Skip to main content

Morphologische und funktionelle Knorpeldiagnostik

  • Chapter
Weiterbildung Radiologie
  • 1564 Accesses

Zusammenfassung

Heutzutage ist eine exzellente morphologische Knorpelbildgebung möglich, die auch feinste Knorpelpathologien darstellen kann. Neben den Standard-2-D-Sequenzen ist eine Vielzahl von 3-D-Sequenzen zur hochaufgelösten Knorpeldarstellung verfügbar. Im ersten Teil dieses Artikels werden daher die aktuellen Möglichkeiten der morphologischen Diagnostik beleuchtet. Der zweite Teil behandelt die funktionelle Knorpelbildgebung. Mit ihr ist es möglich, Veränderungen der Knorpelkomposition und somit Frühformen von Knorpelschädigungen zu erfassen bzw. diese biochemischen Veränderungen nach therapeutischer Intervention zu evaluieren. Hierbei werden bereits validierte Techniken wie dGEMRIC oder „T2-Mapping“ besprochen, aber auch neueste Techniken wie die gagCEST-Technik beleuchtet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 17.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Robert Koch-Institut (Hrsg) (2013) Arthrose. Gesundheitsberichterstattung des Bundes, Heft 54. RKI, Berlin

    Google Scholar 

  2. Roemer FW, Crema MD, Trattnig S, Guermazi A (2011) Advances in imaging of Osteoarthritis and cartilage. Radiology 260:332–335

    Article  PubMed  Google Scholar 

  3. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arth- rosis. Ann Rheum Dis 16:494–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Amin S, LaValley MP, Guermazi A et al (2005) The relationship between cartilage loss on magnetic resonan- ce imaging and radiographic Progression in men and women with knee Osteoarthritis. Arthritis Rheum 52:3152–3159

    Article  PubMed  Google Scholar 

  5. Lecouvet FE, Simoni P, Koutai'ssoff S et al (2008) Multidetector spiral CT arthrography of the shoulder. Clini- cal applications and limits, with MR arthrography and arthroscopic cor- relations. Eur J Radiol 68:120–136

    Article  PubMed  Google Scholar 

  6. Lecouvet FE, Dorzee B, Dubuc JE et al (2007) Cartilage lesions of the gle- nohumeral joint: diagnostic effecti- venessof multidetector spiral CT arthrography and comparison with ar- throscopy. Eur Radiol 17:1763–1771

    Article  PubMed  Google Scholar 

  7. Rizzo C, Ceccarelli F, Gattamelata A et al (2013) Ultrasound in rheumatoid arthritis. Med Ultrason 15:199–208

    Article  PubMed  Google Scholar 

  8. Jacobson JA (2007) Fundamentals of Musculoskeletal Ultrasound. Saunders Elsevier, Philadelphia, pp 152–155

    Google Scholar 

  9. Chan WP, Lang P, Stevens MP et al (1991) Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol 157:799–806

    Article  CAS  PubMed  Google Scholar 

  10. Rogers AD, Payne JE, YuJS (2013) Cartilage imaging: a review of current concepts and emerging technologies. Semin Roentgenol 48:148–157

    Article  PubMed  Google Scholar 

  11. Outerbridge RE (1961) The etiology of chondromalacia patellae.J Bone Joint Surg Br 43-B:752–757

    CAS  PubMed  Google Scholar 

  12. Noyes FR, Stabler CL (1989) A System for grading articular cartilage lesions at arthroscopy. Am J Sports Med 17:505–513

    Article  CAS  PubMed  Google Scholar 

  13. Baudendistel KT, Heverhagen JT, Knopp MV (2004) Klinisches MRT bei 3 Tesla: Aktueller Stand. Radiologe 44:11–18

    Article  CAS  PubMed  Google Scholar 

  14. Weber MA, Stillfried F von, Kloth JK, Rehnitz C (2012) Cartilage imaging of the hand and wrist using 3-T MRI. Semin Musculoskelet Radiol 16:71–87

    Article  PubMed  Google Scholar 

  15. LinkTM, Stahl R, Woertler K (2007) Cartilage imaging: motivation, tech- niques, current and future significan- ce. Eur Radiol 17:1135–1146

    Google Scholar 

  16. Palmer AJ, Brown CP, McNally EG et al (2013) Non-invasive imaging of cartilage in early Osteoarthritis. Bone Joint J95-B:738–746

    Google Scholar 

  17. Woertler K, Strothmann M, Tombach B, Reimer P (2000) Detection of articular cartilage lesions: experimental evaluation of low- and high-field- strength MR imaging at 0.18 and 1.0T. J MagnReson Imaging 11:678–685

    Article  CAS  Google Scholar 

  18. VahlensieckM, SchnieberO (2003) Routineperformance eines offenen Niederfeld-MRT-Geräts in der Beurteilung des Kniebinnenschadens und Vergleich mit Hochfeldsystemen. Orthopäde 32:175–178

    Article  Google Scholar 

  19. LinkTM, Seil CA, MasiJN etal (2005) 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology - ROC analysis in an experimental model. Osteoarthritis Cartilage 14:63–70

    Google Scholar 

  20. Kijowski R, Blankenbaker DG, Davis KW et al (2009) Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the kneejo- int. Radiology 250:839–848

    Article  PubMed  Google Scholar 

  21. Trattnig S, Zbyn S, Schmitt B et al (2012) Advanced MR methods at ult- ra-highfield (7Tesla) for clinical mu- sculoskeletal applications. Eur Radiol 22:2338–2346

    Article  PubMed  Google Scholar 

  22. Welsch GH, Juras V, Szomolanyi P et al (2012) Magnetic resonance imaging of the knee at 3 and 7 tesla: a comparison using dedicated multichannel coils and optimised 2D and 3D protocols. Eur Radiol 22:1852–1859

    Article  PubMed  Google Scholar 

  23. Krug R, Stehling C, Kelley DA et al (2009) Imaging of the musculoske- letal System in vivo using ultra-high field magnetic resonance at T. Invest Radiol 44:613–618

    Article  PubMed  Google Scholar 

  24. Glaser C (2006) Knorpelbildgebung. Radiologe 46:16–25

    Article  CAS  PubMed  Google Scholar 

  25. Mosher TJ, Smith H, Dardzinski BJ et al (2001) MR imaging andT2 map- ping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 177:665–669

    Article  CAS  PubMed  Google Scholar 

  26. Goodwin DW, Zhu H, Dünn JF (2000) In vitro MR imaging of hyaline carti- lage: correlation with scanning elec- tron microscopy. AJR Am J Roentge- nol 174:405–409

    Google Scholar 

  27. Yoshioka H, Stevens K, Hargreaves BA et al (2004) Magnetic resonan- ce imaging of articular cartilage of the knee: comparison between fat- suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy.J Magn Re- son Imaging 20:857–864

    Google Scholar 

  28. Potter HG, Linklater JM, Allen AA et al (1998) Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin- echo imaging. J Bone Joint Surg Am 80:1276–1284

    CAS  PubMed  Google Scholar 

  29. Gold GE, Chen CA, Koo S et al (2009) Recent advances in MRI of articular cartilage. AJR Am J Roentgenol 193:628–638

    Article  PubMed Central  PubMed  Google Scholar 

  30. Gold GE, McCauleyTR, Gray ML, Dis- ler DG (2003) What's new in cartilage? Radiographics 23:1227–1242

    Article  PubMed  Google Scholar 

  31. Siemens Healthcare (2010) MRI Acro- nyms. http://www.healthcare.siemens.com/siemens_hwem-hwem_ssxa_websites-context-root/wcm/idc/groups/public/@global/@imaging/@mri/documents/download/mdaw/mty1/~edisp/mri_acronyms-00033460.pdf

  32. Recht MP, Piraino DW, Paletta GA et al (1996) Accuracyof fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in de- tection of patellofemoral articular cartilage abnormalities. Radiology 198:209–212

    Article  CAS  PubMed  Google Scholar 

  33. Murphy BJ (2001) Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 30:305–311

    Article  CAS  PubMed  Google Scholar 

  34. Hardy PA, Recht MP, Piraino D et al (1996) Optimization of a dual echo in the steady state (DESS) free-pre- cession sequence for imaging cartilage. J Magn Reson Imaging 6:329–335

    Article  CAS  PubMed  Google Scholar 

  35. Eckstein F, Fludelmaier M, Wirth W et al (2006) Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis 65:433–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Peterfy CG, Schneider E, Nevitt M (2008) The Osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16:1433–1441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kijowski R, Gold GE (2011) Routine 3D magnetic resonance imaging of joints. J Magn Reson Imaging 33:758–771

    Article  PubMed  Google Scholar 

  38. Crema MD, Roemer FW, Marra MD et al (2011) Articular cartilage in the knee: current MR imaging tech- niques and applications in clinical practiceand research. Radiographics 31:37–61

    Article  PubMed  Google Scholar 

  39. Lenk S, Ludescher B, Martirosan P et al (2004) 3.0T high-resolution MR imaging of carpal ligaments and TFCC. Rofo 176:664–667

    Article  CAS  PubMed  Google Scholar 

  40. Lee MJ, Motamedi K, Chow K, See- ger LL (2008) Gradient-recalled echo sequences in direct shoulder MR ar- thrography for evaluating the labrum. Skeletal Radiol 37:19–25

    Article  PubMed  Google Scholar 

  41. Schmid MR, Pfirrmann CW, Koch P etal (2005) Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence. AJR Am J Roentgenol 184:1744–1748

    Article  PubMed  Google Scholar 

  42. Ristow O, Steinbach L, Sabo G et al (2009) Isotropie 3D fast spin-echo imaging versus Standard 2D imaging at 3.0T ofthe knee - image quality and diagnostic performance. Eur Radiol 19:1263–1272

    Article  PubMed  Google Scholar 

  43. Notohamiprodjo M, Florng A, Kuschel B et al (2012) 3D-imaging of the knee with an optimized 3D-FSE- sequence and a 15-channel knee-coil. EurJ Radiol 81:3441–3449

    Article  Google Scholar 

  44. Stevens KJ, Wallace CG, Chen W et al (2001) Imaging ofthe wrist at 1.5T using isotropic three-dimensional fast spin echo CUBE.J Magn Reson Imaging 33:908–915

    Article  Google Scholar 

  45. Chhabra A, SoldatosT, Thawait GK et al (2012) Current perspectives on the advantages of 3-T MR imaging of the wrist. Radiographics 32:879–896

    Article  PubMed  Google Scholar 

  46. Flegenscheid K, Puls R, Rosenberg C (2012) Bildgebungsstrategie bei Kniegelenkverletzungen. Radiologe 52:980–986

    Article  Google Scholar 

  47. SutterR, ZublerV, Hoffmann Aetal (2014) Flip MRI: how useful is intraar- ticular contrast material for evaluating surgically proven lesions ofthe labrum and articular cartilage? AJR Am J Roentgenol 202:160–169

    Article  Google Scholar 

  48. Becce F, Richarme D, Omoumi P et al (2013) MR arthrography ofthe shoulder under axial traction: feasibility study to evaluate the Superior labrum-biceps tendon complex and articular cartilage. J Magn Reson Imaging 37:1228–1233

    Article  PubMed  Google Scholar 

  49. Guntern D, Becce F, Richarme D et al (2011) Direct magnetic resonance arthrography ofthe wrist with axial traction: a feasibility study to assess joint cartilage. J Magn Reson Imaging 34:239–244

    Article  PubMed  Google Scholar 

  50. MosherTJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time map- ping: overview and applications. Se- min Musculoskelet Radiol 8:355–368

    Google Scholar 

  51. Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEM- RIC) for clinical evaluation ofarticular cartilage. Magn Reson Med 45:36–41

    Article  CAS  PubMed  Google Scholar 

  52. Van Ginckel A, Baelde, Almqvist KF et al (2010) Functional adaptation of knee cartilage in asymptoma- ticfemale novice runners compared to sedentary Controls: a longitudinal analysis using delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC). Osteoarthritis Cartilage 18:1564–1569

    Article  CAS  PubMed  Google Scholar 

  53. Matzat SJ, Tiel J van, Gold GE, Oei EH (2010) Quantitative MRI techniques of cartilage composition. Quant Imaging Med Surg 3:162–174

    Google Scholar 

  54. Venn M, Maroudas A (1977) Chemical composition and swelling of normal and osteoarthrotic femoral he- ad cartilage. I. Chemical composition. Ann Rheum Dis 36:121–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Bashir A, Gray ML, Burstein D (1996) Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 36:665–673

    Article  CAS  PubMed  Google Scholar 

  56. Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in- articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558

    Article  CAS  PubMed  Google Scholar 

  57. Bashir A, Gray ML, Hartke J, Burstein D (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865

    Article  CAS  PubMed  Google Scholar 

  58. Trattnig S, MlynarikV, Breitenseher M et al (1999) MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Med 17:577–583

    CAS  Google Scholar 

  59. Roos EM, Dahlberg L (2005) Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of Osteoarthritis. Arthritis Rheum 52:3507–3514

    Article  CAS  PubMed  Google Scholar 

  60. Anandacoomarasamy A, Leibman S, Smith G et al (2012) Weight loss in obese people has structure-mo- difying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis 71:26–32

    Article  CAS  PubMed  Google Scholar 

  61. Kim YJ, Jaramillo D, Millis MB et al (2003) Assessment of early Osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 85-A:1987–1992

    PubMed  Google Scholar 

  62. MamischTC, Kain MS, Bittersohl B etal (2011) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in fe- moacetabular impingement. J Orthop Res 29:1305–1311

    Google Scholar 

  63. Trattnig S, DomayerS, Welsch GW (2009) MR imaging of cartilage and its repair in the knee - a review. Eur Radiol 19:1582–1594

    Article  CAS  PubMed  Google Scholar 

  64. Welsch GH, Mamisch TC, Quirbach S et al (2009) Evaluation and compa- rison of cartilage repair tissue of the patella and medial femoral condy- le by using morphological MRI and biochemical zonalT2 mapping. Eur Radiol 19:1253–1262

    Article  PubMed  Google Scholar 

  65. Trattnig S, Marlovits S, Gebetsroither Setal (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chon- drocyte transplantation at 3.0 T: pre- liminary results.J Magn Reson Imaging 26:974–982

    Article  PubMed  Google Scholar 

  66. Apprich S, Mamisch TC, Welsch GH et al (2012) Evaluation of articular cartilage in patients with femoroaceta- bular impingement (FAI) usingT2* mapping at different time points at 3.0 T MRI: a feasibility study. Skeletal Radiol 41:987–995

    Article  CAS  PubMed  Google Scholar 

  67. Kijowski R, Blankenbaker DG, Munoz Del Rio Aetal (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping se- quence to a routine MR imaging pro- tocol. Radiology 267:503–513

    Article  PubMed  Google Scholar 

  68. Dardzinski BJ, MosherTJ, Li S et al (1997) Spatial Variation ofT2 in human articular cartilage. Radiology 205:546–550

    Article  CAS  PubMed  Google Scholar 

  69. Welsch GH, Mamisch TC, Marlovits S et al (2009) QuantitativeT2 mapping during follow-up after matrix- associated autologous chondrocy- te transplantation (MACT): full-thick- ness and zonal evaluation to visuali- zethe maturation of cartilage repair tissue. J Orthop Res 27(7):957–963

    Article  PubMed  Google Scholar 

  70. Welsch GH, Mamisch TC, Domayer SE et al (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures - initial ex- perience. Radiology 247:154–161

    Article  PubMed  Google Scholar 

  71. Ling W, Regatte RR, Navon G, Jer- schow A (2008) Assessment of glycosaminoglycan concentration in vivo by Chemical exchange-dependent Saturation transfer (gagCEST). Proc Natl Acad Sei U S A 105:2266–2270

    Article  CAS  Google Scholar 

  72. Schmitt B, Zbyn S, Stelzeneder D et al (2011) Cartilage quality assessment by using glycosaminoglycan Chemical exchange Saturation transfer and (23)Na MR imaging at 7-T. Radiology 260:257–264

    Article  PubMed  Google Scholar 

  73. Reddy R, Insko EK, Noyszewski EA et al (1998) Sodium MRI of human articular cartilage in vivo. Magn Reson Med 39:697–701

    Article  CAS  PubMed  Google Scholar 

  74. Zbyn S, Stelzeneder D, Welsch GH et al (2012) Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at7T: initial experience. Osteoarthritis Cartilage 20:837–845

    Article  CAS  PubMed  Google Scholar 

  75. Duvvuri U, KudchodkarS, Reddy R, Leigh JS (2002) T(1 rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vi tro. Osteoarthritis Cartilage 10:838–844

    Article  CAS  PubMed  Google Scholar 

  76. Binks DA, Hodgson RJ, Ries ME et al (2011) Quantitative parametric MRI of articular cartilage: a review of pro gress and open challenges. Br J Radi ol 86:2012016–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rehnitz, C., Weber, MA. (2015). Morphologische und funktionelle Knorpeldiagnostik. In: Delorme, S., Reimer, P., Reith, W., Schäfer-Prokop, C., Schüller-Weidekamm, C., Uhl, M. (eds) Weiterbildung Radiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46785-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46785-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46784-8

  • Online ISBN: 978-3-662-46785-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics