Skip to main content

Reduction in Animal Waste

  • Chapter
  • First Online:
The Role of Biotechnology in Improvement of Livestock
  • 1118 Accesses

Abstract

The term “animal waste” is used for the dung or fecal material of livestock such as ruminants, poultry, swine, horse, birds, and other mammals with or without litter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J Water Pollut Control Fed 48:835–852

    CAS  PubMed  Google Scholar 

  • Archer M, Watson R, Denton JW (2001) Fish waste production in the United Kingdom. Seafish Report No. SR537

    Google Scholar 

  • Arogo J, Westerman PW, Heber AJ (2003) A review of ammonia emissions from confined swine feeding operations. Trans Am Soc Agric Eng 46:805–817

    Google Scholar 

  • Barker JC, Zublena JP (1995) Livestock manure nutrient assessment in North Carolina. In: Proceedings of the 7th international symposium on agricultural and food processing wastes. St Joseph, Michigan, American Society of Agricultural Engineers, pp 98–106

    Google Scholar 

  • Bendixen HJ (1994) Safeguards against pathogens in Danish biogas plants. Water Sci Technol 30:171–180

    Google Scholar 

  • Blouin M, Bisaillon JG, Beaudet R, Ishaque M (1989) Nitrification of swine waste. Can J Microbiol 36:273–278

    Article  Google Scholar 

  • Bonhotal J (2003) On-farm composting of large dead stock. Livestock Environment Program, Headquarters Operations, Manitoba Conservation, Winnipeg

    Google Scholar 

  • Buyukgungor H, Gürel L (2009) The role of biotechnology on the treatment of wastes. Afr J Biotechnol, 8(25):7253–7262

    Google Scholar 

  • Chapman D (2005) Dead bird composting: final report for contract USDA-43-2D81-1-561. Submitted to USDA/SCS through soil conservation service, Department Animal and Dairy Sciences, Auburn

    Google Scholar 

  • Ferket PR (ed) (1994) Carolina Feed Industry Association, Raleigh, NC—USA 27658 Charlotte, North Carolina, USA, 7–8 Dec

    Google Scholar 

  • Clark S, Rylander R, Larsson L (1983) Airborne bacteria, endotoxin and fungi in dust in poultry and swine confinement buildings. Am Ind Hyg Assoc J 44(7):537–541

    Article  CAS  PubMed  Google Scholar 

  • Clint WL, (2004) Markets for compost – a key factor for success of urban composting schemes in developing countries. AWM User Guide, Civil Engineering Specialist, Natural Resources Conservation Service, Medina, Ohio

    Google Scholar 

  • Dahlberg SP, Lindley JA, Giles JF (1988) Effect of anaerobic digestion on nutrient availability from dairy manure. Trans ASAE 31:1211–1216

    Article  Google Scholar 

  • Dagnall S, (1995) UK strategy for centralized anaerobic digestion. Bioresour Technol, 52:275–80

    Google Scholar 

  • Daniel CW, Lau M, Michael, Wu W (1987) Manure composting as an option for utilization and management of animal waste. Resour Conserve 13:145–156

    Article  Google Scholar 

  • Demuynck M, Nyns EJ, Naveau HP (1985) A review of the effects of anaerobic digestion on odour and on disease survival. In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier Applied Science, London, pp 257–269

    Google Scholar 

  • Donham K, Thelin A (2006) Agricultural medicine—occupational and environmental health for the health professionals. Blackwell Publishing, UK. ISBN 978-0-8138-1803-0/2006

    Google Scholar 

  • Eldridge R (1995) Development of a composting recipe for swine. Soil Conservation Service Northeast, Department of Biological Systems Engineering, US Department of Agriculture

    Google Scholar 

  • Evans MR (1986) Agricultural smells from livestock farms—farm waste management. Agric Wastes 18:173–174

    Article  Google Scholar 

  • FAO (2000) Fertilizer use by crop in Pakistan, Organic and biological sources of plant nutrients www.fao.org

  • FAO (2006) Livestock’s long shadow; environmental issues and options. In: Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosalea M, de Haan C (eds). Rome

    Google Scholar 

  • FAO (2008) Poultry in the 21st century: avian influenza and beyond. In: Thieme O, Pilling D (eds) Proceedings of the international poultry conference, Bangkok, 5–7 Nov 2007, FAO Animal Production and Health Proceedings No. 9. Rome

    Google Scholar 

  • Field JA, Caldwell JS, Jeyanayagam S, Reneau RB Jr, Kroontje W, Collins ER (1984) Fertilizer recovery from anaerobic digesters. Trans. ASAE 27:1871-1876-1881

    Google Scholar 

  • Garg VK, Gupta R, Yadav A (2006) Vermicomposting technology for solid waste management. Department of Environmental Science and Engineering Guru Jambheshwar University of Science and Technology Hisar 125001, Haryana. http://www.environmental-expert.com/Files/0/articles/9047/Vermicomposting_article_for_the_biofertilizer_people.pdf

  • Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    Article  CAS  PubMed  Google Scholar 

  • Gollehon N, Caswell M, Ribaudo M, Kellog R, Lander C, Letson D (2001) Confined animal production and manure nutrients. Resource economics division, economic research service, US department of agriculture. Agric Inf Bull 711:34

    Google Scholar 

  • González GV (1982) Aerobic versus anaerobic fermentation for recycling swine waste in tropical farmlands. Conserv Recycl 5(1):15–22

    Article  Google Scholar 

  • Gundersen P (1992) Mass balance approaches for establishing critical loads for nitrogen in terrestrial ecosystems. In: Proceedings of a workshop in locke berg, Sweden, pp 56–81. Copenhagen, Nordic Council of Ministers Report

    Google Scholar 

  • Himathongkham S, Bahari S, Riemann H et al (1999) Survival of E. coli O157 and salmonella typhimurium in cow manure and cow manure slurry. FEMS Microbiol Lett 178:251–257

    Article  CAS  PubMed  Google Scholar 

  • Humenik FJ, Szogi AA, Hunt PG, Broome S, Rice M (1999) Wastewater utilization: a place for managed wetlands. Asian-Australas J Anim Sci 12:629–632

    Article  Google Scholar 

  • Hutchinson GL, Millington RJ, Peters DB (1972) Atmospheric absorption by plant leaves. Science 175:771–772

    Article  CAS  PubMed  Google Scholar 

  • Jones JH (2000) Pathogens in manure. www.vetmed.ucdavis.edu/vetext/INF-DA/pathog-manure.pdf. Accessed 10 Sept 2012

  • Keener HM, Elwell DL, Monnin MJ (2000) Procedures and equations for sizing of structures and windrows for composting animal mortalities. Appl Eng Agric 16:681–692

    Article  Google Scholar 

  • Korner I, Braukmeier J, Herrenklage K, Leikam M, Ritzkowski M, Schlegelmilch, Stegmann R (2003) Investigation and optimization of composting processes-test systems and practical examples. Waste Manag 23:17–26

    Article  CAS  PubMed  Google Scholar 

  • Loehr RC, Prakasam TBS, Srinath EG and Yoo YD (1973) Development and demonstration of nutrient removal from animal wastes. EPA Report R2-73-095. US Environmental Protection Agency, Washington

    Google Scholar 

  • Mahfooz SA, Saghir A, Ashar A (2006) Composting: a unique solution to animal waste management. J Agri Soc Sci, 2:1

    Google Scholar 

  • Martinez J (1997) A soil treatment process for pig slurry with subsequent denitrification of drainage water. J Agric Eng Res 66:51–62

    Article  Google Scholar 

  • McCaskey T (1995) Feeding poultry litter as an alternative waste management strategy. In: Steele K (ed) Animal waste and the land water interface. Lewis-CRD, New York, pp 475–484

    Google Scholar 

  • Miner JR (1981) Controlling odors from livestock production facilities: state-of-the-art. Livestock waste: a renewable resource. ASAE, St. Joseph, pp 297–301

    Google Scholar 

  • Ritter WF (1989) Odour control of livestock wastes: state-of-the-art in North America. J Agric Eng Res 42:51–62

    Article  Google Scholar 

  • Morrow M (2001) Alternative methods for the disposal of swine carcasses, extension swine husbandry, department of animal science, department of poultry science. North Carolina State University, Raleigh

    Google Scholar 

  • Morse MD, Garnett I, Guthrie JC (1997) A Survey of dairy manure management practices in California. J Dairy Sci 80:1841–1845

    Article  Google Scholar 

  • Nahm KH, Nahm BA (2004) Poultry production and waste management. Yu Han Publishing, Republic of Korea, ISBN 89-7722-623-6

    Google Scholar 

  • NARD (2005) Pollution from giant livestock farms threatens public health. www.nrdc.org/water/pollution/nspills.asp. Accessed 29 Sept 2012

  • Noone GP (1990) The treatment of domestic wastes. In: Wheatley A (ed) Anaerobic digestion: a waste treatment technology. Elsevier Appl Sci, London, pp 139–170

    Google Scholar 

  • Nowlan P (1997) Practice management waste disposal. Ir Vet J 50(9):525

    Google Scholar 

  • OECD (Organisation for Economic Cooperation and Development) Report (2005) A framework for biotechnology statistics. 1–52, OECD Publications, Paris

    Google Scholar 

  • Pain BF, Misselbrook TH, Clarkson CR, Rees YJ (1990) Odour and ammonia emissions following the spreading of anaerobically-digested pig slurry on grassland. Biol Wastes 34:259–267

    Article  CAS  Google Scholar 

  • Poultry Science Association (2009) Research demonstrates effectiveness of trees and shrubs in reducing odours, dust and ammonia from poultry farms. http://www.poultryscience.org/pr092809.asp?autotry=true&ULnotkn=true

  • Powers WJ, Wilkie AC, Van Horn HH, Nordstedt RA (1997) Effects of hydraulic retention time on performance and effluent odor of conventional and fixed-film anaerobic digesters fed dairy manure wastewaters. Trans. ASAE 40:1449–1455

    Article  Google Scholar 

  • Sobsey MD, Khatib LA, Hill VR, Alocilja E and Pillai V (2006) Pathogens in animals waste and the impact of waste management practices on their survival, transport and fate. Animal agriculture and the environment national center for manure and animal waste management. White papers summaries 609–666. http://www.cals.ncsu.edu/waste_mgt/natlcenter/whitepapersummaries/pathogens.pdf

  • Spoelstra S,  (1978) Microbial aspects of formation of malodorous compounds in anaerobically stored piggery wastes. Dissertation Agri Uni.

    Google Scholar 

  • Su JJ, Liu BY, Chang YC (2003) Emission of greenhouse gas from livestock waste and wastewater treatment in Taiwan. Agric Ecosyst Environ 95:253–263

    Article  CAS  Google Scholar 

  • Szögi AA, Hunt PG, Humenik FJ (2003) Nitrogen distribution in soils of constructed wetlands treating lagoon waste water. Soil Sci Soc Am J 67:1943–1951

    Article  Google Scholar 

  • Teira-Esmatges MR, Flotats X (2003) A method for livestock waste management planning in NE Spain. Waste Manag 23:917–932

    Article  CAS  PubMed  Google Scholar 

  • Vanotti MB, Hunt PG (2000) Nitrification treatment of swine wastewater with acclimated nitrifying sludge immobilized in polymer pellets. Trans Am Soc Agric Eng 43:405–413

    Article  CAS  Google Scholar 

  • Walker J, Nelson D, Aneja VP (2000) Trends in ammonium concentration in precipitation and atmospheric ammonia emissions at a coastal plain site in North Carolina, USA. Environ Sci Technol 34:3527–3534

    Article  CAS  Google Scholar 

  • Welsh FW, Schulte DD, Kroeker EJ, Lapp HM (1977) The effect of anaerobic digestion upon swine manure odors. Canadian Agric Eng 19:122–126

    Google Scholar 

  • WHO (2000) Air quality guidelines, second edition, chapter 6. hydrogen sulfide

    Google Scholar 

  • Wilkie A, Colleran E (1987) Microbiological aspects of anaerobic digestion. In: Anaerobic treatment of industrial wastewaters. ANL/CNSV-TM-188. Argonne National Laboratory, Argonne, pp 37–50

    Google Scholar 

  • Wilkie A, Colleran E (1989) The development of the anaerobic fixed-bed reactor and its application to the treatment of agricultural and industrial wastes. In: Wise DL (ed) International biosystems, III. CRC Press Inc, Boca Raton, pp 183–226

    Google Scholar 

  • Wilkie AC, Riedesel KJ, Cubinski KR (1995) Anaerobic digestion for odor control. In: Van Horn HH (ed) Nuisance concerns in animal manure management: odors and flies. Florida Cooperative Extension Service, University of Florida, Gainesville, pp 56–62

    Google Scholar 

  • Williams M, Barker J, Sims J (1999) Management and utilization of poultry wastes. Rev Environ Contam Toxicol 162:105–157

    CAS  PubMed  Google Scholar 

  • Zublena J (1994) Excess soil levels of copper, zinc, and phosphorus due to poultry manure applications. In: Proceedings 21st annual carolina poultry nutrition conference, pp 17–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Saeed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saeed, A., Sayyed, A.H., Safdar, S., Manzoor, S. (2015). Reduction in Animal Waste. In: Abubakar, M., Saeed, A., Kul, O. (eds) The Role of Biotechnology in Improvement of Livestock. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46789-3_6

Download citation

Publish with us

Policies and ethics