Advertisement

CO2 Coordination to Metal Centres: Modes of Bonding and Reactivity

Chapter

Abstract

The modes of coordination of carbon dioxide (CO2) to metal centres are presented in this chapter. The coordination at both room temperature and low temperature in gas matrices is discussed with the reactivity of the coordinated cumulene. X-ray diffraction structural data are presented and discussed together with spectroscopic properties of the complexes.

Keywords

Metal Centre Coordination Mode Nuclear Magnetic Resonance Spectroscopy Metal Organic Framework Early Transition Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wang YG, Wiberg KB, Werstiuk NH (2007) Correlation effects in EOM-CCSD for the excited states: evaluated by AIM localization index (LI) and delocalization index (DI). J Phys Chem A 111:3592–3601CrossRefGoogle Scholar
  2. 2.
    Mascetti J (2010) Carbon dioxide coordination chemistry and reactivity of coordinated CO2. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  3. 3.
    Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) New nickel-carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)bis(tricyclohexylphosphine)nickel. J Chem Soc Chem Commun:636–637Google Scholar
  4. 4.
    Kégl T, Ponec R, Kollar L (2011) Theoretical insights into the nature of nickel−carbon dioxide interactions in Ni(PH3)22-CO2). J Phys Chem C 115:12463–12473CrossRefGoogle Scholar
  5. 5.
    Contreras L, Paneque M, Sellin M, Carmona E, Perez PJ, Gutierrez-Puebla E, Monge A, Ruiz C (2005) Novel carbon dioxide and carbonyl carbonate complexes of molybdenum. The X-ray structures of trans-[Mo(CO2)2{HN(CH2CH2PMe2)2}(PMe3)] and [Mo32-CO3)(μ2-O)2(O)2(CO)2(H2O)(PMe3)6] · H2O. New J Chem 29:109–115CrossRefGoogle Scholar
  6. 6.
    Aresta M, Gobetto R, Quaranta E, Tommasi I (1992) A bonding-reactivity relationship for Ni(PCy3)2(CO2): a comparative solid-state-solution nuclear magnetic resonance study (31P, 13C as a diagnostic tool to determine the mode of bonding of CO2 to a metal center). Inorg Chem 31:4286–4290CrossRefGoogle Scholar
  7. 7.
    Bristow GS, Hitchcock PB, Lappert DM (1981) A novel carbon dioxide complex: synthesis and crystal structure of [Nb(η-C5H4Me)2(CH2SiMe3)(η2-CO2)]. J Chem Soc Chem Commun 21:1145–1146CrossRefGoogle Scholar
  8. 8.
    Gibson DH (1996) The organometallic chemistry of carbon dioxide. Chem Rev 96:2063–2095CrossRefGoogle Scholar
  9. 9.
    Gibson DH (1999) Carbon dioxide coordination chemistry: metal complexes and surface-bound species. What relationships? Coord Chem Rev 185–186:335–355CrossRefGoogle Scholar
  10. 10.
    Yin X, Moss JR (1999) Recent developments in the activation of carbon dioxide by metal complexes. Coord Chem Rev 181:27–59CrossRefGoogle Scholar
  11. 11.
    Gambarotta S, Arena F, Floriani C, Zanazzi PF (1982) Carbon dioxide fixation: bifunctional complexes containing acidic and basic sites working as reversible carriers. J Am Chem Soc 104:5082–5092CrossRefGoogle Scholar
  12. 12.
    Fujita E, Creutz C, Sutin N, Brunschwig BS (1993) Carbon dioxide activation by cobalt macrocycles: evidence of hydrogen bonding between bound CO2 and the macrocycle in solution. Inorg Chem 32:2657–2662CrossRefGoogle Scholar
  13. 13.
    Beley M, Collin JP, Ruppert R, Sauvage JP (1986) Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J Am Chem Soc 108:7461–7467CrossRefGoogle Scholar
  14. 14.
    Collin JP, Sauvage JP (1986) Electrochemical reduction of carbon dioxide mediated by molecular catalysts. Coord Chem Rev 1993:245–268Google Scholar
  15. 15.
    Berkefeld A, Piers WE, Parvez M (2010) Tandem frustrated Lewis pair/tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. J Am Chem Soc 132(31):10660–10661CrossRefGoogle Scholar
  16. 16.
    Stephan DW, Erker G (2010) Frustrated Lewis pairs. Angew Chem Int Ed 49:46–76CrossRefGoogle Scholar
  17. 17.
    Appelt C, Westenberg H, Bertini F, Ehlers AW, Slootweg JC, Lammertsma K, Uhl W (2011) Geminal phosphorous/aluminum-based frustrated Lewis pairs: C-H versus C≡C activation and CO2 fixation. Angew Chem Int Ed 50: 3925–3928 and references thereinGoogle Scholar
  18. 18.
    Zevaco T, Dinjus E (2010) Main group element- and transition metal promoted carboxylations of organic substrates (alkanes, alkenes, alkynes, aromatics, and others). In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley-VCH Verlag GmbH & Co, KGaA, WeinheimGoogle Scholar
  19. 19.
    Haruki E (1982) Organic synthesis with carbon dioxide. In: Inoue S, Yamazaki N (eds) Organic and bioorganic chemistry of carbon dioxide. Halsted, New YorkGoogle Scholar
  20. 20.
    Takay I, Yamamoto A (1982) Organometallic reactions of carbon dioxide. In: Inoue S, Yamazaki N (eds) Organic and bioorganic chemistry of carbon dioxide. Halsted, New YorkGoogle Scholar
  21. 21.
    Bertini I, Luchinat C (1994) The reaction pathway of zinc enzymes and related biological catalysts. In: Bertini I, Gray HB, Lippard SJ, Valentine JS (eds) Bioinorganic chemistry. University Science, Mill ValleyGoogle Scholar
  22. 22.
    Hou XJ, He P, Li H, Wang X (2013) Understanding the adsorption mechanism of C2H2, CO2, and CH4 in metal-organic frameworks with coordinatively unsaturated metal sites. J Phys Chem C 117:2824–2834CrossRefGoogle Scholar
  23. 23.
    Calabrese JC, Herskovitz T, Kinney JB (1983) Carbon dioxide coordination chemistry. 5. Preparation and structure of Rh(η1-CO2)(Cl)(diars)2. J Am Chem Soc 1983:5914–5915CrossRefGoogle Scholar
  24. 24.
    Harlow RL, Kinney JB, Herskovitz T (1980) Carbon dioxide co-ordination chemistry: preparation and X-ray crystal structure of the methoxycarbonyl complex [IrCl(CO2Me)-(Me2PCH2CH2PMe2)2]FSO3 from a CO2 adduct. J Chem Soc Chem Commun:813–814Google Scholar
  25. 25.
    Aresta M, Nobile CF (1977) Carbon dioxide-transition metal complexes. III. Rh(I)-CO2 complexes. Inorg Chim Acta 24:L49–L50CrossRefGoogle Scholar
  26. 26.
    Karsch HH (1977) Funktionelle Trimethylphosphinderivate, III. Ambivalentes Verhalten von Tetrakis (trimethylphosphin) eisen: Reaktion mit CO2. Chem Ber 110:2213–2221CrossRefGoogle Scholar
  27. 27.
    Tanaka K, Ooyama D (2002) Multi-electron reduction of CO2 via Ru-CO2, −C(O)OH, −CO, −CHO, and –CH2OH species. Coord Chem Rev 226:211–218CrossRefGoogle Scholar
  28. 28.
    Holbrey JD, Reichert WM, Tkatchenko I, Bouajila E, Walter O, Tommasi I, Rogers RD (2003) 1,3-Dimethylimidazolium-2-carboxylate: the unexpected synthesis of an ionic liquid precursor and carbene-CO2 adduct. Chem Commun (Camb) 1:28–29CrossRefGoogle Scholar
  29. 29.
    Castro-Rodriguez I, Nakai H, Zakharov LN, Rheingold AL, Meyer K (2004) A linear, O-coordinated η1-CO2 bound to uranium. Science 305:1757–1759CrossRefGoogle Scholar
  30. 30.
    Lam OP, Anthon C, Meyer K (2009) Influence of steric pressure on the activation of carbon dioxide and related small molecules by uranium coordination complexes. Dalton Trans 44:9677–9691CrossRefGoogle Scholar
  31. 31.
    Lee CH, Laitar DS, Mueller P, Sadighi JP (2007) Generation of a doubly bridging CO2 ligand and deoxygenation of CO2 by an (NHC)Ni(0) Complex. J Am Chem Soc 129:13802–13803CrossRefGoogle Scholar
  32. 32.
    Chang CC, Liao MC, Chang TH, Peng SM, Lee GH (2005) Aluminum-magnesium complexes with linear bridging carbon dioxide. Angew Chem Int Ed 44:7418–7420CrossRefGoogle Scholar
  33. 33.
    Gao G, Li F, Xu L, Liu X, Yang Y (2008) CO2 coordination by inorganic polyoxoanion in water. J Am Chem Soc 130:10838–10839CrossRefGoogle Scholar
  34. 34.
    Dietzel PDC, Johnsen RE, Fjellväg H, Bordiga S, Groppo E, Chavan S, Blom R (2008) Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal–organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. J Chem Soc Chem Commun:5125–5127Google Scholar
  35. 35.
    Jegat C, Fouassier M, Mascetti J (1991) Carbon-dioxide coordination chemistry. 1. Vibrational study of trans-(CO2)2Mo(PMe3)4 and Fe(CO2)(PMe3)4. Inorg Chem 30:1521–1529CrossRefGoogle Scholar
  36. 36.
    Jegat C, Fouassier M, Tranquille M, Mascetti J (1991) Carbon-dioxide coordination chemistry. 2. Synthesis and FTIR study of Cp2Ti(CO2)(PMe3). Inorg Chem 30:1529–1536CrossRefGoogle Scholar
  37. 37.
    Leitner W (1996) The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey. Coord Chem Rev 153:257–284CrossRefGoogle Scholar
  38. 38.
    Pilato RS, Housemekerides CE, Jernakoff P, Rubin D, Geoffroy G, Rheingold AR (1990) Net [2 + 2] cycloaddition reactions of the oxo complexes Cp2M = O (M = Mo, W) with electrophilic organic and organometallic substrates. Formation of bimetallic μ23-CO2 complexes. Organometallics 9:2333–2341CrossRefGoogle Scholar
  39. 39.
    Mastrorilli P, Moro G, Nobile CF, Latronico M (1992) Carbon dioxide-transition metal complexes. IV. New Ni(0)-CO2 complexes with chelating diphosphines: influence of P-Ni-P angle on complex stabilities. Inorg Chim Acta 192:189–193CrossRefGoogle Scholar
  40. 40.
    Jegat C, Fouassier M, Tranquille M, Mascetti J, Tommasi I, Aresta M, Inglod F, Dedieu A (1993) Carbon dioxide co-ordination chemistry 3. Vibrational, NMR, and theoretical studies of Ni(CO2)(PCy3)2. Inorg Chem 32:1279–1289CrossRefGoogle Scholar
  41. 41.
    Carmona E, Hughes AK, Munoz MZ, O’Hare DM, Perez PJ, Poveda ML (1991) Rotational isomerism and fluxional behavior of bis(carbon dioxide) adducts of molybdenum. J Am Chem Soc 113:9210–9218CrossRefGoogle Scholar
  42. 42.
    Almond MJ, Downs AJ (1989) Spectroscopy of matrix isolated species. Wiley, ChichesterGoogle Scholar
  43. 43.
    Jacox ME, Milligan DE (1974) Vibrational spectrum of CO2 in an argon matrix. Chem Phys Lett 28:163–168CrossRefGoogle Scholar
  44. 44.
    Hauge RH, Margrave JL, Kauffmann JW, Rao NA, Konarski MM, Bell JP, Billups WE (1981) Matrix isolation studies on the lithium-induced reductive coupling of carbon dioxide. J Chem Soc Chem Commun:12581260Google Scholar
  45. 45.
    Kafafi ZH, Hauge RH, Billups WE, Margrave JL (1984) Carbon dioxide activation by alkali metals. 2. Infrared spectra of M+CO2 and M2 2+CO2 2− in argon and nitrogen matrice. Inorg Chem 23:177–183CrossRefGoogle Scholar
  46. 46.
    Manceron L, Loutellier A, Perchard JP (1985) Reduction of carbon dioxide to oxalate by lithium atoms: a matrix isolation study of the intermediate steps. J Mol Struct 129:115–124CrossRefGoogle Scholar
  47. 47.
    Hwang DY, Mebel AM (2000) Theoretical study on reforming of CO2 catalyzed with Be. Chem Phys Lett 325:639–644CrossRefGoogle Scholar
  48. 48.
    Solov’ev VN, Polikarpov EV, Nemukhin AV, Sergeev GB (1999) Matrix isolation and ab initio study of the reactions of magnesium atoms and clusters with CO2, C2H4, and CO2/C2H4 mixtures: formation of cyclic complexes. J Phys Chem A 103:6721–6725CrossRefGoogle Scholar
  49. 49.
    Hwang DY, Mebel AM (2000) Theoretical study on the reaction mechanism of CO2 with Mg. J Phys Chem A 104:7646–7650CrossRefGoogle Scholar
  50. 50.
    Polikarpov EV, Granovsky AA, Nemukhin AV (2001) On the potential-energy surface of the Mg + CO2 (C 2v) system. Mend Commun 11:150–151CrossRefGoogle Scholar
  51. 51.
    Hwang DY, Mebel AM (2000) Reaction mechanism of CO2 with Ca atom: a theoretical study. Chem Phys Lett 331:526–532CrossRefGoogle Scholar
  52. 52.
    Burkholder TR, Andrews L, Bartlett RJ (1993) Reaction of boron atoms with carbon dioxide: matrix and ab initio calculated infrared spectra of OBCO. J Phys Chem 97:3500–3503CrossRefGoogle Scholar
  53. 53.
    Chin CH, Mebel AM, Hwang DY (2003) Theoretical study of the reaction mechanism of boron atom with carbon dioxide. Chem Phys Lett 375:670–675CrossRefGoogle Scholar
  54. 54.
    Lequere AM, Xu C, Manceron L (1991) Vibrational spectra, structures, and normal-coordinate analysis of aluminum-carbon dioxide complexes isolated in solid argon. J Phys Chem 95:3031–3037CrossRefGoogle Scholar
  55. 55.
    Huber H, Mc Intosh D, Ozin GA (1978) Metal atom chemistry and surface chemistry: (carbon dioxide)silver, Ag(CO2). A localized bonding model for weakly chemisorbed carbon dioxide on bulk silver. Inorg Chem 17:1472–1476CrossRefGoogle Scholar
  56. 56.
    Kurtikyan TS, Kazaryan SG (1981) IR spectral study of low-temperature interaction between copper vapours and carbon dioxide. Arm Khim Zh 34:375–379Google Scholar
  57. 57.
    Almond MJ, Downs AJ, Perutz RN (1985) Matrix photooxidation of the metal carbonyls M(CO)6 (M = Cr, W) by the isoelectronic molecules carbon dioxide and nitrous oxide. Inorg Chem 24:275–281CrossRefGoogle Scholar
  58. 58.
    Mascetti J, Tranquille M (1985) IR evidence for the formation of CO2 transition-metal atom complexes in low-temperature matrices. Surf Sci 156:201–205CrossRefGoogle Scholar
  59. 59.
    Mascetti J, Tranquille M (1988) Ab initio investigation of several low-lying states of all-trans octatetraene. J Phys Chem 92:2177–2184CrossRefGoogle Scholar
  60. 60.
    Papai I, Mascetti J, Fournier R (1997) Theoretical study of the interaction of the Ti atom with CO2: cleavage of the C − O bond. J Phys Chem A 101:4465–4471CrossRefGoogle Scholar
  61. 61.
    Hwang DY, Mebel AM (2002) Theoretical study of TiO-catalyzed hydrogenation of carbon dioxide to formic acid. J Chem Phys 116:5633–5642CrossRefGoogle Scholar
  62. 62.
    Zhang LN, Wang XF, Chen MH, Qin QZ (2000) Activation of CO2 by Zr atom. Matrix-isolation FTIR spectroscopy and density functional studies. Chem Phys 254:231–238CrossRefGoogle Scholar
  63. 63.
    Chen MH, Wang XF, Zhang LN, Qin QZ (2000) IR spectroscopic and DFT studies on the reactions of laser-ablated Nb atoms with carbon dioxide. J Phys Chem A 104:7010–7015CrossRefGoogle Scholar
  64. 64.
    Wang XF, Chen MH, Zhang LN, Qin QZ (2000) Spectroscopic and theoretical studies on the reactions of laser-ablated tantalum with carbon dioxide. J Phys Chem A 104:758–764CrossRefGoogle Scholar
  65. 65.
    Jiang L, Xu Q (2007) Infrared spectroscopic and density functional theory study on the reactions of lanthanum atoms with carbon dioxide in rare-gas matrices. J Phys Chem A 111:3519–3525CrossRefGoogle Scholar
  66. 66.
    Tague TJ, Andrews L, Hunt RD (1993) Matrix infrared spectra of the products of uranium-atom reactions with carbon monoxide and carbon dioxide. J Phys Chem 97:10920–10924CrossRefGoogle Scholar
  67. 67.
    Liang BY, Andrews L (2002) Reactions of laser-ablated rhenium atoms with carbon dioxide: matrix infrared spectra and density functional calculations on OReCO, O2ReCO, ORe(CO)2, O2Re(CO)2, OReCO, and ORe(CO)2 . J Phys Chem A 106:595–602CrossRefGoogle Scholar
  68. 68.
    Herman J, Foutch JD, Davico GE (2007) Gas-phase reactivity of selected transition metal cations with CO and CO2 and the formation of metal dications using a sputter ion source. J Phys Chem A 111:2461–2468CrossRefGoogle Scholar
  69. 69.
    Koyanagi GK, Bohme DK (2006) Gas-phase reactions of carbon dioxide with atomic transition-metal and main-group cations: room-temperature kinetics and periodicities in reactivity. J Phys Chem A 110:1232–1241CrossRefGoogle Scholar
  70. 70.
    Sodupe M, Branchadell V, Rosi M, Bauschlicher CW (1997) Theoretical study of M+-CO2 and OM+CO systems for first transition row metal atoms. J Phys Chem 101:7854–7859CrossRefGoogle Scholar
  71. 71.
    Walker NR, Walters RS, Duncan MA (2004) Infrared photodissociation spectroscopy of V+(CO2)n and V+(CO2)nAr complexes. J Chem Phys 120:10037–10045CrossRefGoogle Scholar
  72. 72.
    Walker NR, Walters RS, Grieves GA, Duncan MA (2004) Growth dynamics and intracluster reactions in Ni+(CO2)n complexes via infrared spectroscopy. J Chem Phys 121:10498–10507CrossRefGoogle Scholar
  73. 73.
    Gregoire G, Duncan MA (2002) Infrared spectroscopy to probe structure and growth dynamics in Fe+−(CO2)n clusters. J Chem Phys 117:2120–2130CrossRefGoogle Scholar
  74. 74.
    Griffin JB, Armentrout PB (1997) Guided ion beam studies of the reactions of Fen+(n = 1–18) with CO2: iron cluster oxide bond energies. J Chem Phys 107:5345–5355CrossRefGoogle Scholar
  75. 75.
    Tjelta BL, Walter D, Armentrout PB (2001) Determination of weak Fe+–L bond energies (L = Ar, Kr, Xe, N2, and CO2) by ligand exchange reactions and collision-induced dissociation. Int J Mass Spectrom 204:7–21CrossRefGoogle Scholar
  76. 76.
    Rodgers MT, Walker B, Armentrout PB (1999) Reactions of Cu+ (1 S and 3 D) with O2, CO, CO2, N2, NO, N2O, and NO2 studied by guided ion beam mass spectrometry. Int J Mass Spectrom 182(183):99–120CrossRefGoogle Scholar
  77. 77.
    Zang XG, Armentrout PB (2003) Activation of O2, CO, and CO2 by Pt+: the thermochemistry of PtO+. J Phys Chem A 107:8904–8914CrossRefGoogle Scholar
  78. 78.
    Clemmer DE, Weber ME, Armentrout PB (1992) Reactions of aluminum (1+)(1S) with nitrogen dioxide, nitrous oxide, and carbon dioxide: thermochemistry of aluminum monoxide and aluminum monoxide (1+). J Phys Chem 96:10888–10893CrossRefGoogle Scholar
  79. 79.
    Armentrout PB, Beauchamp JL (1980) Reactions of U+ and UO+ with O2, CO, CO2, COS, CS2 and D2O. Chem Phys 50:27–36CrossRefGoogle Scholar
  80. 80.
    Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742CrossRefGoogle Scholar
  81. 81.
    Albano P, Aresta M, Manassero M (1980) Interaction of carbon dioxide with coordinatively unsaturated rhodium(I) complexes with the ligand 1,2 bis(diphenylphosphino)ethane. Inorg Chem 19(4):1069–1072CrossRefGoogle Scholar
  82. 82.
    Nicholas KM (1980) Catalytic oxidation of phosphines by transition metal-activated carbon dioxide. J Organomet Chem 188:C10–C12CrossRefGoogle Scholar
  83. 83.
    Ohnishi T, Seino H, Hidai M, Mizobe Y (2005) The C = O and C = S bond cleavage in carbon dioxide and tolyl isothiocyanate by reactions with the Mo(0) tetraphosphine complex [Mo{meso-o-C6H4(PPhCH2CH2PPh2)2}(Ph2PCH2CH2PPh2)]. J Organomet Chem 690:1140–1146CrossRefGoogle Scholar
  84. 84.
    Brookes NJ, Ariafard A, Stranger R, Yates BF (2011) Tuning the laplaza-cummins 3-coordinate M[N(R)Ph]3 catalyst to activate and cleave CO2. Dalton Trans 40:5569–5578CrossRefGoogle Scholar
  85. 85.
    Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH (2011) Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresour Technol 102(10):6033–6038CrossRefGoogle Scholar
  86. 86.
    Aresta M, Quaranta E, Tommasi I (1988) Reduction of co-ordinated carbon dioxide to carbon monoxide via protonation by thiols and other Brønsted acids promoted by Ni-systems: a contribution to the understanding of the mode of action of the enzyme carbon monoxide dehydrogenase. J Chem Soc Chem Commun:450–452Google Scholar
  87. 87.
    Yoshida T, Thorn DL, Okano T, Ibers JA, Otsuka S (1979) Hydration and reduction of carbon dioxide by rhodium hydride compounds. Preparation and reactions of rhodium bicarbonate and formate complexes, and the molecular structure of RhH2(O2COH)(P(i-Pr)3)2. J Am Chem Soc 101:4212–4221CrossRefGoogle Scholar
  88. 88.
    Aresta M (1977) Carbon dioxide-transition metals complexes. III. Rhodium(I)-CO2 complexes. Inorg Chim Acta 24:L49–L50CrossRefGoogle Scholar
  89. 89.
    Tsai JC, Khan M, Nicholas KM (1989) Reactivity of coordinated carbon dioxide: reactions of (C5H5)2Mo(.eta.2-CO2) with electrophiles. Organometallics 8:2967–2968CrossRefGoogle Scholar
  90. 90.
    Demerseman B, Bouquet G, Bigorgne M (1978) Reduction de l’anhydride carbonique par le systeme chlorure de titanocene—metal reducteur (zinc, aluminium). Nouvelle methode de preparation de Cp2Ti(CO)2 et synthese d’un complexe carbonate de titane(III). J Organomet Chem 145:41–48CrossRefGoogle Scholar
  91. 91.
    Tsuda T, Sanada S, Saegusa T (1976) Copper-promoted deoxygenation of carbon dioxide by isocyanide. J Organomet Chem 116:C10–C11CrossRefGoogle Scholar
  92. 92.
    Chatt J, Kubota M, Jeffery Leigh G, March FC, Mason R, Yarrow DJ (1974) A possible carbon dioxide complex of molybdenum and its rearrangement product di-μ-carbonato-bis{carbonyltris(dimethylphenylphosphine) molybdenum}: X-ray crystal structure. J Chem Soc Chem Commun:1033–1034Google Scholar
  93. 93.
    Herskowitz T, Guggenberger L (1976) Carbon dioxide coordination chemistry. The structure and some chemistry of the novel carbon dioxide addition product chlorobis(carbon dioxide)tris(trimethylphosphine)iridium. J Am Chem Soc 98:1615–1616CrossRefGoogle Scholar
  94. 94.
    Matsubara T, Hirao K (2001) Density functional study on the hydrido migration to CO2 and CS2 of the (η5-C5H4(CH2)3NH3 +)MH(H2PCH2PH2) (M = Fe, Ru, and Os) complexes promoted by the protonated amine arm. Which path does the reaction take, abstraction or insertion? Organometallics 20:5759–5768CrossRefGoogle Scholar
  95. 95.
    Hirano M, Akita M, Tani K, Kumagai K, Kasuga N, Fukuoka A, Komiya S (1997) Activation of coordinated carbon dioxide in Fe(CO2)(depe)2 by group 14 electrophiles. Organometallics 16:4206–4213CrossRefGoogle Scholar
  96. 96.
    Busetto L, Angelici R (1968) Reactions of cyclopentadienyliron carbonyl cations with amines. Inorg Chim Acta 2:386–390CrossRefGoogle Scholar
  97. 97.
    Bryndza HE, Tam W (1988) Monomeric metal hydroxides, alkoxides, and amides of the late transition metals: synthesis, reactions, and thermochemistry. Chem Rev 88:1163–1185CrossRefGoogle Scholar
  98. 98.
    Deglmann P, Ember E, Hofmann P, Pitter S, Walter O (2007) Experimental and theoretical investigations on the catalytic hydrosilylation of carbon dioxide with ruthenium nitrile complexes. Chem Eur J 13:2864–2879CrossRefGoogle Scholar
  99. 99.
    Ohnishi YY, Nakao Y, Sato H, Sakaki S (2006) Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. Theoretical study of significant acceleration by water molecules. Organometallics 25:3352–3363CrossRefGoogle Scholar
  100. 100.
    Konno H, Kobayashi A, Sakamoto K, Fagalde F, Katz N, Saitoh H, Ishitani O (2000) Synthesis and properties of [Ru(tpy)(4,4′-X2bpy)H]+(tpy = 2,2′:6′,2″-terpyridine, bpy = 2,2′-bipyridine, X = H and MeO), and their reactions with CO2. Inorg Chim Acta 299:155–163CrossRefGoogle Scholar
  101. 101.
    Gong JK, Wright CA, Thorn M, McCauley K, McGill JW, Sutterer A, Hinze SM, Prince RB (1998) In: Inui T, Anpo M, Izui K, Yanagida S, Yamaguchi T (eds) Advances in chemical conversions for mitigating carbon dioxide, vol. 114. Elsevier, Amsterdam, pp 491–494Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chemical and Biomolecular Engineering DepartmentNUSSingaporeSingapore
  2. 2.CIRCCPisaItaly
  3. 3.Department of Chemistry and CIRCCUniversity of BariBariItaly

Personalised recommendations