Skip to main content

Part of the book series: Springer Geochemistry ((SPRIGEO))

  • 2854 Accesses

Abstract

This chapter shows how information can be gleaned from various sources to con-strain the parameters needed to build a full model. Some of the parameters come from observations of the petrology or the geochemical patterns of the rocks stud-ied. In other cases, information must be sought from the literature. The remaining parameters can be calculated based on the previous information. The art of modelling consists in assembling this disparate information in a consistent set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeev R, Holtz F, Ariskin AA, Kimura JI (2013) Storage conditions of Bezymianny Volcano parental magmas: results of phase equilibria experiments at 100 and 700 MPa. Contrib Mineral Petrol 166:1389–1414

    Google Scholar 

  • Åmli R (1975) Mineralogy and rare earth geochemistry of apatite and xenotime from the Gloserheia granite pegmatite, Froland, southern Norway. Amer Miner 60:607–620

    Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calc-alkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98:224–256

    Google Scholar 

  • Berman RG (1990) Mixing properties of Ca − Mg − Fe − Mn garnets. Amer Miner 75:238–344

    Google Scholar 

  • Blatter DL, Sisson TW, Hankins WB (2013) Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: implications for andesite genesis. Contrib Mineral Petrol 166:861–886

    Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal melt partition coefficients from elastic moduli. Nature 372:452–454

    Google Scholar 

  • Blundy J, Wood B (2003) Mineral–melt partitioning of uranium, thorium and their daughters. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Uranium-series geochemistry. Mineralogical Society of America Reviews in Mineralogy and Geochemistry, vol 52, pp 59–123

    Google Scholar 

  • Connolly JAD, Petrini K (2002) An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J Metamorph Geol 20:697–708

    Google Scholar 

  • de Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Amer Miner 95:1006–1016

    Google Scholar 

  • Duchesne J-C, Martin H, Bagiński B, Wiszniewska J, Vander Auwera J (2010) The origin of ferroan–potassic A-type granitoids: the case of the hornblende–biotite granite suite of the Mesoproterozoic Mazury Complex, northeastern Poland. Canad Mineral 48:947–968

    Google Scholar 

  • Elburg MA (1996) Evidence of isotopic equilibration between microgranitoid enclaves and host granodiorite, Warburton Granodiorite, Lachlan Fold Belt, Australia. Lithos 38:1–22

    Google Scholar 

  • Evans OC, Hanson GN (1993) Accessory-mineral fractionation of rare-earth element (REE) abundances in granitoid rocks. Chem Geol 110:69–93

    Google Scholar 

  • Fleischer M, Altschuler ZS (1969) The relationship of the rare earth composition of minerals to geological environment. Geochim Cosmochim Acta 33:725–732

    Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass-transfer in magmatic processes. 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Google Scholar 

  • Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst 3:1–35

    Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2013) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16:309–343

    Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Mineralogical Society of America and Geochemical Society Reviews in Mineralogy and Geochemistry, vol 53, pp 27–62

    Google Scholar 

  • Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integral approach. J Petrol 41:1365–1396

    Google Scholar 

  • Janoušek V, Bowes DR, Braithwaite CJR, Rogers G (2000) Microstructural and mineralogical evidence for limited involvement of magma mixing in the petrogenesis of a Hercynian high-K calc-alkaline intrusion: the Kozárovice granodiorite, Central Bohemian Pluton, Czech Republic. Trans Roy Soc Edinb, Earth Sci 91:15–26

    Google Scholar 

  • Janoušek V, Holub FV, Magna T, Erban V (2010) Isotopic constraints on the petrogenesis of the Variscan ultrapotassic magmas from the Moldanubian Zone of the Bohemian Massif. Mineral Spec Pap 37:32–36

    Google Scholar 

  • Mahood GA, Hildreth EW (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochim Cosmochim Acta 47:11–30

    Google Scholar 

  • Martin H (1985) Nature, origine et évolution d’un segment de croûte continentale archéenne: contraintes chimiques et isotopiques. Exemple de la Finlande orientale. Mémoires et Documents du Centre Armoricain d’Etude Structurale des Socles, vol 1, Rennes

    Google Scholar 

  • Martin H (1987) Petrogenesis of Archaean trondhjemites, tonalites and granodiorites from eastern Finland; major and trace element geochemistry. J Petrol 28:921–953

    Google Scholar 

  • Martin H, Sabaté P, Peucat J-J, Cunha JC (1997) Crustal evolution in the early Archaean of South America: example of the Sete Voltas Massif, Bahia state, Brazil. Precambr Res 83:35–62

    Google Scholar 

  • McBirney AR, Noyes RM (1979) Crystallization and layering of the Skaergaard intrusion. J Petrol 20:487–554

    Google Scholar 

  • Nagazawa H (1970) Rare Earth concentrations in zircon and apatite and their host dacite and granites. Earth Planet Sci Lett 9:359–364

    Google Scholar 

  • Nandedkar R, Ulmer P, Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol 167:1–27

    Google Scholar 

  • Nash WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322

    Google Scholar 

  • Pin C, Binon M, Belin JM, Barbarin B, Clemens JD (1990) Origin of microgranular enclaves in granitoids—equivocal Sr–Nd evidence from Hercynian rocks in the Massif Central (France). J Geophys Res 95:17821–17828

    Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, London

    Google Scholar 

  • Shaw DM (2006) Trace elements in magmas: a theoretical treatment. Cambridge University Press, Cambridge

    Google Scholar 

  • Simmons EC, Hedge CE (1978) Minor-element and Sr-isotope geochemistry of Tertiary stocks, Colorado mineral belt. Contrib Mineral Petrol 67:379–396

    Google Scholar 

  • Sisson TW, Bacon CR (1992) Garnet/high-silica rhyolite trace element partition coefficients measured by ion microprobe. Geochim Cosmochim Acta 56:2133–2136

    Google Scholar 

  • Smith P, Asimow P (2005) Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem Geophys Geosyst 6: doi: 10.1029/2004GC000816

  • Tajčmanová L, Connolly J, Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in biotite. J Metamorph Geol 27:153–165

    Google Scholar 

  • White RW, Powell R, Holland TJB (2001) Calculation of partial melting equilibria in the system CaO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O (CNKFMASH). J Metamorph Geol 19:139–153

    Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtěch Janoušek .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janoušek, V., Moyen, JF., Martin, H., Erban, V., Farrow, C. (2016). Constraining a Model. In: Geochemical Modelling of Igneous Processes – Principles And Recipes in R Language. Springer Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46792-3_22

Download citation

Publish with us

Policies and ethics