Advertisement

Thermodynamics and Applications of CO2 Hydrates

Chapter

Abstract

Gas hydrates are clathrate solid crystalline compounds consisting of a lattice formed by water molecules and entrapped gas molecules inside. They are stable under high pressure and low temperature. CO2 hydrates, specifically, are composed of CO2 as the guest molecule and water as the host molecule. CO2 hydrates have a number of applications including CO2 capture, cold storage, CO2 sequestration, and, lately, the direct displacement of methane hydrates with CO2 to simultaneously produce methane and sequester CO2. This chapter provides a comprehensive overview of the fundamentals of CO2 hydrates. The first section gives a general introduction and some basic concepts of gas hydrates. Section 10.2 shifts the focus to the microscopic perspective, looking into how gas hydrates form, the three structures of gas hydrates, and the characteristics of CO2 hydrates. From there onward, the text focuses specifically on CO2 hydrates. The physical properties of CO2 hydrates are considered in Sect. 10.3. Section 10.4 deals with the phase equilibrium of CO2 hydrate. Experimental methods and the phase diagram are shown in this section. The last section covers the applications of CO2 hydrates, including the formation and dissociation of CO2 hydrates, ocean sequestration, and the CH4 replacement in hydrates by CO2, which is an attractive potential method to produce natural gas.

Keywords

Guest Molecule Hydrate Formation Hydration Number Pressure Differential Scanning Calorimetry Methane Hydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wroblewski S (1882) On the combination of carbonic acid and water. C R Acad Sci Paris 94:212–213Google Scholar
  2. 2.
    Wroblewski S (1882) The composition of hydrated carbonic acid. J Chem Soc 42:1026Google Scholar
  3. 3.
    Teng H, Yamasaki A, Shindo Y (1996) Stability of the hydrate layer formed on the surface of a CO2 droplet in high-pressure, low-temperature water. Chem Eng Sci 51(22):4979–4986CrossRefGoogle Scholar
  4. 4.
    Shi XJ, Zhang P (2013) A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system. Appl Energy 112:1393–1402CrossRefGoogle Scholar
  5. 5.
    Zhang P, Ma ZW (2012) An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems. Renew Sustain Energy Rev 16(7):5021–5058CrossRefGoogle Scholar
  6. 6.
    Zhang P, Shi XJ, Ma ZW (2013) Solid fraction determination in cold storage by tetra-n-butyl ammonium bromide clathrate hydrate slurry. Int J Refrig 36(3):809–819CrossRefGoogle Scholar
  7. 7.
    Stillinger FH, Rahman A (1974) Improved simulation of liquid water by molecular dynamics. J Chem Phys 60(4):1545–1557CrossRefGoogle Scholar
  8. 8.
    Plummer PM, Chen T (1987) Investigation of structure and stability of small clusters: molecular dynamics studies of water pentamers. J Chem Phys 86(12):7149–7155CrossRefGoogle Scholar
  9. 9.
    Frank HS (1970) The structure of ordinary water new data and interpretations are yielding new insights into this fascinating substance. Science 169(3946):635–641CrossRefGoogle Scholar
  10. 10.
    Rauh F, Mizaikoff B (2012) Spectroscopic methods in gas hydrate research. Anal Bioanal Chem 402(1):163–173CrossRefGoogle Scholar
  11. 11.
    Holland PM, Castleman A Jr (1980) A model for the formation and stabilization of charged water clathrates. J Chem Phys 72(11):5984–5990CrossRefGoogle Scholar
  12. 12.
    Sloan ED Jr, Koh CA (2008) Clathrate hydrates of the natural gases, 3rd edn. CRC Press, Boca Raton, FLGoogle Scholar
  13. 13.
    Momma K, Ikeda T, Nishikubo K, Takahashi N, Honma C, Takada M, Furukawa Y, Nagase T, Kudoh Y (2011) New silica clathrate minerals that are isostructural with natural gas hydrates. Nat Commun 2:196CrossRefGoogle Scholar
  14. 14.
    Houghton G, McLean A, Ritchie P (1957) Compressibility, fugacity, and water-solubility of carbon dioxide in the region 0–36 atm. and 0–100 C. Chem Eng Sci 6(3):132–137CrossRefGoogle Scholar
  15. 15.
    Fleyfel F, Devlin JP (1991) Carbon dioxide clathrate hydrate epitaxial growth: spectroscopic evidence for formation of the simple type-II carbon dioxide hydrate. J Phys Chem 95(9):3811–3815CrossRefGoogle Scholar
  16. 16.
    Handa Y (1986) Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton. J Chem Thermodyn 18(9):891–902CrossRefGoogle Scholar
  17. 17.
    Circone S, Kirby SH, Stern LA (2005) Direct measurement of methane hydrate composition along the hydrate equilibrium boundary. J Phys Chem B 109(19):9468–9475CrossRefGoogle Scholar
  18. 18.
    Henning RW, Schultz AJ, Thieu V, Halpern Y (2000) Neutron diffraction studies of CO2 clathrate hydrate: formation from deuterated ice. J Phys Chem A 104(21):5066–5071CrossRefGoogle Scholar
  19. 19.
    Durham WB, Stern LA, Kirby SH (2003) Ductile flow of methane hydrate. Can J Phys 81(1–2):373–380CrossRefGoogle Scholar
  20. 20.
    Helgerud MB, Circone S, Stern L, Kirby S, Lorenson TD (2002) Conference, Yokohama, p 716Google Scholar
  21. 21.
    Kiefte H, Clouter MJ, Gagnon RE (1985) Determination of acoustic velocities of clathrate hydrates by Brillouin spectroscopy. J Phys Chem 89(14):3103–3108CrossRefGoogle Scholar
  22. 22.
    Kaye GWC, Laby TH (2007) Tables of physical and chemical constants, 16th edn. National Physical Laboratory, Middlesex, UKGoogle Scholar
  23. 23.
    Huang D, Fan S (2005) Measuring and modeling thermal conductivity of gas hydrate-bearing sand. J Geophys Res Solid Earth (1978–2012) 110:B01311. doi: 10.1029/2004JB003314
  24. 24.
    Jung J, Espinoza DN, Santamarina JC (2010) Properties and phenomena relevant to CH4–CO2 replacement in hydrate-bearing sediments. J Geophys Res Solid Earth (1978–2012) 115:B10102. doi: 10.1029/2009JB000812
  25. 25.
    Giauque W, Stout J (1936) The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15 to 273°K. J Am Chem Soc 58(7):1144–1150CrossRefGoogle Scholar
  26. 26.
    Udachin KA, Ratcliffe CI, Ripmeester JA (2001) Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. J Phys Chem B 105(19):4200–4204CrossRefGoogle Scholar
  27. 27.
    Uchida T (1998) Physical property measurements on CO2 clathrate hydrates. Review of crystallography, hydration number, and mechanical properties. Waste Manag 17(5):343–352CrossRefGoogle Scholar
  28. 28.
    Englezos P (1993) Clathrate hydrates. Ind Eng Chem Res 32(7):1251–1274CrossRefGoogle Scholar
  29. 29.
    Zhang J, Yedlapalli P, Lee JW (2009) Thermodynamic analysis of hydrate-based pre-combustion capture of CO2. Chem Eng Sci 64(22):4732–4736CrossRefGoogle Scholar
  30. 30.
    Zhang J, Lee JW (2008) Equilibrium of hydrogen + cyclopentane and carbon dioxide + cyclopentane binary hydrates. J Chem Eng Data 54(2):659–661CrossRefGoogle Scholar
  31. 31.
    Dalmazzone D, Kharrat M, Lachet V, Fouconnier B, Clausse D (2002) DSC and PVT measurements. J Therm Anal Calorim 70(2):493–505CrossRefGoogle Scholar
  32. 32.
    Adisasmito S, Frank RJ, Sloan ED (1991) Hydrates of carbon dioxide and methane mixtures. J Chem Eng Data 36(1):68–71CrossRefGoogle Scholar
  33. 33.
    Deaton WM, Frost EM (1946) Gas hydrates and their relation to the operation of natural gas pipelines. US Bureau of Mines Monograph 8:101Google Scholar
  34. 34.
    Unruh CH, Katz DL (1949) Gas hydrates of carbon dioxide-methane mixtures. J Petrol Technol 1(04):83–86CrossRefGoogle Scholar
  35. 35.
    Larson SD (1955) Phase studies of the two component carbon dioxide-water system involving the carbon dioxide hydrate. University of Illinois, Urbana, ILGoogle Scholar
  36. 36.
    Mooijer-van den Heuvel MM, Witteman R, Peters CJ (2001) Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane. Fluid Phase Equilib 182(1–2):97–110CrossRefGoogle Scholar
  37. 37.
    Takenouchi S, Kennedy GC (1964) The binary system H2O-CO2 at high temperatures and pressures. Am J Sci 262(9):1055–1074CrossRefGoogle Scholar
  38. 38.
    Miller SL, Smythe WD (1970) Carbon dioxide clathrate in the Martian ice cap. Science 170(3957):531–533CrossRefGoogle Scholar
  39. 39.
    Ng H-J, Robinson DB (1985) Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol. Fluid Phase Equilib 21(1):145–155CrossRefGoogle Scholar
  40. 40.
    Falabella BJ (1975) A study of natural gas hydrates. Ph.D Dissertation, University of Massachusetts, Ann Arbor, MIGoogle Scholar
  41. 41.
    Vlahakis J, Chen H, Suwandi M, Barduhn A (1972) The growth rate of ice crystals: properties of carbon dioxide hydrate, a review of properties of 51 gas hydrates. Syracuse University Research and Development Report 830Google Scholar
  42. 42.
    Ohgaki K, Makihara Y, Takano K (1993) Formation of CO2 hydrate in pure and sea waters. J Chem Eng Jpn 26(5):558–564CrossRefGoogle Scholar
  43. 43.
    Robinson D, Metha B (1971) Hydrates in the propane-carbon dioxide-water system. J Can Petrol Technol 10(01)Google Scholar
  44. 44.
    Breland E, Englezos P (1996) Equilibrium hydrate formation data for carbon dioxide in aqueous glycerol solutions. J Chem Eng Data 41(1):11–13CrossRefGoogle Scholar
  45. 45.
    Anderson GK (2003) Enthalpy of dissociation and hydration number of carbon dioxide hydrate from the Clapeyron equation. J Chem Thermodyn 35(7):1171–1183CrossRefGoogle Scholar
  46. 46.
    Kang S-P, Lee H, Ryu B-J (2001) Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide + nitrogen), and (carbon dioxide + nitrogen + tetrahydrofuran). J Chem Thermodyn 33(5):513–521CrossRefGoogle Scholar
  47. 47.
    Yoon J-H, Yamamoto Y, Komai T, Haneda H, Kawamura T (2003) Rigorous approach to the prediction of the heat of dissociation of gas hydrates. Ind Eng Chem Res 42(5):1111–1114CrossRefGoogle Scholar
  48. 48.
    Wang Y, Lang X, Fan S (2013) Hydrate capture CO2 from shifted synthesis gas, flue gas and sour natural gas or biogas. J Energy Chem 22(1):39–47CrossRefGoogle Scholar
  49. 49.
    Metz B, Davidson O, De Coninck H, Loos M, Meyer L (2005) IPCC 2005: IPCC special report on carbon dioxide capture and storage (Prepared by Working Group III of the Intergovernmental Panel on Climate Change). Cambridge University Press, CambridgeGoogle Scholar
  50. 50.
    Adeyemo A, Kumar R, Linga P, Ripmeester J, Englezos P (2010) Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column. Int J Greenhouse Gas Control 4(3):478–485CrossRefGoogle Scholar
  51. 51.
    Babu P, Kumar R, Linga P (2013) Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process. Energy 50:364–373CrossRefGoogle Scholar
  52. 52.
    Li X-S, Xia Z-M, Chen Z-Y, Yan K-F, Li G, Wu H-J (2010) Gas hydrate formation process for capture of carbon dioxide from fuel gas mixture. Ind Eng Chem Res 49(22):11614–11619CrossRefGoogle Scholar
  53. 53.
    Linga P, Kumar R, Englezos P (2007) Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chem Eng Sci 62(16):4268–4276CrossRefGoogle Scholar
  54. 54.
    Linga P, Kumar R, Englezos P (2007) The clathrate hydrate process for post and pre-combustion capture of carbon dioxide. J Hazard Mater 149(3):625–629CrossRefGoogle Scholar
  55. 55.
    Babu P, Kumar R, Linga P (2013) Medium pressure hydrate based gas separation (HBGS) process for pre-combustion capture of carbon dioxide employing a novel fixed bed reactor. Int J Greenhouse Gas Control 17:206–214CrossRefGoogle Scholar
  56. 56.
    Babu P, Kumar R, Linga P (2013) A new porous material to enhance the kinetics of clathrate process: application to precombustion carbon dioxide capture. Environ Sci Technol 47(22):13191–13198CrossRefGoogle Scholar
  57. 57.
    Babu P, Kumar R, Linga P (2014) Unusual behavior of propane as a co-guest during hydrate formation in silica sand: potential application to seawater desalination and carbon dioxide capture. Chem Eng Sci 117:342–351CrossRefGoogle Scholar
  58. 58.
    Babu P, Yang T, Veluswamy HP, Kumar R, Linga P (2013) Hydrate phase equilibrium of ternary gas mixtures containing carbon dioxide, hydrogen and propane. J Chem Thermodyn 61:58–63CrossRefGoogle Scholar
  59. 59.
    Kumar R, Linga P, Ripmeester JA, Englezos P (2009) Two-stage clathrate hydrate/membrane process for precombustion capture of carbon dioxide and hydrogen. J Environ Eng 135(6):411–417CrossRefGoogle Scholar
  60. 60.
    Babu P, Ho CY, Kumar R, Linga P (2014) Enhanced kinetics for the clathrate process in a fixed bed reactor in the presence of liquid promoters for pre-combustion carbon dioxide capture. Energy 70:664–673CrossRefGoogle Scholar
  61. 61.
    Lee HJ, Lee JD, Linga P, Englezos P, Kim YS, Lee MS, Kim YD (2010) Gas hydrate formation process for pre-combustion capture of carbon dioxide. Energy 35(6):2729–2733CrossRefGoogle Scholar
  62. 62.
    Park S, Lee S, Lee Y, Lee Y, Seo Y (2013) Hydrate-based pre-combustion capture of carbon dioxide in the presence of a thermodynamic promoter and porous silica gels. Int J Greenhouse Gas Control 14:193–199CrossRefGoogle Scholar
  63. 63.
    Ho LC, Babu P, Kumar R, Linga P (2013) HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane. Energy 63:252–259CrossRefGoogle Scholar
  64. 64.
    Li X-S, Xu C-G, Chen Z-Y, Wu H-J (2011) Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane. Energy 36(3):1394–1403CrossRefGoogle Scholar
  65. 65.
    Lim Y-A, Babu P, Kumar R, Linga P (2013) Morphology of carbon dioxide–hydrogen–cyclopentane hydrates with or without sodium dodecyl sulfate. Cryst Growth Des 13(5):2047–2059CrossRefGoogle Scholar
  66. 66.
    Gholinezhad J, Chapoy A, Tohidi B (2011) Separation and capture of carbon dioxide from CO2/H2 syngas mixture using semi-clathrate hydrates. Chem Eng Res Des 89(9):1747–1751CrossRefGoogle Scholar
  67. 67.
    Kim SM, Lee JD, Lee HJ, Lee EK, Kim Y (2011) Gas hydrate formation method to capture the carbon dioxide for pre-combustion process in IGCC plant. Int J Hydrogen Energy 36(1):1115–1121CrossRefGoogle Scholar
  68. 68.
    Li X-S, Xia Z-M, Chen Z-Y, Wu H-J (2011) Precombustion capture of carbon dioxide and hydrogen with a one-stage hydrate/membrane process in the presence of tetra-n-butylammonium bromide (TBAB). Energy Fuels 25(3):1302–1309CrossRefGoogle Scholar
  69. 69.
    Babu P, Datta S, Kumar R, Linga P (2014) Impact of experimental pressure and temperature on semiclathrate hydrate formation for pre-combustion capture of CO2 using tetra-n-butyl ammonium nitrate. Energy 78:458–464CrossRefGoogle Scholar
  70. 70.
    Babu P, Yao M, Datta S, Kumar R, Linga P (2014) Thermodynamic and kinetic verification of tetra-n-butyl ammonium nitrate (TBANO3) as a promoter for the clathrate process applicable to precombustion carbon dioxide capture. Environ Sci Technol 48(6):3550–3558CrossRefGoogle Scholar
  71. 71.
    Park S, Lee S, Lee Y, Seo Y (2013) CO2 Capture from simulated fuel gas mixtures using semiclathrate hydrates formed by quaternary ammonium salts. Environ Sci Technol 47(13):7571–7577Google Scholar
  72. 72.
    Yang M, Song Y, Jiang L, Zhao Y, Ruan X, Zhang Y, Wang S (2014) Hydrate-based technology for CO2 capture from fossil fuel power plants. Appl Energy 116:26–40CrossRefGoogle Scholar
  73. 73.
    Brewer PG, Peltzer ET, Friederich G, Rehder G (2002) Experimental determination of the fate of rising CO2 droplets in seawater. Environ Sci Technol 36(24):5441–5446CrossRefGoogle Scholar
  74. 74.
    Chong ZR, Yang SHB, Babu P, Linga P, Li X-S (2015) Review of natural gas hydrates as an energy resource: prospects and challenges. Appl Energy. DOI: 10.1016/j.apenergy.2014.12.061. http://sciencedirect.com/science/article/pii/S030626191401318X Google Scholar
  75. 75.
    Ogawa T, Ito T, Watanabe K, Tahara K-i, Hiraoka R, J-i O, Ohmura R, Mori YH (2006) Development of a novel hydrate-based refrigeration system: a preliminary overview. Appl Thermal Eng 26(17):2157–2167CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chemical and Biomolecular Engineering DepartmentNUSSingaporeSingapore
  2. 2.CIRCCPisaItaly
  3. 3.Department of Chemistry and CIRCCUniversity of BariBariItaly

Personalised recommendations