Skip to main content
  • 3682 Accesses

Abstract

Here we consider magnetic transition dipoles and magnetic-dipole transitions, using both semiclassical and quantum approaches. We introduce ellipticity and optical rotation, and derive the Rosenfeld equation, which shows how coupling of electric and magnetic transition dipoles results in circular dichroism. The circular dichroism of dimers and higher oligomers, including proteins and nucleic acids, is addressed in detail and is related to the theory of exciton interactions developed in Chap. 8. The chapter concludes with a discussion of magnetic circular dichroism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansen, A.E.: On evaluation of electric and magnetic dipole transition moments in the zero differential overlap approximation. Theor. Chim. Acta 6, 341–349 (1966)

    Article  CAS  Google Scholar 

  2. Král, M.: Optical rotatory power of complex compounds. Matrix elements of operators Del and R x Del. Collect. Czech. Chem. Commun. 35, 1939–1948 (1970)

    Article  Google Scholar 

  3. Ham, J.S., Platt, J.R.: Far U.V. spectra of peptides. J. Chem. Phys. 20, 335–336 (1952)

    Article  CAS  Google Scholar 

  4. Barnes, E.E., Simpson, W.T.: Correlations among electronic transitions for carbonyl and for carboxyl in the vacuum ultraviolet. J. Chem. Phys. 39, 670–675 (1963)

    Article  CAS  Google Scholar 

  5. Callomon, J.H., Innes, K.K.: Magnetic dipole transition in the electronic spectrum of formaldehyde. J. Mol. Spectrosc. 10, 166–181 (1963)

    Article  CAS  Google Scholar 

  6. Woody, R.W., Tinoco Jr., I.: Optical rotation of oriented helices. III. Calculation of the rotatory dispersion and circular dichroism of the alpha and 310-helix. J. Chem. Phys. 46, 4927–4945 (1967)

    Article  CAS  Google Scholar 

  7. Hameka, H.: Advanced Quantum Chemistry. Addison-Wesley, Reading, MA (1965)

    Google Scholar 

  8. Schatz, G.C., Ratner, M.A.: Quantum Mechanics in Chemistry, p. 325. Prentice-Hall, Englewood Cliffs, NJ (1993)

    Google Scholar 

  9. Moffitt, W., Moscowitz, A.: Optical activity in absorbing media. J. Chem. Phys. 30, 648–660 (1959)

    Article  CAS  Google Scholar 

  10. Moscowitz, A.: Theoretical aspects of optical activity part one: small molecules. Adv. Chem. Phys. 4, 67–112 (1962)

    Google Scholar 

  11. Rosenfeld, L.Z.: Quantenmechanische Theorie der natürlichen optischen Aktivität von Flüssigkeiten und Gasen. Z. Phys. 52, 161–174 (1928)

    Article  CAS  Google Scholar 

  12. Hansen, A.E., Bak, K.L.: Ab-initio calculations of electronic circular dichroism. Enantiomer 4, 1024–2430 (1999)

    Google Scholar 

  13. Berova, N., Nakanishi, K., Woody, R.W. (eds.): Circular Dichroism. Principles and Applications. Wiley-VCH, New York, NY (2000)

    Google Scholar 

  14. Lightner, D.A., Gurst, J.E.: Organic Conformational Analysis and Stereochemistry from Circular Dichroism Spectroscopy. Wiley-VCH, New York, NY (2000)

    Google Scholar 

  15. Autschbach, J., Ziegler, T., van Gisbergen, S.J.A., Baerends, E.J.: Chirooptical properties from time-dependent density functional theory. I. Circular dichroism of organic molecules. J. Chem. Phys. 116, 6930–6940 (2002)

    Article  CAS  Google Scholar 

  16. Diedrich, C., Grimme, S.: Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. J. Phys. Chem. A 107, 2524–2539 (2003)

    Article  CAS  Google Scholar 

  17. Hobden, M.V.: Optical activity in a nonenantiomorphous crystal silver gallium sulfide. Nature 216, 678 (1967)

    Article  CAS  Google Scholar 

  18. Hobden, M.V.: Optical activity in a non-enantiomorphous crystal cadmium gallium sulfide. Nature 220, 781 (1968)

    Article  CAS  Google Scholar 

  19. Claborn, K., Cedres, J.H., Isborn, C., Zozulya, A., Weckert, E., et al.: Optical rotation of achiral pentaerythritol. J. Am. Chem. Soc. 128, 14746–14747 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Kirkwood, J.G.: On the theory of optical rotatory power. J. Chem. Phys. 5, 479–491 (1937)

    Article  CAS  Google Scholar 

  21. Moffitt, W.: Optical rotatory dispersion of helical polymers. J. Chem. Phys. 25, 467–478 (1956)

    Article  CAS  Google Scholar 

  22. Tinoco Jr., I.: Theoretical aspects of optical activity part two: polymers. Adv. Chem. Phys. 4, 113–160 (1962)

    Google Scholar 

  23. Schellman, J.: Circular dichroism and optical rotation. Chem. Rev. 75, 323–331 (1975)

    Article  CAS  Google Scholar 

  24. Charney, E.: The Molecular Basis of Optical Activity. Wiley-Interscience, New York, NY (1979)

    Google Scholar 

  25. Fasman, G.D. (ed.): Circular Dichroism and the Conformational Analysis of Macromolecules. Plenum, New York, NY (1996)

    Google Scholar 

  26. Condon, E.U.: Theories of optical rotatory power. Rev. Mod. Phys. 9, 432–457 (1937)

    Article  CAS  Google Scholar 

  27. Greenfield, N., Fasman, G.D.: Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108–4116 (1969)

    Article  CAS  PubMed  Google Scholar 

  28. Saxena, V.P., Wetlaufer, D.B.: A new basis for interpreting the circular dichroic spectra of proteins. Proc. Natl. Acad. Sci. U. S. A. 68, 969–972 (1971)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Johnson Jr., W.C.: Analysis of circular dichroism spectra. Methods Enzymol. 210, 426–447 (1992)

    CAS  PubMed  Google Scholar 

  30. Ramsay, G.D., Eftink, M.R.: Analysis of multidimensional spectroscopic data to monitor unfolding of proteins. Methods Enzymol. 240, 615–645 (1994)

    CAS  PubMed  Google Scholar 

  31. Woody, R.W.: Circular dichroism. Methods Enzymol. 246, 34–71 (1995)

    CAS  PubMed  Google Scholar 

  32. Plaxco, K.W., Dobson, C.M.: Time-resolved biophysical methods in the study of protein folding. Curr. Opin. Struct. Biol. 6, 630–636 (1996)

    Article  CAS  PubMed  Google Scholar 

  33. Whitmore, L., Wallace, B.A.: Protein secondary structure analyses from circular dichroism. Biopolymers 89, 392–400 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. Wallace, B.A., Janes, R.W.: Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy. IOS, Amsterdam (2009)

    Google Scholar 

  35. Pan, T., Sosnick, T.R.: Intermediates and kinetic traps in the folding of a large ribozyme revealed by circular dichroism and UV absorbance spectroscopies and catalytic activity. Nat. Struct. Biol. 4, 931–938 (1997)

    Article  CAS  PubMed  Google Scholar 

  36. Settimo, L., Donnini, S., Juffer, A.H., Woody, R.W., Marin, O.: Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin. Biopolymers 88, 373–385 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. Bovey, F.A., Hood, F.P.: Circular dichroism spectrum of poly-L-proline. Biopolymers 5, 325–326 (1967)

    Article  CAS  Google Scholar 

  38. Woody, R.W.: Circular dichroism of unordered polypeptides. Adv. Biophys. Chem. 2, 37–79 (1992)

    CAS  Google Scholar 

  39. Woody, R.W.: Circular dichroism spectrum of peptides in the polyPro II conformation. J. Am. Chem. Soc. 131, 8234–8245 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. Manning, M.C., Illangasekare, M., Woody, R.W.: Circular dichroism studies of distorted α-helices, twisted β-sheets, and β-turns. Biophys. Chem. 31, 77–86 (1988)

    Article  CAS  PubMed  Google Scholar 

  41. Provencher, S.W., Glockner, J.: Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20, 33–37 (1981)

    Article  CAS  PubMed  Google Scholar 

  42. van Stokkum, I.H., Spoelder, H.J., Bloemendal, M., van Grondelle, R., Groen, F.C.: Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal. Biochem. 191, 110–118 (1990)

    Article  PubMed  Google Scholar 

  43. Andrade, M.A., Chacon, P., Merelo, J.J., Moran, F.: Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng. 6, 383–390 (1993)

    Article  CAS  PubMed  Google Scholar 

  44. Sreerama, N., Manning, M.C., Powers, M.E., Zhang, J.-X., Goldenberg, D.P., et al.: Tyrosine, phenylalanine, and disulfide contributions to the circular dichroism of proteins: circular dichroism spectra of wild-type and mutant bovine pancreatic trypsin inhibitor. Biochemistry 38, 10814–10822 (1999)

    Article  CAS  PubMed  Google Scholar 

  45. Whitmore, L., Wallace, B.A.: DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32 (Web Server issue), W668–W673 (2004)

    Article  Google Scholar 

  46. Gratzer, W.B., Holzwarth, G.M., Doty, P.: Polarization of the ultraviolet absorption bands in a-helical polypeptides. Proc. Natl. Acad. Sci. U. S. A. 47, 1785–1791 (1961)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Rosenheck, K., Doty, P.: The far ultraviolet absorption spectra of polypeptide and protein solutions and their dependence on conformation. Proc. Natl. Acad. Sci. U. S. A. 47, 1775–1785 (1961)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Tinoco Jr., I., Woody, R.W., Bradley, D.F.: Absorption and rotation of light by helical polymers: the effect of chain length. J. Chem. Phys. 38, 1317–1325 (1963)

    Article  CAS  Google Scholar 

  49. Woody, R.W.: Improved calculation of the np* rotational strength in polypeptides. J. Chem. Phys. 49, 4797–4806 (1968)

    Article  CAS  PubMed  Google Scholar 

  50. Sreerama, N., Woody, R.W.: Computation and analysis of protein circular dichroism spectra. Methods Enzymol. 383, 318–351 (2004)

    CAS  PubMed  Google Scholar 

  51. Hirst, J.D., Colella, K., Gilbert, A.T.B.: Electronic circular dichroism of proteins from first-principles calculations. J. Phys. Chem. B 107, 11813–11819 (2003)

    Article  CAS  Google Scholar 

  52. Hirst, J.D.: Improving protein circular dichroism calculations in the far-ultraviolet through reparametrizing the amide chromophore. J. Chem. Phys. 109, 782–788 (1998)

    Article  CAS  Google Scholar 

  53. Grishina, I.B., Woody, R.W.: Contributions of tryptophan side chains to the circular dichroism of globular proteins: exciton couplets and coupled oscillators. Faraday Discuss. 99, 245–267 (1994)

    Article  CAS  PubMed  Google Scholar 

  54. Cochran, A.G., Skelton, N.J., Starovasnik, M.A.: Tryptophan zippers: stable, monomeric beta-hairpins. Proc. Natl. Acad. Sci. U. S. A. 98, 5578–5583 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Ohmae, E., Matsuo, K., Gekko, K.: Vacuum-ultraviolet circular dichroism of Escherichia coli dihydrofolate reductase: insight into the contribution of tryptophan residues. Chem. Phys. Lett. 572, 111–114 (2013)

    Article  CAS  Google Scholar 

  56. Matsuo, K., Hiramatsu, H., Gekko, K., Namatame, H., Taniguchi, M., et al.: Characterization of intermolecular structure of β2-microglobulin core fragments in amyloid fibrils by vacuum-ultraviolet circular dichroism spectroscopy and circular dichroism theory. J. Phys. Chem. B 118, 2785–2795 (2014)

    Article  CAS  PubMed  Google Scholar 

  57. Stephens, P.J.: Theory of magnetic circular dichroism. J. Chem. Phys. 52, 3489–3516 (1970)

    Article  CAS  Google Scholar 

  58. Stephens, P.J.: Magnetic circular dichroism. Ann. Rev. Phys. Chem. 25, 201–232 (1974)

    Article  CAS  Google Scholar 

  59. Thomson, A.J., Cheesman, M.R., George, S.J.: Variable-temperature magnetic circular dichroism. Methods Enzymol. 226, 199–232 (1993)

    CAS  PubMed  Google Scholar 

  60. Solomon, E.I., Pavel, E.G., Loeb, K.E., Campochiaro, C.: Magnetic circular dichroism spectroscopy as a probe of the geometric and electronic structure of nonheme ferrous enzymes. Coord. Chem. Rev. 144, 369–460 (1995)

    Article  CAS  Google Scholar 

  61. Kirk, M.L., Peariso, K.: Recent applications of MCD spectroscopy to metalloenzymes. Curr. Opin. Chem. Biol. 7, 220–227 (2003)

    Article  CAS  PubMed  Google Scholar 

  62. McMaster, J., Oganesyan, V.S.: Magnetic circular dichroism spectroscopy as a probe of the structures of the metal sites in metalloproteins. Curr. Opin. Struct. Biol. 20, 615–622 (2010)

    Article  CAS  PubMed  Google Scholar 

  63. Companion, A.L., Komarynsky, M.A.: Crystal field splitting diagrams. J. Chem. Ed. 41, 257–262 (1964)

    Article  CAS  Google Scholar 

  64. Quadrifoglio, F., Urry, D.M.: Ultraviolet rotatory properties of peptides in solution. I. Helical poly-L-alanine. J. Am. Chem. Soc. 90, 2755–2760 (1968)

    Article  CAS  PubMed  Google Scholar 

  65. Riazance, J.H., Baase, W.A., Johnson Jr., W.C., Hall, K., Cruz, P., et al.: Evidence for Z-form RNA by vacuum UV circular dichroism. Nucleic Acids Res. 13, 4983–4989 (1985)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parson, W.W. (2015). Circular Dichroism. In: Modern Optical Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46777-0_9

Download citation

Publish with us

Policies and ethics