Skip to main content
  • 3714 Accesses

Abstract

We have seen that light can excite molecules from their ground states to states with higher energies and can stimulate downward transitions from excited states to the ground state. But excited molecules also decay to the ground state even when the light intensity is zero. The extra energy of the excited molecule can be radiated as fluorescence, transferred to another molecule, or dissipated to the surroundings as heat. In this chapter we consider fluorescence. We discuss the Einstein coefficients, Stokes shifts, the Strickler-Berg equation and other relationships between absorption and fluorescence, fluorescence lifetimes and yields, fluorescent probes and tags for macromolecules, photobleaching, fluorescence anisotropy, single-molecule fluorescence measurements, and high-resolution fluorescence microscopy. This chapter also examines the quantum theory of absorption and emission, introduces creation and annihilation operators, and develops expressions for the rate of intermolecular electron transfer, the main process that competes with fluorescence in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein, A.: Quantum theory of radiation. Physikal. Zeit. 18: 121–128 (1917) (Eng. transl.: van der Waerden, B.L. (ed.). Sources of Quantum Mechanics, pp. 63–67. North Holland, Amsterdam (1967)

    Google Scholar 

  2. Callis, P.R.: Molecular orbital theory of the 1Lb and 1La states of indole. J. Chem. Phys. 95, 4230–4240 (1991)

    CAS  Google Scholar 

  3. Callis, P.R.: 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Meth. Enzymol. 278, 113–150 (1997)

    CAS  PubMed  Google Scholar 

  4. Vivian, J.T., Callis, P.R.: Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 80, 2093–2109 (2001)

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Gafni, A., DeToma, R.P., Manrow, R.E., Brand, L.: Nanosecond decay studies of a fluorescence probe bound to apomyoglobin. Biophys. J. 17, 155–168 (1977)

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Badea, M.G., Brand, L.: Time-resolved fluorescence measurements. Meth. Enzymol. 61, 378–425 (1979)

    CAS  PubMed  Google Scholar 

  7. Pierce, D.W., Boxer, S.G.: Stark effect spectroscopy of tryptophan. Biophys. J. 68, 1583–1591 (1995)

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Lakowicz, J.R.: On spectral relaxation in proteins. Photochem. Photobiol. 72, 421–437 (2000)

    CAS  PubMed  Google Scholar 

  9. Cote, M.J., Kauffman, J.F., Smith, P.G., McDonald, J.D.: Picosecond fluorescence depletion spectroscopy. 1. Theory and apparatus. J. Chem. Phys. 90, 2865–2874 (1989)

    CAS  Google Scholar 

  10. Kauffman, J.F., Cote, M.J., Smith, P.G., McDonald, J.D.: Picosecond fluorescence depletion spectroscopy. 2. Intramolecular vibrational relaxation in the excited electronic state of fluorene. J. Chem. Phys. 90, 2874–2891 (1989)

    CAS  Google Scholar 

  11. Kusba, J., Bogdanov, V., Gryczynski, I., Lakowicz, J.R.: Theory of light quenching. Effects on fluorescence polarization, intensity, and anisotropy decays. Biophys. J. 67, 2024–2040 (1994)

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Lakowicz, J.R., Gryczynski, I., Kusba, J., Bogdanov, V.: Light quenching of fluorescence. A new method to control the excited-state lifetime and orientation of fluorophores. Photochem. Photobiol. 60, 546–562 (1994)

    CAS  PubMed  Google Scholar 

  13. Zhong, Q.H., Wang, Z.H., Sun, Y., Zhu, Q.H., Kong, F.N.: Vibrational relaxation of dye molecules in solution studied by femtosecond time-resolved stimulated emission pumping fluorescence depletion. Chem. Phys. Lett. 248, 277–282 (1996)

    CAS  Google Scholar 

  14. Nagarajan, V., Parson, W.: Femtosecond fluorescence depletion anisotropy: application to the B850 antenna complex of Rhodobacter sphaeroides. J. Phys. Chem. B 104, 4010–4013 (2000)

    CAS  Google Scholar 

  15. Nakatsu, T., Ichiyama, S., Hiratake, J., Saldanha, A., Kobashi, N., et al.: Spectral difference in luciferase bioluminescence. Nature 440, 372–376 (2006)

    CAS  PubMed  Google Scholar 

  16. Birks, J.B., Dyson, D.J.: The relationship between absorption intensity and fluorescence lifetime of a molecule. Proc. Roy. Soc. Lond. Ser. A 275, 135–148 (1963)

    CAS  Google Scholar 

  17. Birks, J.B.: Photophysics of Aromatic Molecules. Wiley-Interscience, New York (1970)

    Google Scholar 

  18. Lewis, G.N., Kasha, M.: Phosphorescence in fluid media and the reverse process of singlet-triplet absorption. J. Am. Chem. Soc. 67, 994–1003 (1945)

    CAS  Google Scholar 

  19. Förster, T.: Fluoreszenz Organischer Verbindungen. Vandenhoeck & Ruprecht, Göttingen (1951)

    Google Scholar 

  20. Strickler, S.J., Berg, R.A.: Relationship between absorption intensity and fluorescence lifetime of a molecule. J. Chem. Phys. 37, 814–822 (1962)

    CAS  Google Scholar 

  21. Ross, R.T.: Radiative lifetime and thermodynamic potential of excited states. Photochem. Photobiol. 21, 401–406 (1975)

    CAS  Google Scholar 

  22. Seybold, P.G., Gouterman, M., Callis, J.B.: Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes. Photochem. Photobiol. 9, 229–242 (1969)

    CAS  PubMed  Google Scholar 

  23. van Metter, R.L., Knox, R.S.: Relation between absorption and emission spectra of molecules in solution. Chem. Phys. 12, 333–340 (1976)

    Google Scholar 

  24. Becker, M., Nagarajan, V., Parson, W.W.: Properties of the excited singlet states of bacteriochlorophyll a and bacteriopheophytin a in polar solvents. J. Am. Chem. Soc. 113, 6840–6848 (1991)

    CAS  Google Scholar 

  25. Knox, R.S., Laible, P.D., Sawicki, D.A., Talbot, M.F.J.: Does excited chlorophyll a equilibrate in solution? J. Luminescence 72, 580–581 (1997)

    Google Scholar 

  26. Hameka, H.: Advanced Quantum Chemistry. Addison-Wesley, Reading, MA (1965)

    Google Scholar 

  27. Sargent III, M., Scully, M.O., Lamb, W.E.J.: Laser Physics. Addison-Wesley, New York (1974)

    Google Scholar 

  28. Ditchburn, R.W.: Light. 3 ed. Academic, New York (1976)

    Google Scholar 

  29. Schatz, G.C., Ratner, M.A.: Quantum Mechanics in Chemistry, p. 325. Prentice-Hall, Englewood Cliffs, NJ (1993)

    Google Scholar 

  30. Lakowicz, J.R., Laczko, G., Cherek, H., Gratton, E., Limkeman, M.: Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys. J. 46, 463–477 (1984)

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York (2006)

    Google Scholar 

  32. Holzwarth, A.R.: Time-resolved fluorescence spectroscopy. Meth. Enzymol. 246, 334–362 (1995)

    CAS  PubMed  Google Scholar 

  33. Royer, C.A.: Fluorescence spectroscopy. Meth. Enzymol. 40, 65–89 (1995)

    CAS  Google Scholar 

  34. Valeur, B.: Molecular Fluorescence. Wiley-VCH, Manheim (2002)

    Google Scholar 

  35. Kasha, M.: Characterization of electronic transitions in complex molecules. Faraday Discuss. Chem. Soc. 9, 14–19 (1950)

    Google Scholar 

  36. Stern, O., Volmer, M.: The extinction period of fluorescence. Physikal. Zeit. 20, 183–188 (1919)

    CAS  Google Scholar 

  37. Eftink, M.R., Ghiron, C.A.: Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry 15, 672–680 (1976)

    CAS  PubMed  Google Scholar 

  38. Ren, J., Lew, S., Wang, Z., London, E.: Transmembrane orientation of hydrophobic α-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry 36, 10213–10220 (1997)

    CAS  PubMed  Google Scholar 

  39. Malenbaum, S.E., Collier, R.J., London, E.: Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Biochemistry 37, 17915–17922 (1998)

    CAS  PubMed  Google Scholar 

  40. Lehrer, S.S.: Solute perturbation of protein fluorescence. The quenching of the tryptophanyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10, 3254–3263 (1971)

    CAS  PubMed  Google Scholar 

  41. Beechem, J.M., Brand, L.: Time-resolved fluorescence of proteins. Annu. Rev. Biochem. 54, 43–71 (1985)

    CAS  PubMed  Google Scholar 

  42. Eftink, M.R.: Fluorescence techniques for studying protein structure. In: Schulter, C.H. (ed.) Methods in Biochemical Analysis, pp. 127–205. Wiley, New York (1991)

    Google Scholar 

  43. Millar, D.P.: Time-resolved fluorescence spectroscopy. Curr. Opin. Struct. Biol. 6, 637–642 (1996)

    CAS  PubMed  Google Scholar 

  44. Plaxco, K.W., Dobson, C.M.: Time-resolved biophysical methods in the study of protein folding. Curr. Opin. Struct. Biol. 6, 630–636 (1996)

    CAS  PubMed  Google Scholar 

  45. Royer, C.A.: Probing protein folding and conformational transitions with fluorescence. Chem. Rev. 106, 1769–1784 (2006)

    CAS  PubMed  Google Scholar 

  46. Kubelka, J., Eaton, W.A., Hofrichter, J.: Experimental tests of villin subdomain folding simulations. J. Mol. Biol. 329, 625–630 (2003)

    CAS  PubMed  Google Scholar 

  47. Kubelka, J., Henry, E.R., Cellmer, T., Hofrichter, J., Eaton, W.A.: Chemical, physical, and theoretical kinetics of an ultrafast folding protein. Proc. Natl. Acad. Sci. U.S.A. 105, 18655–18662 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Parson, W.: Competition between tryptophan fluorescence and electron transfer during unfolding of the villin headpiece. Biochemistry 53, 4503–4509 (2014)

    CAS  PubMed  Google Scholar 

  49. Cowgill, R.W.: Fluorescence and the structure of proteins. I. Effects of substituents on the fluorescence of indole and phenol compounds. Arch. Biochem. Biophys. 100, 36–44 (1963)

    CAS  PubMed  Google Scholar 

  50. Callis, P.R., Liu, T.: Quantitative predictions of fluorescence quantum yields for tryptophan in proteins. J. Phys. Chem. B 108, 4248–4259 (2004)

    CAS  Google Scholar 

  51. McMillan, A.W., Kier, B.L., Shu, I., Byrne, A., Andersen, N.H., et al.: Fluorescence of tryptophan in designed hairpin and Trp-cage miniproteins: measurements of fluorescence yields and calculations by quantum mechanical molecular dynamics simulations. J. Phys. Chem. B 117, 1790–1809 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Shastry, M.C.R., Roder, H.: Evidence for barrier-limited protein folding kinetics on the microsecond time scale. Nat. Struct. Biol. 5, 385–392 (1998)

    CAS  PubMed  Google Scholar 

  53. Meech, S.R., Philips, D., Lee, A.G.: On the nature of the fluorescent state of methylated indole derivatives. Chem. Phys. 80, 317–328 (1983)

    CAS  Google Scholar 

  54. Shinitsky, M., Goldman, R.: Fluorometric detection of histidine-trptophan complexes in peptides and proteins. Eur. J. Biochem. 3, 139–144 (1967)

    Google Scholar 

  55. Steiner, R.F., Kirby, E.P.: The interaction of the ground and excited states of indole derivatives with electron scavengers. J. Phys. Chem. 73, 4130–4135 (1969)

    CAS  PubMed  Google Scholar 

  56. Ricci, R.W., Nesta, J.M.: Inter- and intramolecular quenching of indole fluorescence by carbonyl compounds. J. Phys. Chem. 80, 974–980 (1976)

    CAS  Google Scholar 

  57. Loewenthal, R., Sancho, J., Fersht, A.R.: Fluorescence spectrum of barnase: contributions of three trptophan residues and a histidine-related pH dependence. Biochemistry 30, 6775–7669 (1991)

    CAS  PubMed  Google Scholar 

  58. Chen, Y., Barkley, M.D.: Toward understanding tryptophan fluorescence in proteins. Biochemistry 37, 9976–9982 (1998)

    CAS  PubMed  Google Scholar 

  59. Chen, Y., Liu, B., Yu, H.-T., Barkley, M.D.: The peptide bond quenches indole fluorescence. J. Am. Chem. Soc. 118, 9271–9278 (1996)

    CAS  Google Scholar 

  60. DeBeuckeleer, K., Volckaert, G., Engelborghs, Y.: Time resolved fluorescence and phosphorescence properties of the individual tryptophan residues of barnase: evidence for protein-protein interactions. Proteins 36, 42–53 (1999)

    CAS  Google Scholar 

  61. Qiu, W., Li, T., Zhang, L., Yang, Y., Kao, Y.-T., et al.: Ultrafast quenching of tryptophan fluorescence in proteins: Interresidue and intrahelical electron transfer. Chem. Phys. 350, 154–164 (2008)

    CAS  Google Scholar 

  62. Petrich, J.W., Chang, M.C., McDonald, D.B., Fleming, G.R.: On the origin of non-exponential fluorescence decay in tryptophan and its derivatives. J. Am. Chem. Soc. 105, 3824–3832 (1983)

    CAS  Google Scholar 

  63. Colucci, W.J., Tilstra, L., Sattler, M.C., Fronczek, F.R., Barkley, M.D.: Conformational studies of a constrained tryptophan derivative. Implications for the fluorescence quenching mechanism. J. Am. Chem. Soc. 112, 9182–9190 (1990)

    CAS  Google Scholar 

  64. Arnold, S., Tong, L., Sulkes, M.: Fluorescence lifetimes of substituted indoles in solution and in free jets. Evidence for intramolecular charge-transfer quenching. J. Phys. Chem. 98, 2325–2327 (1994)

    CAS  Google Scholar 

  65. Smirnov, A.V., English, D.S., Rich, R.L., Lane, J., Teyton, L., et al.: Photophysics and biological applications of 7-azaindole and its analogs. J. Phys. Chem. 101, 2758–2769 (1997)

    CAS  Google Scholar 

  66. Sillen, A., Hennecke, J., Roethlisberger, D., Glockshuber, R., Engelborghs, Y.: Fluorescence quenching in the DsbA protein from Escherichia coli: complete picture of the excited-state energy pathway and evidence for the reshuffling dynamics of the microstates of tryptophan. Protein Sci. 37, 253–263 (1999)

    CAS  Google Scholar 

  67. Adams, P.D., Chen, Y., Ma, K., Zagorski, M.G., Sönnichsen, F.D., et al.: Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J. Am. Chem. Soc. 124, 9278–9288 (2002)

    CAS  PubMed  Google Scholar 

  68. Callis, P.R., Vivian, J.T.: Understanding the variable fluorescence quantum yield of tryptophan in proteins using QM-MM simulations. Quenching by charge transfer to the peptide backbone. Chem. Phys. Lett. 369, 409–414 (2003)

    CAS  Google Scholar 

  69. Liu, T., Callis, P.R., Hesp, B.H., de Groot, M., Buma, W.J., et al.: Ionization potentials of fluoroindoles and the origin of nonexponential tryptophan fluorescence decay in proteins. J. Am. Chem. Soc. 127, 4104–4113 (2005)

    CAS  PubMed  Google Scholar 

  70. Doose, S., Neuweiler, H., Sauer, M.: Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. Chemphyschem. 10, 1389–1398 (2009)

    CAS  PubMed  Google Scholar 

  71. Schlessinger, S.: The effect of amino acid analogues on alkaline phosphatase formation in Escherichia coli K-12. J. Biol. Chem. 243, 3877–3883 (1968)

    Google Scholar 

  72. Ross, J.B.A., Szabo, A.G., Hogue, C.W.V.: Enhancement of protein spectra with tryptophan analogs: fluorescence spectroscopy of protein-protein and protein-nucleic interactions. Meth. Enzymol. 278, 151–190 (1997)

    CAS  PubMed  Google Scholar 

  73. Broos, J., Maddalena, F., Hesp, B.H.: In vivo synthesized proteins with monoexponential fluorescence decay kinetics. J. Am. Chem. Soc. 126, 22–23 (2004)

    CAS  PubMed  Google Scholar 

  74. Bronskill, P.M., Wong, J.T.: Suppression of fluorescence of tryptophan residues in proteins by replacement with 4-fluorotryptophan. Biochem. J. 249, 305–308 (1988)

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Yu, H.-T., Colucci, W.J., McLaughlin, M.L., Barkley, M.D.: Fluorescence quenching in indoles by excited-state proton transfer. J. Am. Chem. Soc. 114, 8449–8454 (1992)

    CAS  Google Scholar 

  76. Feitelson, J.: On the mechanism of fluorescence quenching. Tyrosine and similar compounds. J. Phys. Chem. 68, 391–397 (1964)

    CAS  Google Scholar 

  77. Cowgill, R.W.: Fluorescence and protein structure. X. Reappraisal of solvent and structural effects. Biochim. Biophys. Acta 133, 6–18 (1967)

    CAS  PubMed  Google Scholar 

  78. Tournon, J.E., Kuntz, E., El-Bayoumi, M.A.: Fluorescence quenching in phenylalanine and model compounds. Photochem. Photobiol. 16, 425–433 (1972)

    CAS  PubMed  Google Scholar 

  79. Laws, W.R., Ross, J.B.A., Wyssbrod, H.R., Beechem, J.M., Brand, L., et al.: Time-resolved fluorescence and 1H NMR studies of tyrosine and tyrosine analogs: correlation of NMR-determined rotamer populations and fluorescence kinetics. Biochemistry 25, 599–607 (1986)

    CAS  PubMed  Google Scholar 

  80. Willis, K.J., Szabo, A.G.: Fluorescence decay kinetics of tyrosinate and tyrosine hydrogen-bonded complexes. J. Phys. Chem. 95, 1585–1589 (1991)

    CAS  Google Scholar 

  81. Ross, J.B.A., Laws, W.R., Rousslang, K.W., Wyssbrod, H.R.: Tyrosine fluorescence and phosphorescence from proteins and peptides. In: Lakowicz, J.R. (ed.) Topics in Fluorescence Spectroscopy, pp. 1–63. Plenum, New York (1992)

    Google Scholar 

  82. Dietze, E.C., Wang, R.W., Lu, A.Y., Atkins, W.M.: Ligand effects on the fluorescence properties of tyrosine 9 in alpha 1-1 glutathione S-transferase. Biochemistry 35, 6745–6753 (1996)

    CAS  PubMed  Google Scholar 

  83. Mrozek, J., Rzeska, A., Guzow, K., Karolczak, J., Wiczk, W.: Influence of alkyl group on amide nitrogen atom on fluorescence quenching of tyrosine amide and N-acetyltyrosine amide. Biophys. Chem. 111, 105–113 (2004)

    CAS  PubMed  Google Scholar 

  84. van den Berg, P.A., van Hoek, A., Walentas, C.D., Perham, R.N., Visser, A.J.: Flavin fluorescence dynamics and photoinduced electron transfer in Escherichia coli glutathione reductase. Biophys. J. 74, 2046–2058 (1998)

    PubMed Central  PubMed  Google Scholar 

  85. van den Berg, P.A.W., van Hoek, A., Visser, A.J.W.G.: Evidence for a novel mechanism of time-resolved flavin fluorescence depolarization in glutathione reductase. Biophys. J. 87, 2577–2586 (2004)

    PubMed Central  PubMed  Google Scholar 

  86. Mataga, N., Chosrowjan, H., Shibata, Y., Tanaka, F., Nishina, Y., et al.: Dynamics and mechanisms of ultrafast fluorescence quenching reactions of flavin chromophores in protein nanospace. J. Phys. Chem. B 104, 10667–10677 (2000)

    CAS  Google Scholar 

  87. Mataga, N., Chosrowjan, H., Taniguchi, S., Tanaka, F., Kido, N., et al.: Femtosecond fluorescence dynamics of flavoproteins: comparative studies on flavodoxin, its site-directed mutants, and riboflavin binding protein regarding ultrafast electron transfer in protein nanospaces. J. Phys. Chem. B 106, 8917–8920 (2002)

    CAS  Google Scholar 

  88. Callis, P.R., Liu, T.Q.: Short range photoinduced electron transfer in proteins: QM-MM simulations of tryptophan and flavin fluorescence quenching in proteins. Chem. Phys. 326, 230–239 (2006)

    CAS  Google Scholar 

  89. Merkley, E.D., Daggett, V., Parson, W.: A temperature-dependent conformational change of NADH oxidase from Thermus thermophilus HB8. Proteins: Struct. Funct. Bioinform. 80, 546–555 (2011)

    Google Scholar 

  90. Marcus, R.A.: On the theory of oxidation-reduction reactions involving electron transfer I. J. Chem. Phys. 24, 966–978 (1956)

    CAS  Google Scholar 

  91. Marcus, R.A.: Theory of oxidation-reduction reactions involving electron transfer. Part 4. A statistical-mechanical basis for treating contributions from the solvent, ligands and inert salt. Disc. Faraday Soc. 29, 21–31 (1960)

    Google Scholar 

  92. Marcus, R.A.: Electron transfer reactions in chemistry. Theory and experiment. In: Bendall, D.S. (ed.) Protein Electron Transfer, pp. 249–272. BIOS Scientific Publishers, Oxford (1996)

    Google Scholar 

  93. Miller, J.R., Calcaterra, L.T., Closs, G.L.: Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc. 106, 3047–3049 (1984)

    CAS  Google Scholar 

  94. Gould, I.R., Ege, D., Mattes, S.L., Farid, S.: Return electron transfer within geminate radical pairs. Observation of the Marcus inverted region. J. Am. Chem. Soc. 109, 3794–3796 (1987)

    CAS  Google Scholar 

  95. Mataga, N., Chosrowjan, H., Shibata, Y., Yoshida, N., Osuka, A., et al.: First unequivocal observation of the whole bell-shaped energy gap law in intramolecular charge separation from S2 excited state of directly linked porphyrin-imide dyads and its solvent-polarity dependencies. J. Am. Chem. Soc. 123, 12422–12423 (2001)

    CAS  PubMed  Google Scholar 

  96. Rehm, D., Weller, A.: Kinetics of fluorescence quenching by electron and H-atom transfer. Isr. J. Chem. 8, 259–271 (1970)

    CAS  Google Scholar 

  97. Farid, S., Dinnocenzo, J.P., Merkel, P.B., Young, R.H., Shukla, D., et al.: Reexamination of the Rehm-Weller data set reveals electron transfer quenching that follows a Sandros-Boltzmann dependence on the free energy. J. Am. Chem. Soc. 133, 11580–11587 (2011)

    CAS  PubMed  Google Scholar 

  98. Callis, P.R., Petrenko, A., Muino, P.L., Tusell, J.R.: Ab initio prediction of tryptophan fluorescence quenching by protein electric field enabled electron transfer. J. Phys. Chem. B 111, 10335–10339 (2007)

    CAS  PubMed  Google Scholar 

  99. Tusell, J.R., Callis, P.R.: Simulations of tryptophan fluorescence dynamics during folding of the villin headpiece. J. Phys. Chem. B 116, 2586–2594 (2012)

    CAS  PubMed  Google Scholar 

  100. Warshel, A., Chu, Z.-T., Parson, W.W.: Dispersed-polaron simulations of electron transfer in photosynthetic reaction centers. Science 246, 112–116 (1989)

    CAS  PubMed  Google Scholar 

  101. Moser, C.C., Dutton, P.L.: Engineering protein structure for electron transfer function in photosynthetic reaction centers. Biochim. Biophys. Acta 1101, 171–176 (1992)

    CAS  PubMed  Google Scholar 

  102. Weber, G., Daniel, E.: Cooperative effects in binding by bovine serum albumin. II. The binding of 1-anilino-8-naphthalenesulfonate. Polarization of the ligand fluorescence and quenching of protein fluorescence. Biochemistry 5, 1900–1907 (1966)

    CAS  PubMed  Google Scholar 

  103. Brand, L., Gohlke, J.R.: Fluorescence probes for structure. Annu. Rev. Biochem. 41, 843–868 (1972)

    CAS  PubMed  Google Scholar 

  104. Pierce, D.W., Boxer, S.G.: Dielectric relaxation in a protein matrix. J. Phys. Chem. 96, 5560–5566 (1992)

    CAS  Google Scholar 

  105. Hiratsuka, T.: Prodan fluorescence reflects differences in nucleotide-induced conformational states in the myosin head and allows continuous visualization of the ATPase reactions. Biochemistry 37, 7167–7176 (1998)

    CAS  PubMed  Google Scholar 

  106. Waggoner, A.S., Grinvald, A.: Mechanisms of rapid optical changes of potential sensitive dyes. Annu. NY Acad. Sci. 303, 217–241 (1977)

    CAS  Google Scholar 

  107. Loew, L.M., Cohen, L.B., Salzberg, B.M., Obaid, A.L., Bezanilla, F.: Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys. J. 47, 71–77 (1985)

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Fromherz, P., Dambacher, K.H., Ephardt, H., Lambacher, A., Mueller, C.O., et al.: Fluorescent dyes as probes of voltage transients in neuron membranes. Ber. Bunsen-Gesellsch. 95, 1333–1345 (1991)

    CAS  Google Scholar 

  109. Baker, B.J., Kosmidis, E.K., Vucinic, D., Falk, C.X., Cohen, L.B., et al.: Imaging brain activity with voltage- and calcium-sensitive dyes. Cell. Mol. Neurobiol. 25, 245–282 (2005)

    CAS  PubMed  Google Scholar 

  110. Haugland, R.P.: Handbook of Fluorescent Probes and Research Chemicals, 6th edn. Molecular Probes Inc., Eugene, OR (1996)

    Google Scholar 

  111. Oi, V.T., Glazer, A.N., Stryer, L.: Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J. Cell Biol. 93, 981–986 (1982)

    CAS  PubMed  Google Scholar 

  112. Kronick, M.N., Grossman, P.D.: Immunoassay techniques with fluorescent phycobiliprotein conjugates. Clin. Chem. 29, 1582–1586 (1983)

    CAS  PubMed  Google Scholar 

  113. Alivisatos, A.P., Gu, W., Larabell, C.: Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005)

    CAS  PubMed  Google Scholar 

  114. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Brus, L.E.: Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)

    CAS  Google Scholar 

  116. Brus, L.E.: Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986)

    CAS  Google Scholar 

  117. Nozik, A.J., Williams, F., Nenadovic, M.T., Rajh, T., Micic, O.I.: Size quantization in small semiconductor particles. J. Phys. Chem. 89, 397–399 (1985)

    Google Scholar 

  118. Bawendi, M.G., Wilson, W.L., Rothberg, L., Carroll, P.J., Jedju, T.M., et al.: Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys. Rev. Lett. 65, 1623–1626 (1990)

    CAS  PubMed  Google Scholar 

  119. Bruchez Jr., M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    CAS  PubMed  Google Scholar 

  120. Petryayeva, E., Algar, W.R., Medintz, I.L.: Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc. 67, 215–252 (2013)

    CAS  PubMed  Google Scholar 

  121. Shimomura, O., Johnson, F.H.: Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13, 2656–2662 (1974)

    PubMed  Google Scholar 

  122. Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G., Ward, W.W.: Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 9, 1212–1218 (1979)

    Google Scholar 

  123. Ormö, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., et al.: Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996)

    PubMed  Google Scholar 

  124. Tsien, R.Y.: The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998)

    CAS  PubMed  Google Scholar 

  125. Wachter, R.M.: The family of GFP-like proteins: structure, function, photophysics and biosensor applications. Introduction and perspective. Photochem. Photobiol. 82, 339–344 (2006)

    CAS  PubMed  Google Scholar 

  126. Chattoraj, M., King, B.A., Bublitz, G.U., Boxer, S.G.: Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc. Natl. Acad. Sci. U.S.A. 93, 8362–8367 (1996)

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Weber, W., Helms, V., McCammon, J.A., Langhoff, P.W.: Shedding light on the dark and weakly fluorescent states of green fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A. 96, 6177–6182 (1999)

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Webber, N.M., Litvinenko, K.L., Meech, S.R.: Radiationless relaxation in a synthetic analogue of the green fluorescent protein chromophore. J. Phys. Chem. B 105, 8036–8039 (2001)

    CAS  Google Scholar 

  129. Mandal, D., Tahara, T., Meech, S.R.: Excited-state dynamics in the green fluorescent protein chromophore. J. Phys. Chem. B 108, 1102–1108 (2004)

    CAS  Google Scholar 

  130. Martin, M.E., Negri, F., Olivucci, M.: Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution. J. Am. Chem. Soc. 126, 5452–5464 (2004)

    CAS  PubMed  Google Scholar 

  131. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C.: Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994)

    CAS  PubMed  Google Scholar 

  132. Miyawaki, A., Llopis, J., Heim, R., McCaffrey, J.M., Adams, J.A., et al.: Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997)

    CAS  PubMed  Google Scholar 

  133. Zhang, J., Campbell, R.E., Ting, A.Y., Tsien, R.Y.: Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002)

    CAS  PubMed  Google Scholar 

  134. Nienhaus, G.U., Wiedenmann, J.: Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. Chemphyschem. 10, 1369–1379 (2009)

    CAS  PubMed  Google Scholar 

  135. Heim, R., Tsien, R.Y.: Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996)

    CAS  PubMed  Google Scholar 

  136. Wachter, R.M., King, B.A., Heim, R., Kallio, K., Tsien, R.Y., et al.: Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. Biochemistry 36, 9759–9765 (1997)

    CAS  PubMed  Google Scholar 

  137. Miyawaki, A., Griesbeck, O., Heim, R., Tsien, R.Y.: Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl. Acad. Sci. U.S.A. 96, 2135–2140 (1999)

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A., Tsien, R.Y.: Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001)

    CAS  PubMed  Google Scholar 

  139. Rizzo, M.A., Springer, G.H., Granada, B., Piston, D.W.: An improved cyan fluorescent protein variant usefule for FRET. Nat. Biotechnol. 22, 445–449 (2004)

    CAS  PubMed  Google Scholar 

  140. Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N.G., Palmer, A.E., et al.: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004)

    CAS  PubMed  Google Scholar 

  141. Shaner, N.C., Steinbach, P.A., Tsien, R.Y.: A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005)

    CAS  PubMed  Google Scholar 

  142. Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., et al.: Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973 (1999)

    CAS  PubMed  Google Scholar 

  143. Baird, G.S., Zacharias, D.A., Tsien, R.Y.: Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. U.S.A. 97, 11984–11989 (2000)

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Baird, G.S., Zacharias, D.A., Tsien, R.Y.: Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A. 96, 11241–11246 (1999)

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Nagai, T., Sawano, A., Park, E.S., Miyawaki, A.: Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. U.S.A. 98, 3197–3202 (2001)

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Lukyanov, K.A., Fradkov, A.F., Gurskaya, N.G., Matz, M.V., Labas, Y.A., et al.: Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275, 25879–25882 (2000)

    CAS  PubMed  Google Scholar 

  147. Lippincott-Schwartz, J., Altan-Bonnet, N., Patterson, G.H.: Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol. 5, S7–S14 (2003)

    Google Scholar 

  148. Patterson, G.H., Lippincott-Schwartz, J.: Selective photolabeling of proteins using photoactivatable GFP. Methods 32, 445–450 (2004)

    CAS  PubMed  Google Scholar 

  149. Hess, S.T., Girirajan, T.P., Mason, M.D.: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006)

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Eggeling, C., Fries, J.R., Brand, L., Günther, R., Seidel, C.A.M.: Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 95, 1556–1561 (1998)

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Eggeling, C., Volkmer, A., Seidel, C.A.: Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. Chemphyschem. 6, 791–804 (2005)

    CAS  PubMed  Google Scholar 

  152. Christ, T., Kulzer, F., Bordat, P., Basché, T.: Watching the photo-oxidation of a single aromatic hydrocarbon molecule. Angew. Chem. Int. Ed. 40, 4192–4195 (2001)

    CAS  Google Scholar 

  153. Hoogenboom, J.P., van Dijk, E.M., Hernando, J., van Hulst, N.F., Garcia-Parajo, M.F.: Power-law-distributed dark states are the main pathway for photobleaching of single organic molecules. Phys. Rev. Lett. 95, 097401 (2005)

    PubMed  Google Scholar 

  154. Bilski, P., Chignell, C.F.: Optimization of a pulse laser spectrometer for the measurement of the kinetics of singlet oxygen O2 (Δ1 g) decay in solution. J. Biochem. Biophys. Methods 33, 73–80 (1996)

    CAS  PubMed  Google Scholar 

  155. Turro, N.: Modern Molecular Photochemistry. Menlo Park CA, Benjamin/Cummings (1978)

    Google Scholar 

  156. Rasnik, I., McKinney, S.A., Ha, T.: Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 3, 891–893 (2006)

    CAS  PubMed  Google Scholar 

  157. Vogelsang, J., Kasper, R., Steinhauer, C., Person, B., Heilemann, M., et al.: A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew. Chem. 47, 5465–5469 (2008)

    CAS  Google Scholar 

  158. Campos, L.A., Liu, J., Wang, X., Ramanathan, R., English, D.S.: A photoprotection strategy for microsecond-resolution single-molecule fluorescence spectroscopy. Nat. Methods 8, 143–146 (2011)

    CAS  PubMed  Google Scholar 

  159. Axelrod, D., Koppel, D.E., Schlessinger, S., Elson, E., Webb, W.W.: Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976)

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Jacobson, K., Derzko, Z., Wu, E.S., Hou, Y., Poste, G.: Measurement of the lateral mobility of cell surface components in single, living cells by fluorescence recovery after photobleaching. J. Supramol. Struct. 5, 565–576 (1976)

    PubMed  Google Scholar 

  161. Schlessinger, J., Koppel, D.E., Axelrod, D., Jacobson, K., Webb, W.W., et al.: Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc. Natl. Acad. Sci. U.S.A. 73, 2409–2413 (1976)

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Wu, E.S., Jacobson, K., Szoka, F., Portis, J.A.: Lateral diffusion of a hydrophobic peptide, N-4-nitrobenz-2-oxa-1,3-diazole gramicidin S, in phospholipid multibilayers. Biochemistry 17, 5543–5550 (1978)

    CAS  PubMed  Google Scholar 

  163. Schindler, M., Osborn, M.J., Koppel, D.E.: Lateral diffusion of lipopolysaccharide in the outer membrane of Salmonella typhimurium. Nature 285, 261–263 (1980)

    CAS  PubMed  Google Scholar 

  164. Lagerholm, B.C., Starr, T.E., Volovyk, Z.N., Thompson, N.L.: Rebinding of IgE Fabs at haptenated planar membranes: measurement by total internal reflection with fluorescence photobleaching recovery. Biochemistry 39, 2042–2051 (1999)

    Google Scholar 

  165. Thompson, N.L., Burghardt, T.P., Axelrod, D.: Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys. J. 33, 435–454 (1999)

    Google Scholar 

  166. Reits, E.A.J., Neefjes, J.J.: From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3, E145–E147 (2001)

    CAS  PubMed  Google Scholar 

  167. Klonis, N., Rug, M., Harper, I., Wickham, M., Cowman, A., et al.: Fluorescence photobleaching analysis for the study of cellular dynamics. Eur. Biophys. J. 31, 36–51 (2002)

    CAS  PubMed  Google Scholar 

  168. Houtsmuller, A.B.: Fluorescence recovery after photobleaching: application to nuclear proteins. Adv. Biochem. Eng. Biotechnol. 95, 177–199 (2005)

    CAS  PubMed  Google Scholar 

  169. Houtsmuller, A.B., Vermeulen, W.: Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching. Histochem. Cell Biol. 115, 13–21 (2001)

    CAS  PubMed  Google Scholar 

  170. Calapez, A., Pereira, H.M., Calado, A., Braga, J., Rino, J., et al.: The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive. J. Cell Biol. 159, 795–805 (2002)

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Haggie, P.M., Verkman, A.S.: Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex. J. Biol. Chem. 277, 40782–40788 (2002)

    CAS  PubMed  Google Scholar 

  172. Dayel, M.J., Hom, E.F., Verkman, A.S.: Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophys. J. 76, 2843–2851 (1999)

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Cole, N.B., Smith, C.L., Sciaky, N., Terasaki, M., Edidin, M., et al.: Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996)

    CAS  PubMed  Google Scholar 

  174. van Amerongen, H., Struve, W.S.: Polarized optical spectroscopy of chromoproteins. Meth. Enzymol. 246, 259–283 (1995)

    CAS  PubMed  Google Scholar 

  175. Jimenez, R., Dikshit, S.N., Bradforth, S.E., Fleming, G.R.: Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides. J. Phys. Chem. 100, 6825–6834 (1996)

    CAS  Google Scholar 

  176. Pullerits, T., Chachisvilis, M., Sundström, V.: Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J. Phys. Chem. 100, 10787–10792 (1996)

    CAS  Google Scholar 

  177. Nagarajan, V., Johnson, E., Williams, J.C., Parson, W.W.: Femtosecond pump-probe spectroscopy of the B850 antenna complex of Rhodobacter sphaeroides at room temperature. J. Phys. Chem. B 103, 2297–2309 (1999)

    CAS  Google Scholar 

  178. Delrow, J.J., Heath, P.J.: Fujimoto, B.S. and Schurr, J.M. Effect of temperature on DNA secondary structure in the absence and presence of 0.5 M tetramethylammonium chloride. Biopolymers 45, 503–515 (1998)

    CAS  PubMed  Google Scholar 

  179. Lakowicz, J.R., Knutson, J.R.: Hindered depolarizing rotations of perylene in lipid bilayers. Detection by lifetime-resolved fluorescence anisotropy measurements. Biochemistry 19, 905–911 (1980)

    CAS  PubMed  Google Scholar 

  180. Lakowicz, J.R., Maliwal, B.P.: Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins. J. Biol. Chem. 258, 4794–4801 (1983)

    CAS  PubMed  Google Scholar 

  181. Lakowicz, J.R., Maliwal, B.P., Cherek, H., Balter, A.: Rotational freedom of tryptophan residues in proteins and peptides. Biochemistry 22, 1741–1752 (1983)

    CAS  PubMed  Google Scholar 

  182. Hou, X., Richardson, S.J., Aguilar, M.I., Small, D.H.: Binding of amyloidogenic transthyretin to the plasma membrane alters membrane fluidity and induces neurotoxicity. Biochemistry 44, 11618–11627 (2005)

    CAS  PubMed  Google Scholar 

  183. Johnson, D.A.: C-terminus of a long alpha-neurotoxin is highly mobile when bound to the nicotinic acetylcholine receptor: a time-resolved fluorescence anisotropy approach. Biophys. Chem 116, 213–218 (2005)

    CAS  PubMed  Google Scholar 

  184. Fidy, J., Laberge, M., Kaposi, A.D., Vanderkooi, J.M.: Fluorescence line narrowing applied to the study of proteins. Biochim. Biophys. Acta 1386, 331–351 (1998)

    CAS  PubMed  Google Scholar 

  185. Nie, S., Zare, R.N.: Optical detection of single molecules. Annu. Rev. Biophys. Biomol. Struct. 26, 567–596 (1997)

    CAS  PubMed  Google Scholar 

  186. Xie, X.S., Trautman, J.K.: Optical studies of single molecules at room temperature. Annu. Rev. Phys. Chem. 49, 441–480 (1998)

    CAS  PubMed  Google Scholar 

  187. Moerner, W.E., Orrit, M.: Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999)

    CAS  PubMed  Google Scholar 

  188. Weiss, S.: Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999)

    CAS  PubMed  Google Scholar 

  189. Moerner, W.E., Kador, L.: Optical detection and spectroscopy of single molecule solids. Phys. Rev. Lett. 62, 2535–2538 (1989)

    CAS  PubMed  Google Scholar 

  190. Moerner, W.E., Basche, T.: Optical spectroscopy of individual dopant molecules in solids. Angew. Chem. 105, 537–557 (1993)

    CAS  Google Scholar 

  191. Kulzer, F., Kettner, R., Kummer, S., Basché, T.: Single molecule spectroscopy: spontaneous and light-induced frequency jumps. Pure Appl. Chem. 69, 743–748 (1997)

    CAS  Google Scholar 

  192. Goodwin, P.M., Ambrose, W.P., Keller, R.A.: Single-molecule detection in liquids by laser-induced fluorescence. Acc. Chem. Res. 29, 607–613 (1996)

    CAS  Google Scholar 

  193. Nguyen, D.C., Keller, R.A., Jett, H., Martin, J.C.: Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser-induced fluorescence. Anal. Chem. 59, 2158–2161 (1987)

    CAS  PubMed  Google Scholar 

  194. Peck, K., Stryer, L., Glazer, A.N., Mathies, R.A.: Single-molecule fluorescence detection: autocorrelation criterion and experimental realization with phycoerythrin. Proc. Natl. Acad. Sci. U.S.A. 86, 4087–4091 (1989)

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Pohl, D.W., Denk, W., Lanz, M.: Optical stethoscopy: image recording with resolution l/20. Appl. Phys. Lett. 44, 651–653 (1984)

    Google Scholar 

  196. Harootunian, A., Betzig, E., Isaacson, M., Lewis, A.: Super-resolution fluorescence near-field scanning optical microscopy. Appl. Phys. Lett. 49, 674–676 (1986)

    CAS  Google Scholar 

  197. Betzig, E., Trautman, J.K.: Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195 (1992)

    CAS  PubMed  Google Scholar 

  198. Betzig, E., Chichester, R.J., Lanni, F., Taylor, D.L.: Near-field fluorescence imaging of cytoskeletal actin. BioImaging 1, 129–135 (1993)

    CAS  Google Scholar 

  199. Kopelman, R., Weihong, T., Birnbaum, D.: Subwavelength spectroscopy, exciton supertips and mesoscopic light-matter interactions. J. Lumin. 58, 380–387 (1994)

    CAS  Google Scholar 

  200. Ha, T., Enderle, T., Ogletree, D.F., Chemla, D.S., Selvin, P.R., et al.: Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. U.S.A. 93, 6264–6268 (1996)

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Meixner, A.J., Kneppe, H.: Scanning near-field optical microscopy in cell biology and microbiology. Cell. Mol. Biol. 44, 673–688 (1998)

    CAS  PubMed  Google Scholar 

  202. Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., et al.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)

    CAS  PubMed  Google Scholar 

  203. Xie, X.S., Dunn, R.C.: Probing single molecule dynamics. Science 265, 361–364 (1994)

    CAS  PubMed  Google Scholar 

  204. Iwane, A.H., Funatsu, T., Harada, Y., Tokunaga, M., Ohara, O., et al.: Single molecular assay of individual ATP turnover by a myosin-GFP fusion protein expressed in vitro. FEBS Lett. 407, 235–238 (1997)

    CAS  PubMed  Google Scholar 

  205. Kalb, E., Engel, J., Tamm, L.K.: Binding of proteins to specific target sites in membranes measured by total internal reflection fluorescence microscopy. Biochemistry 29, 1607–1613 (1990)

    CAS  PubMed  Google Scholar 

  206. Poglitsch, C.L., Sumner, M.T., Thompson, N.L.: Binding of IgG to MoFc gamma RII purified and reconstituted into supported planar membranes as measured by total internal reflection fluorescence microscopy. Biochemistry 30, 6662–6671 (1991)

    CAS  PubMed  Google Scholar 

  207. Lieto, A.M., Cush, R.C., Thompson, N.L.: Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys. J. 85, 3294–3302 (2003)

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Lieto, A.M., Thompson, N.L.: Total internal reflection with fluorescence correlation spectroscopy: nonfluorescent competitors. Biophys. J. 87, 1268–1278 (2004)

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Sund, S.E., Swanson, J.A., Axelrod, D.: Cell membrane orientation visualized by polarized total internal reflection fluorescence. Biophys. J. 77, 2266–2283 (1999)

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Geddes, C.D., Parfenov, A., Gryczynski, I., Lakowicz, J.R.: Luminescent blinking of gold nanoparticles. Chem. Phys. Lett. 380, 269–272 (2003)

    CAS  Google Scholar 

  211. Aslan, K., Lakowicz, J.R., Geddes, C.D.: Nanogold-plasmon-resonance-based glucose sensing. Anal. Biochem. 330, 145–155 (2004)

    CAS  PubMed  Google Scholar 

  212. Stefani, F.D., Vasilev, K., Boccio, N., Stoyanova, N., Kreiter, M.: Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film. Phys. Rev. Lett. 94, Art. 023005 (2005)

    Google Scholar 

  213. Wenger, J., Lenne, P.F., Popov, E., Rigneault, H., Dintinger, J., et al.: Single molecule fluorescence in rectangular nano-apertures. Opt. Express 13, 7035–7044 (2005)

    CAS  PubMed  Google Scholar 

  214. Lakowicz, J.R.: Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 298, 1–24 (2002)

    Google Scholar 

  215. Eigen, M., Rigler, R.: Sorting single molecules. Application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. USA 91, 5740–5747 (1994)

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Nie, S., Chiu, D.T., Zare, R.N.: Probing individual molecules with confocal fluorescence microscopy. Science 266, 1018–1021 (1994)

    CAS  PubMed  Google Scholar 

  217. Nie, S., Chiu, D.T., Zare, R.N.: Real-time detection of single molecules in solution by confocal fluorescence microscopy. Angew. Chem. 67, 2849–2857 (1995)

    CAS  Google Scholar 

  218. Edman, L., Mets, U., Rigler, R.: Conformational transitions monitored for single molecules in solution. Proc. Natl. Acad. Sci. USA 93, 6710–6715 (1996)

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Macklin, J.J., Trautman, J.K., Harris, T.D., Brus, L.E.: Imaging and time-resolved spectroscopy of single molecules at an interface. Science 272, 255–258 (1996)

    CAS  Google Scholar 

  220. Conn, P.M.: Confocal Microscopy. Methods in Enzymology, vol. 307. Academic, San Diego (1999)

    Google Scholar 

  221. Yuste, R., Konnerth, A.: Imaging in Neuroscience and Development: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2000)

    Google Scholar 

  222. Yuste, R.: Fluorescence microscopy today. Nat. Methods 2, 902–904 (2005)

    CAS  PubMed  Google Scholar 

  223. Lichtman, J.W., Conchello, J.-A.: Fluorescence microscopy. Nat. Methods 2, 910–919 (2005)

    CAS  PubMed  Google Scholar 

  224. Conchello, J.-A., Lichtman, J.W.: Optical sectioning microscopy. Nat. Methods 2, 920–931 (2005)

    CAS  PubMed  Google Scholar 

  225. Helmchen, F., Denk, W.: Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005)

    CAS  PubMed  Google Scholar 

  226. Hell, S.W., Wichmann, J.: Breaking the diffraction resolution by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. 19, 780–782 (1994)

    CAS  PubMed  Google Scholar 

  227. Hell, S.W.: Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355 (2003)

    CAS  PubMed  Google Scholar 

  228. Hell, S.W., Jakobs, S., Kastrup, L.: Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A 77, 859–860 (2003)

    CAS  Google Scholar 

  229. Hofmann, M., Eggeling, C., Jakobs, S., Hell, S.W.: Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. U.S.A. 102, 17565–17569 (2005)

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Westphal, V., Hell, S.W.: Nanoscale resolution in the focal plane of an optical microscope. Phys Rev. Lett. 94, 143903 (2005)

    PubMed  Google Scholar 

  231. Hell, S.W.: Far-field optical nanoscopy. Science 316, 1153–1158 (2007)

    CAS  PubMed  Google Scholar 

  232. Lu, H.P., Xie, X.S.: Single-molecule spectral fluctuations at room temperature. Nature 385, 143–146 (1997)

    CAS  Google Scholar 

  233. Wennmalm, S., Edman, L., Rigler, R.: Conformational fluctuations in single DNA molecules. Proc. Natl. Acad. Sci. USA 94, 10641–10646 (1997)

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Michalet, X., Weiss, S., Jäger, M.: Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem. Rev. 106, 1785–1813 (2006)

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Peterman, E.J., Sosa, H., Moerner, W.E.: Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Annu. Rev. Phys. Chem. 55, 79–96 (2004)

    CAS  PubMed  Google Scholar 

  236. Ohmachi, M., Komori, Y., Iwane, A.H., Fujii, F., Jin, T., et al.: Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V. Proc. Natl. Acad. Sci. U.S.A. 109, 5294–5298 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  237. Watanabe, T.M., Yanagida, T., Iwane, A.H.: Single molecular observation of self-regulated kinesin motility. Biochemistry 49, 4654–4661 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  238. Park, H., Toprak, E., Selvin, P.R.: Single-molecule fluorescence to study molecular motors. Q. Rev. Biophys. 40, 87–111 (2007)

    CAS  PubMed  Google Scholar 

  239. Lu, H.P., Xun, L., Xie, X.S.: Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998)

    CAS  PubMed  Google Scholar 

  240. Deniz, A.A., Laurence, T.A., Beligere, G.S., Dahan, M., Martin, A.B., et al.: Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc. Natl. Acad. Sci. U.S.A. 97, 5179–5184 (2000)

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Talaga, D.S., Lau, W.L., Roder, H., Tang, J., Jia, Y., et al.: Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proc. Natl. Acad. Sci. U.S.A. 97, 13021–13026 (2000)

    CAS  PubMed Central  PubMed  Google Scholar 

  242. Zhuang, X., Bartley, L.E., Babcock, H.P., Russell, R., Ha, T., et al.: A single-molecule study of RNA catalysis and folding. Science 288, 2048–2051 (2000)

    CAS  PubMed  Google Scholar 

  243. Zhuang, X., Rief, M.: Single-molecule folding. Curr. Opin. Struct. Biol. 13, 88–97 (2003)

    CAS  PubMed  Google Scholar 

  244. Schuler, B., Lipman, E.Å., Eaton, W.A.: Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419, 743–747 (2002)

    CAS  PubMed  Google Scholar 

  245. Chung, H.S., Cellmer, T., Louis, J.M., Eaton, W.A.: Measuring ultrafast protein folding rates from photon-by-photon analysis of single molecule fluorescence trajectories. Chem. Phys. 422, 229–237 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Banerjee, P.R., Deniz, A.A.: Shedding light on protein folding landscapes by single-molecule fluorescence. Chem. Soc. Revs. 43, 1172–1188 (2014)

    CAS  Google Scholar 

  247. Takei, Y., Iizuka, R., Ueno, T., Funatsu, T.: Single-molecule observation of protein folding in symmetric GroEL-(GroES)2 complexes. J. Biol. Chem. 287, 41118–41125 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Trexler, A.J., Rhoades, E.: Function and dysfunction of a-synuclein: probing conformational changes and aggregation by single molecule fluorescence. Mol. Neurobiol. 47, 622–631 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Willets, K.A., Callis, P.R., Moerner, W.E.: Experimental and theoretical investigations of environmentally sensitive single-molecule fluorophores. J. Phys. Chem. B 108, 10465–10473 (2004)

    CAS  Google Scholar 

  250. Betzig, E., Chichester, R.J.: Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993)

    CAS  PubMed  Google Scholar 

  251. Magde, D., Elson, E., Webb, W.W.: Thermodynamic fluctuations in a reacting system - measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972)

    CAS  Google Scholar 

  252. Magde, D., Elson, E.L., Webb, W.W.: Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29–61 (1974)

    CAS  PubMed  Google Scholar 

  253. Elson, E.L., Magde, D.: Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13, 1–27 (1974)

    CAS  Google Scholar 

  254. Elson, E.: Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101, 2855–2870 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Webb, W.W.: Fluorescence correlation spectroscopy: inception, biophysical experimentations and prospectus. Appl. Optics 40, 3969–3983 (2001)

    CAS  Google Scholar 

  256. Fitzpatrick, J.A., Lillemeier, B.F.: Fluorescence correlation spectroscopy: linking molecular dynamics to biological function in vitro and in situ. Curr. Opin. Struct. Biol. 21, 650–660 (2011)

    CAS  PubMed  Google Scholar 

  257. Tian, Y., Martinez, M.M., Pappas, D.: Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications. Appl. Spectrosc. 65, 115A–124A (2011)

    CAS  PubMed  Google Scholar 

  258. Bevington, P.R., Robinson, D.K.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, Boston (2003)

    Google Scholar 

  259. Kubo, R.: The fluctuation-dissipation theorem. Rept. Progr. Theor. Phys. 29, 255–284 (1966)

    CAS  Google Scholar 

  260. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer, Berlin (1985)

    Google Scholar 

  261. Parson, W.W., Warshel, A.: A density-matrix model of photosynthetic electron transfer with microscopically estimated vibrational relaxation times. Chem. Phys. 296, 201–206 (2004)

    CAS  Google Scholar 

  262. Harp, G.D., Bern, B.J.: Time-correlation functions, memory functions, and molecular dynamics. Phys. Rev. A 2, 975–996 (1970)

    Google Scholar 

  263. Hess, S.T., Webb, W.W.: Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys. J. 83, 2300–2317 (2002)

    CAS  PubMed Central  PubMed  Google Scholar 

  264. Maiti, S., Haupts, U., Webb, W.W.: Fluorescence correlation spectroscopy: diagnostics for sparse molecules. Proc. Natl. Acad. Sci. U.S.A. 94, 11753–11757 (1997)

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Jakobs, D., Sorkalla, T., Häberlein, H.: Ligands for fluorescence correlation spectroscopy on g protein-coupled receptors. Curr. Med. Chem. 19, 4722–4730 (2012)

    CAS  PubMed  Google Scholar 

  266. Widengren, J., Rigler, R.: Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces. Cell. Mol. Biol. 44, 857–879 (1998)

    CAS  PubMed  Google Scholar 

  267. van den Berg, P.A., Widengren, J., Hink, M.A., Rigler, R., Visser, A.J.: Fluorescence correlation spectroscopy of flavins and flavoenzymes: photochemical and photophysical aspects. Spectrochim. Acta A 57, 2135–2144 (2001)

    Google Scholar 

  268. Haupts, U., Maiti, S., Schwille, P., Webb, W.W.: Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 95, 13573–13578 (1998)

    CAS  PubMed Central  PubMed  Google Scholar 

  269. Schenk, A., Ivanchenko, S., Röcker, C., Wiedenmann, J., Nienhaus, G.U.: Photodynamics of red fluorescent proteins studied by fluorescence correlation spectroscopy. Biophys. J. 86, 384–394 (2004)

    CAS  PubMed Central  PubMed  Google Scholar 

  270. Chattopadhyay, K., Saffarian, S., Elson, E.L., Frieden, C.: Measuring unfolding of proteins in the presence of denaturant using fluorescence correlation spectroscopy. Biophys. J. 88, 1413–1422 (2005)

    CAS  PubMed Central  PubMed  Google Scholar 

  271. Sanchez, S.A., Gratton, E.: Lipid-protein interactions revealed by two-photon microscopy and fluorescence correlation spectroscopy. Acc. Chem. Res. 38, 469–477 (2005)

    CAS  PubMed  Google Scholar 

  272. Felekyan, S., Sanabria, H., Kalinin, S., Kühnemuth, R., Seidel, C.A.: Analyzing Förster resonance energy transfer with fluctuation algorithms. Meth. Enzymol. 519, 39–85 (2013)

    CAS  PubMed  Google Scholar 

  273. Schwille, P., Meyer-Almes, F.J., Rigler, R.: Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 72, 1878–1886 (1997)

    CAS  PubMed Central  PubMed  Google Scholar 

  274. Kettling, U., Koltermann, A., Schwille, P., Eigen, M.: Real-time enzyme kinetics of restriction endonuclease EcoR1 monitored by dual-color fluorescence cross-correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 95, 1416–1420 (1998)

    CAS  PubMed Central  PubMed  Google Scholar 

  275. Bieschke, J., Giese, A., Schulz-Schaeffer, W., Zerr, I., Poser, S., et al.: Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. Proc. Natl. Acad. Sci. U.S.A. 97, 5468–5473 (2000)

    CAS  PubMed Central  PubMed  Google Scholar 

  276. Jahnz, M., Schwille, P.: An ultrasensitive site-specific DNA recombination assay based on dual-color fluorescence cross-correlation spectroscopy. Nucleic Acids Res. 33, e60 (2005)

    PubMed Central  PubMed  Google Scholar 

  277. Collini, M., Caccia, M., Chirico, G., Barone, F., Dogliotti, E., et al.: Two-photon fluorescence cross-correlation spectroscopy as a potential tool for high-throughput screening of DNA repair activity. Nucleic Acids Res. 33, e165 (2005)

    PubMed Central  PubMed  Google Scholar 

  278. Chen, Y., Müller, J.D., So, P.T.C., Gratton, E.: The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77, 553–567 (1999)

    CAS  PubMed Central  PubMed  Google Scholar 

  279. Huang, B., Perroud, T.D., Zare, R.N.: Photon counting histogram: one-photon excitation. Chemphyschem. 5, 1523–1531 (2004)

    CAS  PubMed  Google Scholar 

  280. Perroud, T.D., Bokoch, M.P., Zare, R.N.: Cytochrome c conformations resolved by the photon counting histogram: watching the alkaline transition with single-molecule sensitivity. Proc. Natl. Acad. Sci. U.S.A. 102, 17570–17575 (2005)

    CAS  PubMed Central  PubMed  Google Scholar 

  281. Siebrand, W.: Radiationless transitions in polyatomic molecules. I. Calculation of Franck-Condon factors. J. Chem. Phys. 46, 440–447 (1967)

    CAS  Google Scholar 

  282. Siebrand, W.: Radiationless transitions in polyatomic molecules. II. Triplet-ground-state transitions in aromatic hydrocarbons. J. Chem. Phys. 47, 2411–2422 (1967)

    CAS  Google Scholar 

  283. Henry, R.B., Siebrand, W.: Spin-orbit coupling in aromatic hydrocarbons. Analysis of nonradiative transitions between singlet and triplet states in benzene and naphthalene. J. Chem. Phys. 54, 1072–1085 (1971)

    CAS  Google Scholar 

  284. Richards, W.G., Trivedi, H.P., Cooper, D.L.: Spin-orbit Coupling in Molecules. Clarendon, Oxford (1981)

    Google Scholar 

  285. McGlynn, S.P., Azumi, T., Kinoshita, M.: Molecular Spectroscopy of the Triplet State. Prentice Hall, Englewood Cliffs, NJ (1969)

    Google Scholar 

  286. Atkins, P.W.: Molecular Quantum Mechanics, 2nd edn. Oxford Univ. Press, Oxford (1983)

    Google Scholar 

  287. Shipman, L.: Oscillator and dipole strengths for chlorophyll and related molecules. Photochem. Photobiol. 26, 287–292 (1977)

    CAS  Google Scholar 

  288. Takiff, L., Boxer, S.G.: Phosphorescence spectra of bacteriochlorophylls. J. Am. Chem. Soc. 110, 4425–4426 (1988)

    CAS  Google Scholar 

  289. Shuvalov, V.A., Parson, W.W.: Energies and kinetics of radical pairs involving bacteriochlorophyll and bacteriopheophytin in bacterial reaction centers. Proc. Natl. Acad. Sci. U.S.A. 78, 957–961 (1981)

    CAS  PubMed Central  PubMed  Google Scholar 

  290. Woodbury, N.W., Parson, W.W.: Nanosecond fluorescence from isolated reaction centers of Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta 767, 345–361 (1984)

    CAS  PubMed  Google Scholar 

  291. Booth, P.J., Crystall, B., Ahmad, I., Barber, J., Porter, G., et al.: Observation of multiple radical pair states in photosystem 2 reaction centers. Biochemistry 30, 7573–7586 (1991)

    CAS  PubMed  Google Scholar 

  292. Ogrodnik, A., Keupp, W., Volk, M., Auermeier, G., Michel-Beyerle, M.E.: Inhomogeneity of radical pair energies in photosynthetic reaction centers revealed by differences in recombination diynamics of P+HA - when detected in delayed emission and absorption. J. Phys. Chem. 98, 3432–3439 (1994)

    CAS  Google Scholar 

  293. Woodbury, N.W., Peloquin, J.M., Alden, R.G., Lin, X., Taguchi, A., Williams, J.C., et al.: Relationship between thermodynamics and mechanism during photoinduced charge separation in reaction centers from Rhodobacter sphaeroides. Biochemistry 33, 8101–8112 (1994)

    CAS  PubMed  Google Scholar 

  294. Che, A., Morrison, I.E., Pan, R., Cherry, R.J.: Restriction by ankyrin of band 3 rotational mobility in human erythrocyte membranes and reconstituted lipid vesicles. Biochemistry 36, 9588–9595 (1997)

    CAS  PubMed  Google Scholar 

  295. Jablonski, A.: Über den Mechanismus der Photolumineszenz von Farbstoffephosphoren. Z. Physik. 94, 38–46 (1935)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parson, W.W. (2015). Fluorescence. In: Modern Optical Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46777-0_5

Download citation

Publish with us

Policies and ethics