Advertisement

The Carbon Dioxide Molecule

Chapter

Abstract

The basic aspects of the reactivity of carbon dioxide (CO2) are featured in this chapter and related to the electronic structure of the molecule. The electronic properties of neutral CO2 are compared with those of the radical ions \( {\mathrm{CO}}_2^{-} \) and \( {\mathrm{CO}}_2^{+} \). The potential of a few spectroscopic techniques (infrared, ultraviolet–visible, nuclear magnetic resonance) in the characterization of CO2 states is also highlighted.

Keywords

Molecular Orbital Radical Anion Alkali Metal Atom Carbon Dioxide Molecule Internuclear Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hirota E, Iijima T, Kuchitsu K, Lafferty WJ, Ramsay DA, Vogt J (1992) Structure data of free polyatomic molecules. In: Kuchitsu K (ed), Landolt-Börnstein, vol II/21. Springer, Berlin, p 151Google Scholar
  2. 2.
    Graner G, Hirota E, Iijima T, Kuchitsu K, Ramsay AD, Vogt J, Vogt N (1995) Structure data of free polyatomic molecules. In: Kuchitsu K (ed) Landolt-Börnstein, vol II/23. Springer, Berlin, p 146Google Scholar
  3. 3.
    Vučelić M, Ohrn Y, Sabin JR (1973) Ab initio calculation of the vibrational and electronic properties of carbon dioxide. J Chem Phys 59:3003–3007Google Scholar
  4. 4.
    Gutsev GL, Bartlett RJ, Compton RN (1998) Electron affinities of CO2, OCS, and CS2. J Chem Phys 108:6756–6762Google Scholar
  5. 5.
    Maroulis G, Thakkar AJ (1990) Polarizabilities and hyperpolarizabilities of carbon dioxide. J Chem Phys 93:4164–4171Google Scholar
  6. 6.
    Buckingham AD, Disch RL, Dunmur DA (1968) Quadrupole moments of some simple molecules. J Am Chem Soc 90:3104–3107Google Scholar
  7. 7.
    Lobue JM, Rice JK, Novick SE (1984) Qualitative structure of (CO2)2 and (OCS)2. Chem Phys Lett 112:376–380Google Scholar
  8. 8.
    Brigot N, Odiot S, Walmsley SH, Whitten JL (1977) The structure of the carbon dioxide dimer. Chem Phys Lett 49:157–159Google Scholar
  9. 9.
    Johnson MA, Alexander ML, Lineberger WC (1984) Photodestruction cross sections for mass-selected ion clusters: (CO2)n +. Chem Phys Lett 112:285–290Google Scholar
  10. 10.
    Bowen KH, Liesegang GW, Sanders RA, Herschbach DR (1983) Electron attachment to molecular clusters by collisional charge transfer. J Phys Chem 87:557–565Google Scholar
  11. 11.
    Rossi AR, Jordan KD (1979) Comment on the structure and stability of (CO2)2 . J Chem Phys 70:4442–4444Google Scholar
  12. 12.
    Allian CJ, Gelius U, Allison DA, Johansson G, Siegbahn H, Siegbahn K (1972) ESCA studies of CO2, CS2 and COS. J Elect Spectrosc Relat Phenom 1:131–151Google Scholar
  13. 13.
    Turner DW (1968) Molecular photoelectron spectroscopy. In: Hill HAO, Day P (eds) Physical methods in advanced inorganic chemistry. Interscience, LondonGoogle Scholar
  14. 14.
    Turner DW, May DP (1967) Frank–Condon factors in ionization: experimental measurements using molecular photoelectron spectroscopy. II. J Chem Phys 46:1156–1160Google Scholar
  15. 15.
    Cremaschi P, Simonetta M (1974) A theoretical study of electrophilic aromatic substitution. I. The electronic structure of NO2 +. Theoret Chim Acta 34:175–182Google Scholar
  16. 16.
    Müller JE, Jones RO, Harris J (1983) Density functional calculations for H2O, NH3, and CO2 using localized muffin-tin orbitals. J Chem Phys 79:1874–1884Google Scholar
  17. 17.
    Moncrieff D, Wilson S (1995) On the accuracy of the algebraic approximation in molecular electronic structure calculations: IV. An application to a polyatomic molecule: the CO2 molecule in the Hartree–Fock approximation. J Phys B (At Mol Opt Phys) 28:4007–4013Google Scholar
  18. 18.
    Nakatsuji H (1983) Cluster expansion of the wavefunction. Valence and Rydberg excitations, ionizations, and inner-valence ionization of CO2 and N2O studied by the SAC and SAC CI theories. Chem Phys 75:425–441Google Scholar
  19. 19.
    Walsh AD (1953) The electronic orbitals, shapes, and spectra of polyatomic molecules. Part II. Non-hydride AB2 and BAC molecules. J Chem Soc 2266–2288Google Scholar
  20. 20.
    Rabalais JW, McDonald JM, Scherr V, McGlynn SP (1971) Electron spectroscopy of isoelectronic molecueles. II. Linear triatomic groupings containing sixteen valence electrons. Chem Rev 71:73–108Google Scholar
  21. 21.
    Spielfieldel A, Feautrier N, Cossart-Magos C, Werner H-J, Botschwina P (1992) Bent valence states of CO2. J Chem Phys 97:8382–8388Google Scholar
  22. 22.
    Cossart-Magos C, Launay F, Parkin JE (1992) High resolution absorption spectrum of CO2 between 1750 and 2000 Å. 1. Rotational analysis of nine perpendicular-type bands assigned to a new bent-linear electronic transition. Mol Chem Phys 75:835–856Google Scholar
  23. 23.
    Wang Y-G, Wiberg KB, Werstiuk NH (2007) Correlation effects in EOM-CCSD for the excited states: evaluated by AIM localization index (LI) and delocalization index (DI). J Phys Chem 111:3592–3601Google Scholar
  24. 24.
    Winter NW, Bender CF, Goddard WA III (1973) Theoretical assignments of the low-lying electronic states of carbon dioxide. Chem Phys Lett 20:489–492Google Scholar
  25. 25.
    Dixon RN (1963) The carbon monoxide flame bands. Proc R Soc A 275:431–446Google Scholar
  26. 26.
    Mohammed HH, Fournier J, Deson J, Vermeil C (1980) Matrix isolation study of the CO2 lowest triplet state. Chem Phys Lett 73:315–318Google Scholar
  27. 27.
    Cossart-Magos C, Launay F, Parkin JE (2005) High resolution absorption spectrum of CO2 between 1750 and 2000 Å. 2. Rotational analysis of two parallel-type bands assigned to the lowest electronic transition 13B2 ← X1Σg +. Mol Phys 103:629–641Google Scholar
  28. 28.
    Green S, Schor H, Siegbahn P, Thaddeus P (1976) Theoretical investigation of protonated carbon dioxide. Chem Phys 17:479–485Google Scholar
  29. 29.
    Seeger U, Seeger R, Pople JA, Schleyer Pvon R (1978) Isomeric structures of protonated carbon dioxide. Chem Phys Lett 55:399–403Google Scholar
  30. 30.
    Scarlett M, Taylor PR (1986) Protonation of CO2, COS, CS2. Proton affinities and the structure of protonated species. Chem Phys 101:17–26Google Scholar
  31. 31.
    Hartz N, Rasul G, Olah GA (1993) Role of oxonium, sulfonium, and carboxonium dications in superacid-catalyzed reactions. J Am Chem Soc 115:1277–1285Google Scholar
  32. 32.
    Gronert S, Keeffe JR (2007) The protonation of allene and some heteroallenes, a computational study. J Org Chem 72:6343–6352Google Scholar
  33. 33.
    Traeger JC, Kompe BM (1991) Determination of the proton affinity of carbon dioxide by photoionization mass spectrometry. J Mass Spectrom Org Mass Spectrom 26:209–214Google Scholar
  34. 34.
    Bohme DK, Mackay GI, Schiff HI (1980) Determination of proton affinities from the kinetics of proton transfer reactions. The proton affinities of O2, H2, Kr, O, N2, Xe, CO2, CH4, N2O, and CO. J Chem Phys 73:4976–4986Google Scholar
  35. 35.
    Lias SG, Liebman JF, Levin RD (1984) Evaluated gas phase basicities and proton affinities of molecules. J Phys Chem Ref Data 13:695–808Google Scholar
  36. 36.
    Hunter EP, Lias SG (1998) Evaluated gas phase basicities and proton affinities of molecules: an update. J Phys Chem Ref Data 27:413–656Google Scholar
  37. 37.
    Hayhurst AN, Taylor SG (2001) The proton affinities of CO and CO2 and the first hydration energy of gasous H3O+ from mass spectrometric investigations of ions in rich flames of C2H2. Phys Chem Chem Phys 3:4359–4370Google Scholar
  38. 38.
    Fock W, McAllister T (1982) Probable abundance ratios for interstellar HCS2 +, HCOS, HCO2 +. Astrophys J 257:L99–L101Google Scholar
  39. 39.
    Bogey M, Demuynek C, Destombes JL (1986) The submillimeter wave spectrum of the protonated and deuterated carbon dioxide. J Chem Phys 84:10–15Google Scholar
  40. 40.
    Bogey M, Demuynek C, Destombes JL, Krupnov A (1988) Molecular structure of HOCO+. J Mol Struct 190:465–474Google Scholar
  41. 41.
    Amano T, Tanaka K (1985) Difference frequency laser spectroscopy of the ν1 band of HOCO+. J Chem Phys 82:1045–1046Google Scholar
  42. 42.
    Amano T, Tanaka K (1985) Difference frequency laser spectroscopy of the ν1 fundamental band of HOCO+. J Chem Phys 83:3721–3728Google Scholar
  43. 43.
    Taddeus P, Guélin M, Linke RA (1981) Three new “nonterrestrial molecules”. Astrophys J 246:L41–L45Google Scholar
  44. 44.
    Burt JA, Dunn JL, Mc Ewan MJ, Sutton MM, Roche AE, Schiff HI (1970) Some ion–molecule reactions of H3 + and the proton affinity of H2. J Chem Phys 52:6062–6075Google Scholar
  45. 45.
    Adams NG, Smith D, Tichy M, Javahery J, Twiddy ND, Ferguson EE (1989) An absolute proton affinity scale in the 130–140 kcal mol−1 range. J Chem Phys 91:4037–4042Google Scholar
  46. 46.
    Hammami K, Jaidane N, Lakhdar ZB, Spielfeldel A, Feautrier N (2004) New ab initio potential energy surface for the (HOCO+-He) van der Waals complex. J Chem Phys 121:1325–1330Google Scholar
  47. 47.
    Mauser H, King WA, Gready JE, Andrews TJ (2001) CO2 fixation by Rubisco: computational dissection of the key steps of carboxylation, hydration, and C−C bond cleavage. J Am Chem Soc 123:10821–10829Google Scholar
  48. 48.
    Lee HJ, Lloyd MD, Harlos K, Clifton IJ, Baldwin JE, Schofield CJ (2001) Kinetic and crystallographic studies on deacetoxycephalosporin C synthase (DAOCS). J Mol Biol 308:937–948Google Scholar
  49. 49.
    Aresta M, Quaranta E (1997) Carbon dioxide: a substitute for phosgene. ChemTech 27:32–40Google Scholar
  50. 50.
    Quaranta E, Aresta M (2010) The chemistry of N-CO2 bonds: synthesis of carbamic acids and their derivatives, isocyanates, and ureas. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley-VCH, WeinheimGoogle Scholar
  51. 51.
    Ballivet-Tkatchenko D, Dibenedetto A (2010) Synthesis of linear and cyclic carbonates. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley-VCH, WeinheimGoogle Scholar
  52. 52.
    Sakaki S (1990) Transition-metal complexes of nitrogen, carbon dioxide, and similar small molecules. Ab-initio MO studies of their stereochemistry and coordinate bonding nature. Stereochem Organomet Inorg Compd 4:95–177Google Scholar
  53. 53.
    Santoro M (2010) Non-molecular carbon dioxide at high pressure. In: Boldyreva E, Dera P (eds) High-pressure crystallography: from fundamental phenomena to technological applications. Springer, DordrechtGoogle Scholar
  54. 54.
    Schettino V, Bini R, Ceppatelli M, Ciabini L, Citroni M (2005) Chemical reactions at very high pressure. Adv Chem Phys 11:105–242Google Scholar
  55. 55.
    Iota V, Yoo CS, Cynn H (1999) Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures. Science 283:1510–1513Google Scholar
  56. 56.
    Yoo CS, Cynn H, Gygi F, Galli G, Iota V, Nicol M, Carlson S, Häusermann D, Mailhiot C (1999) Crystal structure of carbon dioxide at high pressure: “superhard” polymeric carbon dioxide. Phys Rev Lett 83:5527–5530Google Scholar
  57. 57.
    Santoro M, Gorelli FA, Bini R, Ruocco G, Scandolo S, Crichton WA (2006) Amorphous silica-like carbon dioxide. Nature 441:857–860Google Scholar
  58. 58.
    Yota V, Yoo CS, Klepeis JH, Jenei Z, Evans W, Cynn H (2007) Six-fold coordinated carbon dioxide VI. Nat Mat 6:34–38Google Scholar
  59. 59.
    Datchi F, Giordano VM, Munsch P, Saitta AM (2009) Structure of carbon dioxide phase IV: breakdown of the intermediate bonding state scenario. Phys Rev Lett 103:185701Google Scholar
  60. 60.
    Matoušek I, Fojtík A, Zahradník R (1975) A semiempirical molecular orbital study of radicals and radical ions derived from carbon oxides. Coll Czech Chem Commun 40:1679–1685Google Scholar
  61. 61.
    Pacansky J, Wahlgren U, Bagus PS (1975) SCF ab intio ground state energy surface for CO2 and CO2 . J Chem Phys 62:2740–2744Google Scholar
  62. 62.
    England WB, Rosemberg BJ, Fortune PJ, Wahl AC (1976) Ab initio vertical spectra and linear bent correlation diagrams for the valence states of CO2 and its singly charged ions. J Chem Phys 65:684–691Google Scholar
  63. 63.
    England WB (1981) Accurate ab initio SCF energy curves for the lowest electronic states of CO2/CO2 . Chem Phys Lett 78:607–613Google Scholar
  64. 64.
    Sommerfeld T, Meyer H-D, Cederbaum LS (2004) Potential energy surface of CO2 anion. Phys Chem Chem Phys 6:42–45Google Scholar
  65. 65.
    Villamena FA, Locigno EJ, Rockenbauer A, Hadad CM, Zweier JL (2006) Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 1. Carbon dioxide radical anion. J Phys Chem 110:13253–13258Google Scholar
  66. 66.
    Feller D, Dixon DA, Francisco JS (2003) Coupled cluster theory determination of the heats of formation of combustion-related compounds: CO, HCO, CO2, HCO2, HOCO, HC(O)OH, and HC(O)OOH. J Phys Chem 107:1604–1617Google Scholar
  67. 67.
    Dixon DA, Feller D, Francisco JS (2003) Molecular structure, vibrational frequencies, and energetics of the HCO, HOCO and HCO2 anions. J Phys Chem A 107:186–190Google Scholar
  68. 68.
    Paulson JF (1970) Some negative-ion reactions with CO2. J Chem Phys 52:963–964Google Scholar
  69. 69.
    Cooper CD, Compton RN (1972) Metastable anions of CO2. Chem Phys Lett 14:29–32Google Scholar
  70. 70.
    Cooper CD, Compton RN (1973) Electron attachment to cyclic anhydrides and related compounds. J Chem Phys 59:3550–3565Google Scholar
  71. 71.
    Compton RN, Reinhardt PW, Cooper CD (1975) Collisional ionization of Na, K, and Cs by CO2, COS, and CS2: molecular electron affinities. J Chem Phys 63:3821–3827Google Scholar
  72. 72.
    Boness MJW, Schulz GJ (1974) Vibrational excitation in CO2 via the 3.8-eV resonance. Phys Rev A 9:1969–1979Google Scholar
  73. 73.
    Ovenall DW, Whiffen DH (1961) Electron spin resonance and structure of the CO2 radical anion. Mol Phys 4:135–144Google Scholar
  74. 74.
    Chantry GW, Whiffen DH (1962) Electronic absorption spectra of CO2 trapped in γ-irradiated crystalline sodium formate. Mol Phys 5:189–194Google Scholar
  75. 75.
    Hartman KO, Hisatsune IC (1966) Infrared spectrum of carbon dioxide anion radical. J Chem Phys 44:1913–1918Google Scholar
  76. 76.
    Hisatsune IC, Adl T, Beahm EC, Kempf RJ (1970) Matrix isolation and decay kinetics of carbon dioxide and carbonate anion free radicals. J Phys Chem 74:3225–3231Google Scholar
  77. 77.
    Hartman KO, Hisatsune IC (1967) Kinetics of oxalate ion pyrolysis in a potassium bromide matrix. J Phys Chem 71:392–396Google Scholar
  78. 78.
    Callens F, Matthys P, Boesman E (1989) Paramagnetic resonance spectrum of CO2 trapped in KCl. J Phys Chem Solids 50:377–381Google Scholar
  79. 79.
    Rudko VV, Vorona JP, Baran NP, Ishchenko SS, Zatovsky IV, Chumakova LS (2010) The mechanism of CO2 radical formation in biological and synthetic apatites. Health Phys 98:322–326Google Scholar
  80. 80.
    Vestad TA, Gustafsson H, Lund A, Hole EO, Sagstuen E (2004) Radiation-induced radicals in lithium formate monohydrate (LiHCO2 .H2O). EPR and ENDOR studies of X-irradiated crystal and polycrystalline samples. Phys Chem Chem Phys 6:3017–3022Google Scholar
  81. 81.
    Symons MCR, West DX, Wilkinson JG (1976) Radiation damage in thallous formate and acetate: charge transfer from thallous ions. Int J Radiat Phys Chem 8:375–379Google Scholar
  82. 82.
    Jacox ME, Milligan DE (1974) Vibrational spectrum of CO2 in an argon matrix. Chem Phys Lett 28:163–168Google Scholar
  83. 83.
    Kafafi ZH, Hauge RH, Billups WE, Margrave JL (1983) Carbon dioxide activation by lithium metal. 1. Infrared spectra of Li+CO2 , Li+C2O4 and Li2 2+CO2 2− in inert gas matrices. J Am Chem Soc 105:3886–3893Google Scholar
  84. 84.
    Manceron L, Loutellier A, Perchard JP (1985) Reduction of carbon dioxide to oxalate by lithium atoms: a matrix isolation study of the intermediate steps. J Mol Struct 129:115–124Google Scholar
  85. 85.
    Kafafi ZH, Hauge RH, Billups WE, Margrave JL (1984) Carbon dioxide activation by alkali metals. 2. Infrared spectra of M+CO2 and M2 2+CO2 2− in argon and nitrogen matrices. Inorg Chem 23:177–183Google Scholar
  86. 86.
    Bencivenni L, D’Alesssio L, Raimondo F, Pelino M (1986) Vibrational spectra and structure of M(CO2) and M2(CO2)2 molecules. Inorg Chim Acta 121:161–166Google Scholar
  87. 87.
    Jordan KD (1984) Theoretical investigation of lithium and sodium complexes with CO2. J Phys Chem 88:2459–2465Google Scholar
  88. 88.
    Bennett JE, Mile B, Thomas A (1965) Electron spin resonance of the CO2 radical ion at 77 K. Trans Faraday Soc 61:2357–2364Google Scholar
  89. 89.
    Borel JP, Faes F, Pittel A (1981) Electron paramagnetic resonance of Li-CO2 complexes in a CO2 matrix at 77 K. J Chem Phys 74:2120–2123Google Scholar
  90. 90.
    Cook RJ, Whiffen DH (1967) Endor measurements in X-irradiated sodium formate. J Phys Chem 71:93–97Google Scholar
  91. 91.
    Atkins PW, Keen N, Symons MCR (1962) Oxides and oxyions of the non-metals. Part II. CO2 and NO2. J Chem Soc 2873–2880Google Scholar
  92. 92.
    Sharp JH, Symons MCR (1970) Unstable intermediates. Part LXXIX. Electron spin resonance studies of the effect of the environment upon the hyperfine parameters for CO2 and NO2. J Chem Soc A 3075–3080Google Scholar
  93. 93.
    Dalal NS, McDowell CA, Park JM (1975) EPR and ENDOR studies of CO2 centers in X- and UV-irradiated single crystals of sodium formate. J Chem Phys 63:1856–1862Google Scholar
  94. 94.
    Bentley J, Carmichael I (1985) Electron spin properties of complexes formed by Li or Na with CO2. J Phys Chem 89:4040–4042Google Scholar
  95. 95.
    Koppe R, Kasai PH (1994) Li+CO2 and Na+CO2 generated in argon matrices: an ESR study. J Phys Chem 98:11331–11336Google Scholar
  96. 96.
    Knight LB Jr, Hill D, Berry K, Babb R, Feller D (1996) Electron spin resonance rare gas matrix studies of 12CO2 , 13CO2 , and C17O2 : comparison with ab initio calculations. J Chem Phys 105:5672–5686Google Scholar
  97. 97.
    Jacox ME, Thompson WE (1989) The vibrational spectra of molecular ions in solid neon. I. CO2 + and CO2 . J Chem Phys 91:1410–1416Google Scholar
  98. 98.
    Jacox ME, Thompson WE (1999) The vibrational spectra of CO2 +, (CO2)2 +, CO2 and (CO2)2 trapped in solid neon. J Chem Phys 110:4487–4496Google Scholar
  99. 99.
    Zhou M, Andrews L (1999) Infrared spectra of the CO2 and C2O4 anions in solid argon. J Chem Phys 110:2414–2422Google Scholar
  100. 100.
    Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25:225–273Google Scholar
  101. 101.
    Farkas AP, Solymosi F (2009) Activation and reaction of CO2 on a K-promoted Au(111) surface. J Phys Chem C 113:19930–19936Google Scholar
  102. 102.
    Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638Google Scholar
  103. 103.
    Thampi KR, Kiwi J, Gratzel M (1987) Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327:506–508Google Scholar
  104. 104.
    Ikeue K, Yamashita H, Anpo M, Takewaki T (2001) Photocatalytic reduction of CO2 with H2O on Ti−β zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105:8350–8355Google Scholar
  105. 105.
    Hwang JS, Chang JS, Psrk SE, Ikeue K, Anpo M (2005) Photoreduction of carbon dioxide on surface functionalized nanoporous catalysts. Top Catal 35:311–319Google Scholar
  106. 106.
    Saladin F, Alxneit I (1997) Temperature dependence of the photochemical reduction of CO2 in the presence of H2O at the solid/gas interface of TiO2. J Chem Soc Faraday Trans 93:4159–4163Google Scholar
  107. 107.
    He H, Zapol P, Curtiss LA (2010) A theoretical study of CO2 anions on anatase (101) surface. J Phys Chem C 114:21474–21481Google Scholar
  108. 108.
    Chiesa M, Giamello E (2007) Carbon dioxide activation by surface excess electrons: an EPR study of the CO2 radical ion adsorbed on the surface of MgO. Chem Eur J 13:1261–1267Google Scholar
  109. 109.
    Preda G, Pacchioni G, Chiesa M, Giamello E (2008) Formation of CO2 radical anion from CO2 adsorption on an electron-rich MgO surface: a combined ab initio and pulse EPR study. J Phys Chem C 112:19568–19576Google Scholar
  110. 110.
    Barton Cole E, Bocarsly AB (2010) Photochemical, electrochemical, photoelectrochemical reduction of carbon dioxide. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley-VCH, WeinheimGoogle Scholar
  111. 111.
    Li W (2010) Electrocatalytic reduction of CO2 to small organic molecule fuels on metal catalysts. In: Hu Y (ed) Advances in CO2 conversion and utilization, ACS Symposium Series. American Chemical Society, Washington, DC, pp 55–76Google Scholar
  112. 112.
    Gennaro A, Isse AA, Severin M-G, Vianello E, Bhugun I, Savéant J-M (1996) Mechanism of the electrochemical reduction of carbon dioxide at inert electrodes in media of low proton availability. J Chem Soc, Faraday Trans 92:3963–3968Google Scholar
  113. 113.
    Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solutions. J Chem Ref Data 18:1637–1756Google Scholar
  114. 114.
    Von Sonntag C (1987) The chemical basis of radiation biology. Taylor and Francis, LondonGoogle Scholar
  115. 115.
    Flyunt R, Schuchmann MN, von Sonntag C (2001) A common carbanion intermediate in the recombination and proton-catalysed disproportionation of the carboxyl radical anion CO2 , in aqueous solution. Chem Eur J 7:796–799Google Scholar
  116. 116.
    Cossart-Magos C, Jungen M, Launay F (1987) High resolution absorption spectrum of CO2 between 10 and 14 eV. Assignment of nf Rydberg series leading to a new value of the first ionization potential. Mol Phys 61:1077–1117Google Scholar
  117. 117.
    Herzberg G (1966) Molecular spectra and molecular structure. III. Electronic spectra and electronic structure of polyatomic molecules. Van Nostrand-Reinhold, New York, NYGoogle Scholar
  118. 118.
    Johnson MA, Rostas J (1995) Vibronic structure of the CO2 + ion: reinvestigation of the antisymmetric stretch vibration in the X, Ã, and B states. Mol Phys 85:839–868Google Scholar
  119. 119.
    Gauyacq D, Larcher C, Rostas J (1979) The emission spectrum of the CO2 + ion: rovibronic analysis of the à 2Πu - X 2Πg band system. Can J Phys 57:1634–1649Google Scholar
  120. 120.
    Gauyacq D, Horani M, Leach S, Rostas J (1975) The emission spectrum of the CO2 + ion: B 2Σu + - X 2Πg band system. Can J Phys 53:2040–2059Google Scholar
  121. 121.
    Horsley JA, Fink WH (1969) Study of the electronic structure of the ions CO2 + and N2O+ by the LCAO-MO-SCF method. J Phys B (Atom Mol Phys) 2(2):1261–1270Google Scholar
  122. 122.
    Carsky P, Kuhn J, Zahradnik R (1975) Semiempirical all-valence-electron MO calculations on the electronic spectra of linear radicals with degenerate ground states. J Mol Spectrosc 55:120–130Google Scholar
  123. 123.
    Grimm FA, Larsson M (1984) A theoretical investigation on the low lying electronic states of CO2 + in both linear and bent configurations. Phys Scr 29:337–343Google Scholar
  124. 124.
    Chambaud G, Gabriel W, Rosmus P, Rostas J (1992) Ro-vibronic states in the electronic ground state of CO2 + (X2Πg). J Phys Chem 96:3285–3293Google Scholar
  125. 125.
    Gellene GI (1998) CO2 +: a difficult molecule for electron correlation. Chem Phys Lett 287:315–319Google Scholar
  126. 126.
    Dalgarno A, Fox JL (1994) Ion chemistry in atmospheric and astrophysical plasmas. In: Ng CY, Baer T, Powis I (eds) Unimolecular and bimolecular ion-molecule reaction dynamics, Wiley series in ion chemistry and physics. Wiley, Chichester, Chapter 1Google Scholar
  127. 127.
    Yang M, Zhang L, Zhuang X, Lai L, Yu S (2008) The [1 + 1] two-photon dissociation spectra of CO2 + via Ã2Πu,1/21ν20) X2Πg,1/2 (000) transitions. J Chem Phys 128:164308 (1–7)Google Scholar
  128. 128.
    King SJ, Price SD (2008) Electron ionization of CO2. Int J Mass Spectrom 272:154–164Google Scholar
  129. 129.
    Liu J, Chen W, Hochlaf N, Qian X, Chang C, Ng CY (2003) Unimolecular decay pathways of state-selected CO2 + in the internal energy range of 5.2–6.2 eV: an experimental and theoretical study. J Chem Phys 118:149–163Google Scholar
  130. 130.
    Siegmann B, Werner U, Lutz HO, Mann R (2002) Complete coulomb fragmentation of CO2 in collisions with 5.9 MeV u−1 Xe18+ and Xe43+. J Phys B (At Mol Opt Phys) 35:3755–3766Google Scholar
  131. 131.
    Guelachvili G, Rao KN (1997) Molecular constants. Guelachvili G (ed), Landolt-Börnstein, vol. II/20, subvol B2α. Springer, BerlinGoogle Scholar
  132. 132.
    Rothman LS, Hawkins RL, Wattson RB, Gamache RR (1992) Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands. J Quant Spectrosc Radiat Transf 48:537–566Google Scholar
  133. 133.
    Tashkun SA, Perevalov VI, Teffo J-L, Rothman LS, Tyuterev VG (1998) Global fitting of 12C16O2 vibrational–rotational line positions using the effective Hamiltonian approach. J Quant Spectrosc Radiat Transf 60:785–801Google Scholar
  134. 134.
    Fox K (1972) High resolution infrared spectroscopy of planetary atmospheres. In: Rao KN, Mathews CW (eds) Molecular spectroscopy: modern research. Academic, New York, NYGoogle Scholar
  135. 135.
    White DW, Gerakines PA, Cook AM, Whittet DCB (2009) Laboratory spectra of the CO2 bending-mode feature in interstellar ice analogues subject to thermal processing. Astrophys J Suppl S 180:182–191Google Scholar
  136. 136.
    Shimanouchi T (1972) Tables of molecular vibrational frequencies, consolidated Volume I. NSRDS-NBS (US) 39:1–164Google Scholar
  137. 137.
    van Broekhuizen FA, Groot IMN, Fraser HJ, van Dishoeck EF, Schlemmer S (2006) Infrared spectroscopy of solid CO-CO2 mixtures and layers. A&A 451:723–731Google Scholar
  138. 138.
    Falk M, Miller AG (1992) Infrared spectrum of carbon dioxide in aqueous solution. Vibr Spectrosc 4:105–108Google Scholar
  139. 139.
    Jacox ME (1990) Vibrational and electronic energy levels of polyatomic transient molecules. Supplement 1. J Phys Chem Ref Data 19:1388–1546Google Scholar
  140. 140.
    Kawaguchi K, Yamada C, Hirota E (1985) Diode laser spectroscopy of the CO2 + ν3 band using magnetic field modulation of the discharge plasma. J Chem Phys 82:1174–1177Google Scholar
  141. 141.
    Carter S, Handy NC, Rosmus P, Chambaud G (1990) A variational method for the calculation of spin-rovibronic levels of Renner-Teller triatomic molecules. Mol Phys 71:605–622Google Scholar
  142. 142.
    Gibson DH (1996) The organometallic chemistry of carbon dioxide. Chem Rev 96:2063–2095Google Scholar
  143. 143.
    Jegat C, Fouassier M, Mascetti J (1991) Carbon dioxide coordination chemistry. 1. Vibrational study of trans-Mo(CO2)2(PMe3)4 and Fe(CO2) (PMe3)4. Inorg Chem 30:1521–1529Google Scholar
  144. 144.
    Jegat C, Fouassier M, Tranquille M, Mascetti J (1991) Carbon dioxide coordination chemistry. 2. Synthesis and FTIR study of Cp2Ti(CO2) (PMe3). Inorg Chem 30:1529–1536Google Scholar
  145. 145.
    Jegat C, Fouassier M, Tranquille M, Mascetti J, Tommasi I, Aresta M, Ingold F, Dedieu A (1993) Carbon dioxide coordination chemistry. 3. Vibrational, NMR, and theoretical studies of Ni(CO2)(PCy3)2. Inorg Chem 32:1279–1289Google Scholar
  146. 146.
    Ogawa M (1971) Absorption cross sections of O2 and CO2 continua in the Schumann and far-UV region. J Chem Phys 54:2550–2556Google Scholar
  147. 147.
    England WB, Ermler WC (1979) Theoretical studies of atmospheric triatomic molecules. New ab initio results for the 1Πg-1Δu vertical state ordering in CO2. J Chem Phys 70:1711–1719Google Scholar
  148. 148.
    Spielfeldel A, Feautrier N, Chambaud G, Rosmus P, Werner H-J (1993) The first dipole-allowed electronic transition of 11Σ u + - X 1Σg + of CO2. Chem Phys Lett 216:162–166Google Scholar
  149. 149.
    Buenker RJ, Honigmann M, Liebermann H-P, Kimura M (2000) Theoretical study of the electronic structure of carbon dioxide: bending potential curves and generalized oscillator strengths. J Chem Phys 113:1046–1054Google Scholar
  150. 150.
    Wiberg KB, Wang Y-G, de Oliveira AE, Perera SA, Vaccaro PH (2005) Comparison of CIS and EOM-CCSD-calculated adiabatic excited states structures. Change in charge density on going to adiabatic excited states. J Phys Chem 109:466–477Google Scholar
  151. 151.
    Lasettre EN, Skerbele A, Dillon MA, Ross KJ (1968) High‐resolution study of electron‐impact spectra at kinetic energies between 33 and 100 eV and scattering angles to 16°. J Chem Phys 48:5066–5097Google Scholar
  152. 152.
    McDiarmid R, Doering JP (1984) Electronic excited states of CO2: an electron impact investigation. J Chem Phys 80:648–656Google Scholar
  153. 153.
    Chan WF, Cooper G, Brion CE (1993) The electronic spectrum of carbon dioxide. Discrete and continuum photoabsorption oscillator strengths (6–203 eV). Chem Phys 178:401–413Google Scholar
  154. 154.
    Eiseman BJ Jr, Harris L (1932) The transmission of liquid carbon dioxide. J Am Chem Soc 54:1782–1784Google Scholar
  155. 155.
    Okabe H (1978) Photochemistry of small molecules. Wiley, New YorkGoogle Scholar
  156. 156.
    Slanger TG, Black G (1978) CO2 photolysis revised. J Chem Phys 68:1844–1849Google Scholar
  157. 157.
    Zhu Y-F, Gordon RJ (1990) The production of O(3P) in the 157 nm photodissociation of CO2. J Chem Phys 92:2897–2901Google Scholar
  158. 158.
    Matsumi Y, Shafer N, Tonukura K, Kawasaki M, Huang Y-L, Gordon RJ (1991) Doppler profiles and fine structure branching ratios of O(3PJ) from photodissociation of carbon dioxide at 157 nm. J Chem Phys 95:7311–7316Google Scholar
  159. 159.
    Miller RL, Kable SH, Houston PL, Burak I (1992) Product distributions in the 157 nm photodissociation of CO2. J Chem Phys 96:332–338Google Scholar
  160. 160.
    Mahata S, Bhattacharya SK (2009) Anomalous enrichment of 17O and 13C in photodissociation products of CO2: possible role of nuclear spin. J Chem Phys 130:234312 (1–17)Google Scholar
  161. 161.
    Delsemme AH, Combi MR (1976) The production rate and possible origin of O(1D) in comet Bennett 1970 II. Astrophys J 209:L149–L151Google Scholar
  162. 162.
    Farquhar I, Thiemens MH, Jackson T (1998) Atmosphere-surface interactions on Mars: δ17O measurements of carbonate from ALH 84001. Science 280:1580–1582Google Scholar
  163. 163.
    McElroy MB, Mc Connell JC (1971) Dissociation of CO2 in the Martian atmosphere. J Atmos Sci 28:879–884Google Scholar
  164. 164.
    Rockmann T, Brenninkmeijer CAM, Saueressig G, Bergamaschi P, Crowley JN, Fischer H, Crutzen PJ (1998) Mass-independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO + OH. Science 281:544–546Google Scholar
  165. 165.
    Chakraborty S, Bhattacharya SK (2003) Experimental investigation of oxygen isotope exchange between CO2 and O(1D) and its relevance to the stratosphere. J Geophys Res 108(D23):4724–4738Google Scholar
  166. 166.
    Liger-Belair G, Prost R, Parmentier M, Jeandet P, Nuzillard J-M (2003) Diffusion coefficient of CO2 molecules as determined by 13C NMR in various carbonated beverages. J Agric Food Chem 51:7560–7563Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chemical and Biomolecular Engineering DepartmentNUSSingaporeSingapore
  2. 2.CIRCCPisaItaly
  3. 3.Department of Chemistry and CIRCCUniversity of BariBariItaly

Personalised recommendations