Skip to main content

Exciton Interactions

  • Chapter
Modern Optical Spectroscopy
  • 3623 Accesses

Abstract

This chapter considers the excited states and spectroscopic properties of systems with multiple interacting chromophores, including proteins, nucleic acids, and photosynthetic antenna complexes. We make use of the expressions derived in Chap. 7 for dipole-dipole interactions, and extend the transition-monopole treatment to include mixing of intramolecular excitations with charge-transfer transitions. We show how the absorption spectrum of an oligomer depends on the geometry of the complex and the interactions of the chromophores with their surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salem, L.: Electrons in Chemical Reactions: First Principles. Wiley-Interscience, New York (1982)

    Google Scholar 

  2. Bonacic-Koutecky, V., Kouteckey, J., Michl, J.: Neutral and charged biradicals, zwitterions, funnels in S1, and proton translocation. Their role in photochemistry, photophysics, and vision. Angew. Chem. Int. Ed. Engl. 26, 170–189 (1987)

    Article  Google Scholar 

  3. Klessinger, M.: Conical intersections and the mechanism of singlet photoreactions. Angew. Chem. Int. Ed. Engl. 34, 549–551 (1995)

    Article  CAS  Google Scholar 

  4. Garavelli, M., Vreven, T., Celani, P., Bernardi, F., Robb, M.A., et al.: Photoisomerization path for a realistic retinal chromophore model: the nonatetraeniminium cation. J. Am. Chem. Soc. 120, 1285–1288 (1998)

    Article  CAS  Google Scholar 

  5. Toniolo, A., Granucci, G., Martínez, T.J.: Conical intersections in solution: a QM/MM study using floating occupation semiempirical configuration interaction wave functions. J. Phys. Chem. A 107, 3822–3830 (2003)

    Article  CAS  Google Scholar 

  6. Toniolo, A., Olsen, S., Manohar, L., Martínez, T.J.: Conical intersection dynamics in solution: the chromophore of green fluorescent protein. Farad. Disc. 127, 149–163 (2004)

    Article  CAS  Google Scholar 

  7. Martin, M.E., Negri, F., Olivucci, M.: Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution. J. Am. Chem. Soc. 126, 5452–5464 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Tinoco, I., Jr.: Hypochromism in polynucleotides. J. Am. Chem. Soc. 82, 4785–4790 (Erratum J. Am. Chem. Soc. 4784, 5047 (1961)) (1961)

    Google Scholar 

  9. Tinoco Jr., I.: Theoretical aspects of optical activity part two: polymers. Adv. Chem. Phys. 4, 113–160 (1962)

    Google Scholar 

  10. Scherz, A., Parson, W.: Oligomers of bacteriochlorophyll and bacteriopheophytin with spectroscopic properties resembling those found in photosynthetic bacteria. Biochim. Biophys. Acta 766, 653–665 (1984)

    Article  CAS  Google Scholar 

  11. Scherz, A., Parson, W.: Exciton interactions of dimers of bacteriochlorophyll and related molecules. Biochim. Biophys. Acta 766, 666–678 (1984)

    Article  CAS  Google Scholar 

  12. Warshel, A., Parson, W.W.: Spectroscopic properties of photosynthetic reaction centers. 1. Theory. J. Am. Chem. Soc. 109, 6143–6152 (1987)

    Article  CAS  Google Scholar 

  13. Alden, R.G., Johnson, E., Nagarajan, V., Parson, W.W.: Calculations of spectroscopic properties of the LH2 bacteriochlorophyll-protein antenna complex from Rhodopseudomonas sphaeroides. J. Phys. Chem. B 101, 4667–4680 (1997)

    Article  CAS  Google Scholar 

  14. Murrell, J.N., Tanaka, J.: The theory of the electronic spectra of aromatic hydrocarbon dimers. Mol. Phys. 7, 363–380 (1964)

    Article  CAS  Google Scholar 

  15. Lathrop, E.J.P., Friesner, R.A.: Simulation of optical spectra from the reaction center of Rhodobacter sphaeroides. Effects of an internal charge-separated state of the special pair. J. Phys. Chem. 98, 3050–3055 (1994)

    Article  CAS  Google Scholar 

  16. Renger, T.: Theory of optical spectra involving charge transfer states: dynamic localization predicts a temperature-dependent optical band shift. Phys. Rev. Lett. 93, Art. 188101 (2004)

    Google Scholar 

  17. Parson, W.W., Warshel, A.: Spectroscopic properties of photosynthetic reaction centers. 2. Application of the theory to Rhodopseudomonas viridis. J. Am. Chem. Soc. 109, 6152–6163 (1987)

    Article  CAS  Google Scholar 

  18. Zhou, H., Boxer, S.G.: Charge resonance effects on electronic absorption line shapes: application to the heterodimer absorption of bacterial photosynthetic reaction centers. J. Phys. Chem. B 101, 5759–5766 (1997)

    Article  CAS  Google Scholar 

  19. Zhou, H., Boxer, S.G.: Probing excited-state electron transfer by resonance Stark spectroscopy. 1. Experimental results for photosynthetic reaction centers. J. Phys. Chem. B 102, 9139–9147 (1998)

    Article  CAS  Google Scholar 

  20. Zhou, H., Boxer, S.G.: Probing excited-state electron transfer by resonance Stark spectroscopy. 2. Theory and application. J. Phys. Chem. B 102, 9148–9160 (1998)

    Article  CAS  Google Scholar 

  21. Lösche, M., Feher, G., Okamura, M.Y.: The Stark effect in reaction centers from Rhodobacter sphaeroides R-26 and Rhodopseudomonas viridis. Proc. Natl. Acad. Sci. USA 84, 7537–7541 (1987)

    Article  PubMed Central  PubMed  Google Scholar 

  22. Simpson, W.T., Peterson, D.L.: Coupling strength for resonance force transfer of electronic energy in van der Waals solids. J. Chem. Phys. 26, 588–593 (1957)

    Article  CAS  Google Scholar 

  23. Förster, T.: Delocalized excitation and excitation transfer. In: Sinanoglu, O. (ed.) Modern Quantum Chemistry, Pt. III, pp. 93–137. Academic, New York (1965)

    Google Scholar 

  24. Renger, T., May, V.: Multiple exciton effects in molecular aggregates: application to a photosynthetic antenna complex. Phys. Rev. Lett. 78, 3406–3409 (1997)

    Article  CAS  Google Scholar 

  25. Renger, T., Marcus, R.A.: On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: an estimation of the spectral density and a theory for the calculation of optical spectra. J. Chem. Phys. 116, 9997–10019 (2002)

    Article  CAS  Google Scholar 

  26. Renger, T., Trostmann, I., Theiss, C., Madjet, M.E., Richter, M., et al.: Refinement of a structural model of a pigment-protein complex by accurate optical line shape theory and experiments. J. Phys. Chem. B 111, 10487–10501 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Dinh, T.-C., Renger, T.: Towards an exact theory of linear absorbance and circular dichroism of pigment-protein complexes: importance of non-secular contributions. J. Chem. Phys. 142, 034104 (2015)

    Article  PubMed  Google Scholar 

  28. Friesner, R.A.: Green functions and optical line shapes of a general 2-level system in the strong electronic coupling limit. J. Chem. Phys. 76, 2129–2135 (1982)

    Article  CAS  Google Scholar 

  29. Lagos, R.E., Friesner, R.A.: Calculation of optical line shapes for generalized multilevel systems. J. Chem. Phys. 81, 5899–5905 (1984)

    Article  Google Scholar 

  30. McDermott, G., Prince, S.M., Freer, A.A., Hawthornthwaite-Lawless, A.M., Papiz, M.Z., et al.: Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517–521 (1995)

    Article  CAS  Google Scholar 

  31. Koepke, J., Hu, X.C., Muenke, C., Schulten, K., Michel, H.: The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4, 581–597 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. Pearlstein, R.M.: Theoretical interpretation of antenna spectra. In: Scheer, H. (ed.) Chlorophylls, pp. 1047–1078. CRC Press, Boca Raton, FL (1991)

    Google Scholar 

  33. van Amerongen, H., Valkunas, L., van Grondelle, R.: Photosynthetic Excitons. World Scientific, Singapore (2000)

    Book  Google Scholar 

  34. van Oijen, A.M., Ketelaars, M., Kohler, J., Aartsma, T.J., Schmidt, J.: Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 285, 400–402 (1999)

    Article  PubMed  Google Scholar 

  35. van Oijen, A.M., Ketelaars, M., Kohler, J., Aartsma, T.J., Schmidt, J.: Spectroscopy of individual LH2 complexes of Rhodopseudomonas acidophila: localized excitations in the B800 band. Chem. Phys. 247, 53–60 (1999)

    Article  Google Scholar 

  36. van Oijen, A.M., Ketelaars, M., Kohler, J., Aartsma, T.J., Schmidt, J.: Spectroscopy of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila: diagonal disorder, intercomplex heterogeneity, spectral diffusion, and energy transfer in the B800 band. Biophys. J. 78, 1570–1577 (2000)

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ketelaars, M., van Oijen, A.M., Matsushita, M., Kohler, J., Schmidt, J., et al.: Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila I. Experiments and Monte Carlo simulations. Biophys. J. 80, 1591–1603 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kohler, J., van Oijen, A.M., Ketelaars, M., Hofmann, C., Matsushita, M., et al.: Optical spectroscopy of individual photosynthetic pigment protein complexes. Int. J. Mod. Phys. B 15, 3633–3636 (2001)

    Article  CAS  Google Scholar 

  39. Matsushita, M., Ketelaars, M., van Oijen, A.M., Kohler, J., Aartsma, T.J., et al.: Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila II. Exciton states of an elliptically deformed ring aggregate. Biophys. J. 80, 1604–1614 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hofmann, C., Ketelaars, M., Matsushita, M., Michel, H., Aartsma, T.J., et al.: Single-molecule study of the electronic couplings in a circular array of molecules: light-harvesting-2 complex of Rhodospirillum molischianum. Phys. Rev. Lett. 90, 013004 (2003)

    Article  PubMed  Google Scholar 

  41. Hofmann, C., Aartsma, T.J., Kohler, J.: Energetic disorder and the B850-exciton states of individual light-harvesting 2 complexes from Rhodopseudomonas acidophila. Chem. Phys. Lett. 395, 373–378 (2004)

    Article  CAS  Google Scholar 

  42. Ketelaars, M., Segura, J.M., Oellerich, S., de Ruijter, W.P.F., Magis, G., et al.: Probing the electronic structure and conformational flexibility of individual light-harvesting 3 complexes by optical single-molecule spectroscopy. J. Phys. Chem. B 110, 18710–18717 (2006)

    Article  CAS  PubMed  Google Scholar 

  43. Nagarajan, V., Alden, R.G., Williams, J.C., Parson, W.W.: Ultrafast exciton relaxation in the B850 antenna complex of Rhodobacter sphaeroides. Proc. Natl. Acad. Sci. USA 93, 13774–13779 (1996)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Nagarajan, V., Johnson, E., Williams, J.C., Parson, W.W.: Femtosecond pump-probe spectroscopy of the B850 antenna complex of Rhodobacter sphaeroides at room temperature. J. Phys. Chem. B 103, 2297–2309 (1999)

    Article  CAS  Google Scholar 

  45. Wu, H.-M., Reddy, N.R.S., Small, G.J.: Direct observation and hole burning of the lowest exciton level (B870) of the LH2 antenna complex of Rhodopseudomonas acidophila (strain 10050). J. Phys. Chem. 101, 651–656 (1997)

    Article  CAS  Google Scholar 

  46. Jimenez, R., Dikshit, S.N., Bradforth, S.E., Fleming, G.R.: Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides. J. Phys. Chem. 100, 6825–6834 (1996)

    Article  CAS  Google Scholar 

  47. Kumble, R., Palese, S., Visschers, R.W., Dutton, P.L., Hochstrasser, R.M.: Ultrafast dynamics within the B820 subunit from the core (LH-1) antenna complex of Rs. rubrum. Chem. Phys. Lett. 261, 396–404 (1996)

    Article  CAS  Google Scholar 

  48. Kühn, O., Sundström, V.: Pump–probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: a density matrix approach. J. Chem. Phys. 107, 4154–4164 (1997)

    Article  Google Scholar 

  49. Kühn, O., Sundstrom, V., Pullerits, T.: Fluorescence depolarization dynamics in the B850 complex of purple bacteria. Chem. Phys. 275, 15–30 (2002)

    Article  Google Scholar 

  50. Meier, T., Chernyak, V., Mukamel, S.: Multiple exciton coherence sizes in photosynthetic antenna complexes viewed by pump-probe spectroscopy. J. Phys. Chem. B 101, 7332–7342 (1997)

    Article  CAS  Google Scholar 

  51. Monshouwer, R., Abrahamsson, M., van Mourik, F., van Grondelle, R.: Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J. Phys. Chem. B 101, 7241–7248 (1997)

    Article  CAS  Google Scholar 

  52. Yang, M., Agarwal, R., Fleming, G.R.: The mechanism of energy transfer in the antenna of photosynthetic purple bacteria. J. Photochem. Photobiol. A Chem. 142, 107–119 (2001)

    Article  CAS  Google Scholar 

  53. Förster, T.: Excimers. Angew. Chem. Int. Ed. Engl. 8, 333–343 (1969)

    Article  Google Scholar 

  54. Gordon, M., Ware, W.R. (eds.): The Exciplex. Academic, New York (1975)

    Google Scholar 

  55. McGlynn, S.P., Armstrong, A.T., Azumi, T.: Interaction of molecular exciton, charge resonance states, and excimer luminescence. In: Sinanoglu, O. (ed.) Modern Quantum Chemistry Part III: Action of Light and Organic Crystals, pp. 203–228. Academic, New York (1965)

    Google Scholar 

  56. Yoshihara, K., Kasuya, T., Inoue, A., Nagakura, S.: Time-resolved spectra of pyrene excimer and pyrene-dimethylaniline exciplex. Chem. Phys. Lett. 9, 469–471 (1971)

    Article  CAS  Google Scholar 

  57. Betcher-Lange, S.L., Lehrer, S.S.: Pyrene excimer fluorescence in rabbit skeletal alphaalphatropomyosin labeled with N-(1-pyrene)maleimide. A probe of sulfhydryl proximity and local chain separation. J. Biol. Chem. 253, 3757–3760 (1978)

    CAS  PubMed  Google Scholar 

  58. Pal, R., Barenholz, Y., Wagner, R.R.: Pyrene phospholipid as a biological fluorescent probe for studying fusion of virus membrane with liposomes. Biochemistry 27, 30–36 (1988)

    Article  CAS  PubMed  Google Scholar 

  59. Stegmann, T., Schoen, P., Bron, R., Wey, J., Bartoldus, I., et al.: Evaluation of viral membrane fusion assays. Comparison of the octadecylrhodamine dequenching assay with the pyrene excimer assay. Biochemistry 32, 11330–11337 (1993)

    Article  CAS  PubMed  Google Scholar 

  60. Jung, K., Jung, H., Kaback, H.R.: Dynamics of lactose permease of Escherichia coli determined by site-directed fluorescence labeling. Biochemistry 33, 3980–3985 (1994)

    Article  CAS  PubMed  Google Scholar 

  61. Sahoo, D., Narayanaswami, V., Kay, C.M., Ryan, R.O.: Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III. Biochemistry 39, 6594–6601 (2000)

    Article  CAS  PubMed  Google Scholar 

  62. Liu, W., Chen, Y., Watrob, H., Bartlett, S.G., Jen-Jacobson, L., et al.: N-termini of EcoRI restriction endonuclease dimer are in close proximity on the protein surface. Biochemistry 37, 15457–15465 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parson, W.W. (2015). Exciton Interactions. In: Modern Optical Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46777-0_8

Download citation

Publish with us

Policies and ethics