Skip to main content

Biotechnology and Animal Nutrition

  • Chapter
  • First Online:
The Role of Biotechnology in Improvement of Livestock
  • 1282 Accesses

Abstract

To fulfill increased world food demand and to overcome the consequences related to natural and industrial changes, scientists have been trying to select and improve both feedstuff and livestock, genetically. Biotechnology, also involving chemical and physical techniques, is applied to nutrition to increase the abundance (availability) of feed and to improve the digestibility of nutrients in those feeds. Additionally, animal nutrition studies are conducted to determine the safety of human food and modeling of some human diseases. Manipulating animal ability to absorb and utilize more nutrients starts from the plant breeders and continues until where those nutrients are utilized in the body. Microorganisms that have symbiotic life with livestock organism are transgenically manipulated to improve nutrition. Adding new genes to feedstuff gives nutritionists more applicational tools for improving nutrition and animal health through feeds. In contrast, application of recombinant DNA technology to farm animals needs more effort and may result in uncontrollable consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams CA (2006) Nutrition-based health in animal production. Nutr Res Rev 19(01):79–89

    Article  PubMed  Google Scholar 

  • Alexander TW, Reuter T, Aulrich K, Sharma R, Okine EK, Dixon WT, McAllister TA (2007) A review of the detection and fate of novel plant molecules derived from biotechnology in livestock production. Anim Feed Sci Technol 133:31–62

    Article  CAS  Google Scholar 

  • Basalan M. (2000) Characteristics of ruminal fiber digestion with cattle fed high concentrate diets. In: Ph.D dissertation thesis, Oklahoma State University, Stillwater Oklahoma

    Google Scholar 

  • Beauchemin KA, Krehbiel CR, Nwebold CJ (2006) Enzymes, bacterial direct-fed microbials and yeast: principles for use in ruminant nutrition. In: Mosenthin R, Zentek J, Zebrowska T (eds.) Biology of nutrition in growing animals. Elsevier Ltd., London

    Google Scholar 

  • Beever DE, Kemp CF (2000) Safety issues associated with the DNA in animal feed derived from genetically modified crops. A review of scientific and regulatory procedures. Nutr Abs Rev Ser A Hum Exper 70(3):197–204

    Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  PubMed  Google Scholar 

  • Bonneau M, Laarveld B (1999) Biotechnology in animal nutrition. Livestock Prod Sci 59:223–241

    Article  Google Scholar 

  • Canganella F, Gasbarri M, Massa S, Trovatelli LD (1996) A microbial investigation on probiotic preparations used for animal feeding. Microbial Res 151:167–175

    Article  Google Scholar 

  • Colombatto D, Morgavi DP, Furtado AF, Beauchemin KA (2003) Screening of exogenous enzymes for ruminant diets: relationship between biochemical characteristics and in vitro ruminal degradation. J Anim Sci 81: 2628–2630

    Google Scholar 

  • Cowieson AJ, Hruby M, Pierson EEM (2006) Evolving enzyme technology: impact on commercial poultry nutrition. Nutr Res Rev 19(01):90–103

    Article  CAS  PubMed  Google Scholar 

  • Cunnigham EP (1999) The application of biotechnologies to enhance animal production in different farming systems. Livestock Prod Sci 58:1–24

    Article  Google Scholar 

  • Demain AL (2007) The business of biotechnology. Ind Biotechnol 3(3):269–283

    Article  Google Scholar 

  • Deynze AV, Bradford KJ, Eenennaam AV (2008) Crop biotechnology: feeds for livestock. Agricultural biotechnology in California series, Publication 8145

    Google Scholar 

  • DiLorenzo N (2011) Manipulation of the rumen microbial environment to improve performance of beef cattle. In: 22rd annual Florida nutrition symposium proceeding, Gainesville, Florida, 1–2 Feb 2011

    Google Scholar 

  • Fedoroff NV (2010) The past, present and future of crop genetic modification. New Biotechnol 27(5):461–465

    Article  CAS  Google Scholar 

  • Ferket PR, Santos AA, Oviedo E (2005) Dietary factors that affect gut health and pathogen colonization. In: Thirty-second annual Carolina poultry nutrition conference, Research Triangle Park, North Carolina, 26–27 Oct 2005, pp 1–22

    Google Scholar 

  • Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, Hirt RP (1994) Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 117:157–161

    Article  CAS  PubMed  Google Scholar 

  • Gaggia F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141:S15–S28

    Article  PubMed  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499

    Article  CAS  PubMed  Google Scholar 

  • Gencoglu H, Shaver RD, Steinberg W, Ensink J, Ferraretto LF, Bertics SJ, Lopes JC, Akins MS (2010) Effect of feeding a reduced-starch diet with or without amylase addition on lactation performance in dairy cows. J Dairy Sci 93:723–732

    Article  CAS  PubMed  Google Scholar 

  • Ghorai S, Banik SP, Verma D, Chowdhury S, Mukherjee S, Khowala S (2009) Fungal biotechnology in food and feed processing. Food Res Int 42:577–587

    Article  CAS  Google Scholar 

  • Hartnell GF (2010) Feeding transgenic feedstuffs to cattle. In: Florida nutrition conference, Gainesville, Forida, pp 68–79

    Google Scholar 

  • Herdt RW (2006) Biotechnology in agriculture. Annu Rev Environ Resour 31:265–295

    Article  Google Scholar 

  • Hristov AN, Ivan M, Neill L, McAllister TA (2003) Evaluation of several potential bioactive agents for reducing protozoal activity without inhibiting fermentation. Anim Feed Sci Technol 105:163–184

    Article  CAS  Google Scholar 

  • Kahi AK, Rewe TO (2008) Biotechnology in livestock production: overview of possibilities for Africa. Afr J Biotechnol 7(25):4984–4991

    Google Scholar 

  • Kmet V, Flint HJ, Wallace RJ (1993) Probiotics and manipulation of rumen development and function. Arch Anim Nutr 44:1–10

    CAS  Google Scholar 

  • Kurtoglu V, Kurtoglu F, Seker E, Coskun B, Balevi T, Polat ES (2004) Effect of probiotic supplementation on laying hen diets on yield performance and serum and egg yolk cholesterol. Food Addit Contam 21:817–823

    Article  CAS  PubMed  Google Scholar 

  • Lindsay JR, Hogan JP (1972) Digestion of two legumes and rumen bacterial growth in defaunated sheep. Aust J Agric Res 23:321–330

    Article  Google Scholar 

  • McAllister TA, Forster RJ, Teather RM, Sharma R, Attwood GT, Selinger LB, Joblin KB (2006) Manipulation and characterization of the rumen ecosystem through biotechnology. In: Mosenthin R, Zentek J, Zebrowska T (eds.) Biology of nutrition in growing animals. Elsevier Ltd., London

    Google Scholar 

  • McGloughlin MN (2010) Modifying agricultural crops for improved nutrition. New Biotechnol 27(5):494–504

    Article  CAS  Google Scholar 

  • Nagaraja TG (2012) A microbiologist’s view on improving nutrient utilization in ruminants. In: 23rd annual Florida nutrition symposium proceeding, Gainesville, Florida, 31 Jan–1 Feb 2012, pp 135–161

    Google Scholar 

  • Novoselova TA, Meuwissen MPM, Huirne RBM (2007) Adoption of GM technology in livestock production chains: an integrating framework. Trends Food Sci Technol 18:175–188

    Article  CAS  Google Scholar 

  • Owens FN (2005) Corn genetics and animal feeding value. In: 66th Minnesota nutrition conference, St. Paul, Minnesota, 20–21 Sep 2005

    Google Scholar 

  • Saad N, Delattre C, Urdaci M, Schmitter JM, Bressollier P (2012) An overview of the last advances in probiotic and prebiotic field. LWT—food science and technology. http://dx.doi.org/10.1016/j.lwt.2012.05.014 1–16

  • Sangeetha PT, Ramesh MN, Prapulla SG (2005) Recent trend in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technology 16:442–457

    Article  CAS  Google Scholar 

  • Schiere JB, Tamminga S (1996) Assessment of biotechnology in animal nutrition. Biotechnol Dev Monit 27:9–11

    Google Scholar 

  • Smulikowska S (2006) Manipulation of poultry ecosystem through biotechnology. In: Mosenthin R, Zentek J, Zebrowska T (eds.) Biology of Nutrition in Growing Animals. Elsevier Ltd., London

    Google Scholar 

  • Steering committee on global challenges and directions for agricultural biotechnology: mapping the course, National Research Council (2008) global challenges and directions for agricultural biotechnology: workshop report. The National Academies Press, Washington, D. C pp 14–15

    Google Scholar 

  • UN (2004) The biotechnology promise. In: United Nations conference on trade and development. Capacity building for participation of developing countries in the bioeconomy, United Nations, New York, Geneva 2004 pp 7–8

    Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of ruminant, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  • Vicini JL, Bateman HG, Bhat MK, Clark JH, Erdman RA, Phipps RH, Van Armburgh ME, Hartnell GF, Hintz RL, Hard DL (2003) Effects of feeding supplemental fibrolytic enzymes or soluble sugars with malic acid on milk production. J Dairy Sci 86:576–585

    Article  CAS  PubMed  Google Scholar 

  • Walsh GA, Power RF, Headon DR (1993) Enzymes in the animal feed industry. TIBTECH. 11:424–430

    Article  CAS  Google Scholar 

  • Yokoyama MT, Johnson KA (1993) Microbiology of rumen and intestine. In: Church DC (eds.) The ruminant animal digestive physiology and nutrition. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Basalan, M., Abubakar, M. (2015). Biotechnology and Animal Nutrition. In: Abubakar, M., Saeed, A., Kul, O. (eds) The Role of Biotechnology in Improvement of Livestock. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46789-3_2

Download citation

Publish with us

Policies and ethics