google Scholar 

  29. Yu W-C, Astarita G, Savage DW (1985) Kinetics of carbon dioxide absorption in solutions of methyldiethanolamine. Chem Eng Sci 40:1585–1590

    Article  CAS  Google Scholar 

  30. Crooks JE, Donnellan JP (1990) Kinetics of the reaction between carbon dioxide and tertiary amines. J Org Chem 55:1372–1374

    Article  CAS  Google Scholar 

  31. Schaefer WH (2006) Reaction of primary and secondary amines to form carbamic acid glucuronides. Curr Drug Metab 7:873–881

    Article  CAS  Google Scholar 

  32. Walther D, Ruben M, Rau S (1999) Carbon dioxide and metal centres: from reactions inspired by nature to reactions in compressed carbon dioxide as solvent. Coord Chem Rev 182:67–100

    Article  Google Scholar 

  33. Bara JE, Camper DE, Gin DL, Noble RD (2010) Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc Chem Res 43:152–159

    Article  CAS  Google Scholar 

  34. Brennecke JF, Gurkan BE (2010) Ionic liquids for CO2 capture and emission reduction. J Phys Chem Lett 1:3459–3464

    Article  CAS  Google Scholar 

  35. Choi S, Watanabe T, Bae T-H, Sholl DS, Jones CW (2012) Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases. J Phys Chem Lett 3:1136–1141

    Article  CAS  Google Scholar 

  36. Yang Z-H, He L-N, Gao J, Liu A-H, Yu B (2012) Carbon dioxide utilization with C-N bond formation: carbon dioxide capture and subsequent conversion. Energy Environ Sci 5:6602–6639

    Article  CAS  Google Scholar 

  37. Kovvali AS, Sirkar KK (2001) Dendrimer liquid membranes: CO2 separation from gas mixtures. Ind Eng Chem Res 40:2502–2511

    Article  CAS  Google Scholar 

  38. Fadhel B, Hearn M, Chaffee A (2009) CO2 adsorption by PAMAM dendrimers: significant effect of impregnation into SBA-15. Micropor Mesopor Mat 123:140–149

    Article  CAS  Google Scholar 

  39. Carretti E, Dei L, Baglioni P, Weiss RG (2003) Synthesis and characterization of gels from polyallylamine and carbon dioxide as gellant. J Am Chem Soc 125:5121–5129

    Article  CAS  Google Scholar 

  40. George M, Weiss RG (2006) Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc Chem Res 39:489–497

    Article  CAS  Google Scholar 

  41. Stastny V, Anderson A, Rudkevivh DM (2006) Supramolecular structures from lysine peptides and carbon dioxide. J Org Chem 71:8696–8705

    Article  CAS  Google Scholar 

  42. Rudkevivh DM, Xu H (2005) Carbon dioxide and supramolecular chemistry. Chem Commun 2651–2659

    Google Scholar 

  43. Ki CD, Oh C, Oh S-G, Chang JY (2002) The use of a thermally reversible bond for molecular imprinting of silica spheres. J Am Chem Soc 124:14838–14839

    Article  CAS  Google Scholar 

  44. Phan L, Andreatta JR, Horvey LK, Edie CF, Luco AL, Mirchandani A, Darensbourg DJ, Jessop PJ (2008) Switchable-polarity solvents prepared with a single liquid component. J Org Chem 73:127–132

    Article  CAS  Google Scholar 

  45. Jessop PG, Mercer SM, Eldebrant DJ (2012) CO2-triggered switchable solvents, surfactants, and other materials. Energy Environ Sci 5:7240–7253

    Article  CAS  Google Scholar 

  46. Aresta M, Quaranta E (1997) Carbon dioxide, a potential substitute for phosgene. ChemTech 27:32–40

    CAS  Google Scholar 

  47. Carafa M, Quaranta E (2009) Synthesis of organic carbamates without using phosgene: carbonylation of amines with carbonic acid diesters. Mini-Rev Org Chem 6:168–183

    Article  CAS  Google Scholar 

  48. Aresta M, Quaranta E (1988) Reactivity of phosphacarbamates: transfer of the carbamate group promoted by metal assisted electrophilic attack at the carbon dioxide moiety. J Org Chem 53:4153–4154

    Article  CAS  Google Scholar 

  49. Aresta M, Quaranta E (1992) Alkali-metal-assisted transfer of carbamate group from phosphocarbamates to alkyl halides: a new easy way to alkali-metal carbamates and to carbamate esters. J Chem Soc Dalton Trans 1893–1898

    Google Scholar 

  50. Belforte A, Calderazzo F (1989) Formation of alkylurethanes from carbon dioxide by regioselective O-alkylation of alkali-metal N,N-diethylcarbamates in the presence of complexing agent. J Chem Soc Dalton Trans 1007–1009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aresta, M., Dibenedetto, A., Quaranta, E. (2016). Interaction of CO2 with Electron-Rich Moieties. In: Reaction Mechanisms in Carbon Dioxide Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46831-9_3

Download citation

Publish with us

Policies and ethics