Skip to main content

Kardiale Magnetresonanztomographie

Vom Bild zur Diagnose

  • Chapter
  • 1600 Accesses

Zusammenfassung

Die kardiale Magnetresonanztomographie (CMR) hat sich in den letzten 20 Jahren von einem forschungsorientierten bildgebenden Verfahren zu einem unverzichtbaren Routineverfahren in der kardialen Diagnostik entwickelt. Neben der rein morphologischen Darstellung der kardialen Anatomie, wo ihr nur im Bereich der Koronardarstellung das nicht-invasive Konkurrenzverfahren der Mehrzeilencomputertomographie (MDCT) überlegen ist, besteht die Stärke der CMR vor allem in der Beurteilung der Herzfunktion und der Gewebedifferenzierung. Dies verlangt vom durchführenden und diagnostizierenden Radiologen neben guten Kenntnissen in der kardialen und thorakalen Anatomie auch ein detailliertes Wissen über die verschiedenen kardiovaskulären Erkrankungen, die Hämodynamik und die Pathophysiologie. Die CMR erlaubt es, zuverlässig eine Vielzahl einfach zu erhebender quantitativer Parameter wie die ventrikuläre Ejektionsfraktion, aber auch die Regurgitationsfraktion von Klappenvitien zu ermitteln, die eine objektive Beurteilung der kardialen Funktion ermöglichen. Insbesondere mit den Möglichkeiten der Gewebedifferenzierung zur Entzündungs- und Vitalitätsdiagnostik sowie der Ischämiediagnostik durch die Adenosinstress-Magenetresonanztomographie hat die CMR im letzten Jahrzehnt ihren Siegeszug in der klinischen Routinediagnostik eingeleitet. Die CMR ist nicht nur zur Therapieentscheidung, auch im Vergleich zu nuklearmedizinischen Konkurrenzverfahren, sondern mittlerweile auch zur Prognoseabschätzung ein unverzichtbarer Bestandteil der kardiovaskulären Diagnostik.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   17.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Achenbach 5, Barkhausen J, Beer M et al (2012) Consensus recommendations of the German Radiology 50- ciety (DRG), the German Cardiac 50- ciety (DGK) and the German 50ciety for Pediatric Cardiology (DGPK) on the use of cardiac imaging with computed tomography and magnetic resonance imaging. Rofo 184:345–368

    Google Scholar 

  2. Gutberiet M, Hoffmann J, Künzel E et al (2011) Preoperative and postoperative imaging in patients with transposition of the great arteries. Radiologe51( 1):15–22

    Google Scholar 

  3. Beerbaum P, Barth P, Kropf 5 et al (2009) Cardiac function by MRI in congenital heart disease: impact of consensus training on interinstitutional variance. J Magn Reson Imaging 30(5):956–966

    Google Scholar 

  4. 5arikouch 5, Peters B, Gutberiet M et al (2010) 5ex-specific pediatric percentiles for ventricular size and mass as reference va lues for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3(1):65–76

    Google Scholar 

  5. Fiechter M, Fuchs TA, Gebhard C et al (2013) Age-related normal structural and functional ventricular values in cardiacfunction asessed by magnetic resonance. BMC Med Imaging 13:6

    Article  PubMed Central  PubMed  Google Scholar 

  6. Gutberiet M, Abdul-Khaliq H, 5tobbe H et al (2001) The use of cross-sectional imaging modalities in the diagnosis of heart valve diseases. Z KardioI90( 5uppI6):2–12

    Google Scholar 

  7. Huber A, Prompona M, Kozlik-Feldmann R et al (2011) MRI for therapy planning in patients with atrial septum defects. Radiologe 51 (1 ):31–37

    Article  CAS  PubMed  Google Scholar 

  8. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basicfacts and implementation. Radiographics 22(3):651–671

    Article  PubMed  Google Scholar 

  9. Lehmkuhl L, Herz F, Foldyna B et al (2011) Diagnostic performance of prospectively ECG triggered versus retrospectively ECG gated 64-slice computed tomography coronary angiography in a heterogeneous patient population. Eur J Radiol 80(2):342–348

    Article  PubMed  Google Scholar 

  10. Thiele H, Dörr R, Gutberiet M (2012) Diagnostic work-up of coronary artery disease: clinical value of different imaging methods. Herz 37(8):887–899

    Article  CAS  PubMed  Google Scholar 

  11. Ferket B5, Genders T55, Colkesen EB et al (2011) 5ystematic review of guidelines on imaging of asymptomatic coronary artery disease. J Am Coll CardioI57:1591–1600

    Google Scholar 

  12. Hoffmann U, Truong QA, 5choenfeld DA et al (2012) CoronaryCT angiography versus standard evaluation in acute chest pa in. N Engl J Med 367(4):299–308

    Google Scholar 

  13. Ko B5, Cameron JD, Leung M et al (2012) Combined CT coronary angiography and stress myocardial perfusion imaging for hemodynamically significant stenoses in patients with suspected coronary artery disease: a comparison with fractional flow reserve. JACC Cardiovasc Imaging 5(11 ):1 097–1111

    Google Scholar 

  14. Greenwood JP, Maredia N, Younger JF et al (2012) Cardiovascular magnetic resonance and single-photon emission computed tomographyfor diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379(9814):453–460

    Article  PubMed Central  PubMed  Google Scholar 

  15. 5chwitterJ, Wacker CM, Wilke N et al (2012) 5uperior diagnostic performance of perfusion-cardiovascular magnetic resonance versus 5PECT to detect coronary artery disease: the secondary end points of the multicenter multivendor MR-IMPACT 11 (Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial). J Cardiovasc Magn Reson 14:6–1

    Google Scholar 

  16. 5chwitter J, Wacker CM, Wilke N et al (2013) MR-IMPACT 11: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion- cardiac magnetic resonance vs. singlephoton emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J 34(10):775–781

    Google Scholar 

  17. Bonow RO, Maurer G, Lee KL et al (2011) Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 364:1617–1625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gutberiet M, Lücke C, Krieghoff C et al (2013) MRT bei Myokarditis. Radiologe 53(1 ):30–37

    Article  Google Scholar 

  19. Grothoff M, Pachowsky M, Hoffmann Jet al (2012) Value of cardiovascular MR in diagnosing left ventricular non-compaction cardiomyopathy and in discriminating between other cardiomyopathies. Eur Radiol 22(12):2699–2709

    Article  PubMed Central  PubMed  Google Scholar 

  20. Eitel I, Lücke C, Grothoff M et al (2010) Inflammation in takotsubo cardiomyopathy: insights from cardiovascular magnetic resonance imaging. Eur RadioI20(2):422–431

    Google Scholar 

  21. Bruder 0, Wagner A, Lombardi M et al (2013) European Cardiovascular Magnetic Resonance (EuroCMR) registry - multi national results from 57 centers in 15 countries. J Cardiovasc Magn Reson 15:9

    Google Scholar 

  22. https://www.mrct-registry.org/

  23. Desch 5, Eitel I, De Waha 5 et al (2011) Cardiac magnetic resonance imaging parameters as surrogate end points in clinical trials of acute myocardial infarction. Trials 12:e204- e21–5

    Google Scholar 

  24. Kelle 5, Nagel E, Voss A et al (2013) Abi-center cardiovascular magnetic resonance prognosis study focusing on dobutamine wall motion and late gadolinium enhancement in 3,138 consecutive patients. J Am Coll CardioI61( 22):2310–2312

    Google Scholar 

  25. Fluechter 5, KuschykJ, Wolpert C et al (2010) Extent of late gadolinium enhancement detected by cardiovascular magnetic resonance correlates with the inducibility ofventricular tachyarrhythmia in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 12:3–0

    Google Scholar 

  26. Flotats A, Knuuti J, Gutberiet M et al (2009) Hybrid cardiac imaging: SPECT/ CT and PET/CT. A joint position Statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiolo- gy (ESCR) and the European Council of Nuclear Cardiology (ECNC). EurJ Nucl Med Mol Imaging 38(1 ):201 -212

    Google Scholar 

  27. Gutberiet M, Schwinge K, Freyhardt P etal (2005) Influence of high magne- ticfield strengths and parallel acqui- sition strategies on image quality in cardiac 2D CINE magnetic resonance imaging: comparison of 1.5T vs. 3.0T. EurRadiol 15(8):1586–1597

    Google Scholar 

  28. Gutberiet M, Noeske R, Schwinge K et al (2006) Comprehensive cardiac magnetic resonance imaging at 3.0Tesla: feasibility and implications for clinical applications. Invest Radiol 41 (2):154–167

    Article  Google Scholar 

  29. Zhang S, Uecker M, Voit D et al (2010) Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction. J Cardiovasc Magn Re- son 12:3–9

    Google Scholar 

  30. Lüdemann L, Schmitt B, Podrabsky P et al (2007) Usage of theTI effect of an iron oxide contrast agent in an animal model to quantify myocar- dial bloodflow byMRI. EurJ Radiol 62(2):247–256

    Article  Google Scholar 

  31. Strach K, MeyerC, Thomas D etal (2005) High-resolution myocardial perfusion imaging at 3 T: comparison to 1.5 T in healthy volunteers. Eur Radiol 17(7):1829–1835

    Article  Google Scholar 

  32. Gutberiet M (2002) Habilitationsschrift: Einsatz der Kernspintomographie in der Diagnostik und Verlaufskontrolle angeborener Herzfehler unter besonderer Berücksichtigung der Verwendung flusssensitiver Sequenzen und der Ventrikelfunktionsanalyse. http://edoc.hu-berlin.de/habilitationen/gutberlet-matthias-2002-11-05/PDF/Gutberlet.pdf

    Google Scholar 

  33. Born S, Pfeifle M, Markl M et al (2013) Visual analysisof cardiac 4DMRI blood flow using line predicates. IEEE Trans Vis Comput Graph 19(6):900–912

    Article  PubMed  Google Scholar 

  34. Higgins CB, SovakM, SchmidtW, Siemers PT (1978) Uptakeof contrast materials by experimental acute myocardial infarctions: a preliminary report. Invest Radiol 13(4)337–339

    Article  CAS  PubMed  Google Scholar 

  35. Kim RJ, Wu E, Rafael Aetal (2000) The useofcontrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453

    Article  CAS  PubMed  Google Scholar 

  36. De Cobelli F, Esposito A, Perseghin G etal (2012) Intraindividual comparison of gadubutrol and gadopentetate dimeglumine for detection of myocardial late enhancement in cardiac MRI. Am J Roentgenol 198(4):809–816

    Article  Google Scholar 

  37. Wagner M, Schilling R, Doeblin P et al (2012) Macrocydic contrast agents for magnetic resonance imaging of chronic myocardial infarction: intraindividual comparison of gadubutrol and gadoterate meglumine. Eur Radiol 23(1 ):108–114

    Article  PubMed  Google Scholar 

  38. Tumkosit M, Puntawangkoon C, Morgan TM et al (2009) Left ventricular in- farctsizeassessed with 0.1 mmol/kg of gadobenate dimeglumine correlates with that assessed with 0.2 mmol/ kg of gadopentetate dimeglumine. J Comput Assist Tomogr 33(3)328–333

    Article  PubMed Central  PubMed  Google Scholar 

  39. Wildgruber M, Settles M, Kosanke K et al (2012) Evaluation of phase-sensitive versus magnitude reconstructed inversion recovery imaging for the assessment of myocardial infarction in mice with a clinical magnetic resonance Scanner. J Magn Reson Imaging 36(6):1372–1382

    Article  PubMed  Google Scholar 

  40. Huber A, Bauner K, Wintersperger BJ et al (2006) Phase-sensitive inversion recovery (PSIR) single-shotTrueFISP for assessment of myocardial infarction at 3 tesla. Invest Radiol 41 (2):148–153

    Article  PubMed  Google Scholar 

  41. Gutberiet M, Spors B, Thoma T et al (2006) Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral per- sistence. Radiology 246(2):401–409

    Article  Google Scholar 

  42. Friedrich MG, Sechtem U, Schulz- Menger J etal; International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis (2009) Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coli Cardiol 53(17):1475–1487

    Article  Google Scholar 

  43. Lurz P, Eitel I, Adam J et al (2012) Diagnostic performance of CMR imaging compared with EMB in patients with suspected myocarditis. JACC Cardiovasc Imaging 5(5):513–524

    Article  PubMed  Google Scholar 

  44. Karamitsos TD, Piechnik SK, Banypersad SM et al (2013) NoncontrastTI mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 6(4):488–497

    Google Scholar 

  45. FerreiraVM, PiechnikSK, DallArmelli- na Eetal (2012) Non-contrastT1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison toT2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:4–2

    Article  Google Scholar 

  46. Messroghli DR, Radjenovic A, Kozer- ke S et al (2004) Modified Look-Locker inversion recovery (MOLLI) for highresolution TI mapping of the heart. Magn Reson Med 52(1 ):141–146

    Article  PubMed  Google Scholar 

  47. Gutberiet M, Abdul-Khaliq H, Grothoff M et al (2003) Evaluation of left ventricular volumes in patients with congenital heart disease and abnormal left ventricular geometry. Comparison of MRI and transthoracic 3-dimensional echocardiography. Rofo 175(7):942–951

    Article  Google Scholar 

  48. Young AA, Cowan BR, Schoenberg SO, Wintersperger BJ (2008) Feasibility of single breath-hold left ventricular function with 3 Tesla TSENSE acquisiti- on and 3D modeling analysis. J Cardiovasc Magn Reson 10:2–4

    Article  Google Scholar 

  49. Perseghin G, De Cobelli F, Esposito A et al (2007) Effect of the sporting disci- pline on the right and left ventricular morphology and function of elite male track runners: a magnetic resonance imaging and phosphorus 31 spectro- scopy study. Am Heart J 154(5):937–942

    Article  PubMed  Google Scholar 

  50. Prakken NH, Velthuis BK, Teske AJ et al (2010) Cardiac MRI reference values for athletes and nonathletes corrected for body surface area, training hours/ weekand sex. Eur J Cardiovasc Prev Rehabil 17(2):198–203

    Article  PubMed  Google Scholar 

  51. GutberietM, Spors B, GrothoffM etal (2004) Comparison of different cardiac MRI sequences at 1.5T/3.0T with re- spect to signal-to-noise and contrast- to-noise ratios - initial experience. Rofo 176(6):801–808

    Google Scholar 

  52. Gutberiet M, Hosten N, Vogel M et al (1999) Quantification of morphologic and hemodynamic severity of coarcta- tion oftheaorta by magnetic resonance imaging. Cardiol Young 11 (5):512–520

    Article  Google Scholar 

  53. Gutberiet M, Fröhlich M, Mehl S et al (2005) Myocardial viability assessment in patients with highly impaired left ventricular function: comparison of delayed enhancement, dobutamine stress MRI, end-diastolic wall thick- ness, and TI201 -SPECT with functional recovery after revascularization. Eur Radiol 15(5)372–880

    Google Scholar 

  54. Theisen D, Wintersperger BJ, Huber A et al (2007) Myocardial first pass perfusion imaging with gadobutrol: impact of parallel imaging algorithms on image quality and Signal behavior. Invest Radiol 42(7)522–528

    Article  CAS  PubMed  Google Scholar 

  55. Doesch C, Papavassiliu T, Michaely HJ et al (2013) Detection of myocardial ischemia by automated, motion-cor- rected, color-encoded perfusion maps compared with visual analysis of ade- nosine stress cardiovascular magnetic resonance imaging at 3 T: a pilot study. Invest Radiol 48(9):678–686

    Article  CAS  PubMed  Google Scholar 

  56. Vöhringer M, Mahrholdt H, Yilmaz A, Sechtem U (2007) Significance of late gadolinium enhancement in cardiovascular magnetic resonance imaging (CMR). Herz 32(2):129–137

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gutberlet, M. (2015). Kardiale Magnetresonanztomographie. In: Delorme, S., Reimer, P., Reith, W., Schäfer-Prokop, C., Schüller-Weidekamm, C., Uhl, M. (eds) Weiterbildung Radiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46785-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46785-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46784-8

  • Online ISBN: 978-3-662-46785-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics