Skip to main content

Electronic Absorption

  • Chapter
Modern Optical Spectroscopy
  • 3746 Accesses

Abstract

This chapter begins with a discussion of how the oscillating electric field of light can raise a molecule to an excited electronic state. We then explore the factors that influence the wavelength, strength, linear dichroism, and shapes of molecular absorption bands. Our approach is to treat the absorbing molecule quantum mechanically with time-dependent perturbation theory, but to consider light, the perturbation, as a purely classical oscillating electric field. Because many of the phenomena associated with absorption of light can be explained well by this semiclassical approach, we defer considering the quantum nature of light until Chap. 5. Here, we develop expressions for calculating transition dipoles and dipole strengths and the rates of absorption and stimulated emission. We consider the Born-Oppenheimer approximation, Franck-Condon factors, selection rules, and effects of molecular symmetry. We also treat effects of the surroundings on electronic absorption, spectroscopic hole-burning, electronic Stark effects, charge-transfer transitions, and entropy changes in photoexcitation. The spectroscopy of aromatic amino acid side chains, porphyrins and chlorophylls receive special attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakshiev, N.G., Girin, O.P., Libov, V.S.: Relation between the observed and true absorption spectra of molecules in a condensed medium III. Determination of the influence of an effective (internal) field according to the models of Lorentz and Onsager-Bötche. Opt. Spectrosc. 14, 395–398 (1963)

    Google Scholar 

  2. Shipman, L.: Oscillator and dipole strengths for chlorophyll and related molecules. Photochem. Photobiol. 26, 287–292 (1977)

    CAS  Google Scholar 

  3. Myers, A.B., Birge, R.R.: The effect of solvent environment on molecular electronic oscillator strengths. J. Chem. Phys. 73, 5314–5321 (1980)

    CAS  Google Scholar 

  4. Alden, R.G., Johnson, E., Nagarajan, V., Parson, W.W.: Calculations of spectroscopic properties of the LH2 bacteriochlorophyll-protein antenna complex from Rhodopseudomonas sphaeroides. J. Phys. Chem. B 101, 4667–4680 (1997)

    CAS  Google Scholar 

  5. Knox, R.S., Spring, B.Q.: Dipole strengths in the chlorophylls. Photochem. Photobiol. 77, 497–501 (2003)

    CAS  PubMed  Google Scholar 

  6. Cotton, F.A.: Chemical Applications of Group Theory, 3rd edn. Wiley, New York (1990)

    Google Scholar 

  7. Harris, D.C., Bertolucci, M.D.: Symmetry and Spectroscopy. Oxford Univ. Press, New York (1978) (reprinted by Dover, 1989)

    Google Scholar 

  8. Verméglio, A., Clayton, R.K.: Orientation of chromophores in reaction centers of Rhodopseudomonas sphaeroides. Evidence for two absorption bands of the dimeric primary electron donor. Biochim. Biophys. Acta 449, 500–515 (1976)

    PubMed  Google Scholar 

  9. Abdourakhmanov, I.A., Ganago, A.O., Erokhin, Y.E., Solov’ev, A.A., Chugunov, V.A.: Orientation and linear dichroism of the reaction centers from Rhodopseudomonas sphaeroides R-26. Biochim. Biophys. Acta 546, 183–186 (1979)

    CAS  PubMed  Google Scholar 

  10. Paillotin, G., Verméglio, A., Breton, J.: Orientation of reaction center and antenna chromophores in the photosynthetic membrane of Rhodopseudomonas viridis. Biochim. Biophys. Acta 545, 249–264 (1979)

    CAS  PubMed  Google Scholar 

  11. Rafferty, C.N., Clayton, R.K.: The orientations of reaction center transition moments in the chromatophore membrane of Rhodopseudomonas sphaeroides, based on new linear dichroism and photoselection measurements. Biochim. Biophys. Acta 546, 189–206 (1979)

    CAS  PubMed  Google Scholar 

  12. Breton, J.: Orientation of the chromophores in the reaction center of Rhodopseudomonas viridis. Comparison of low-temperature linear dichroism spectra with a model derived from X-ray crystallography. Biochim. Biophys. Acta 810, 235–245 (1985)

    CAS  Google Scholar 

  13. Breton, J.: Low temperature linear dichroism study of the orientation of the pigments in reduced and oxidized reaction centers of Rps. viridis and Rb. sphaeroides. In: Breton, J., Verméglio, A. (eds.) The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, pp. 59–69. Plenum Press, New York (1988)

    Google Scholar 

  14. Cone, R.A.: Rotational diffusion of rhodopsin in the visual receptor membrane. Nat. New Biol. 236, 39–43 (1972)

    CAS  PubMed  Google Scholar 

  15. Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D.A., Engel, A., et al.: The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett. 564, 281–288 (2004)

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Junge, W., Lill, H., Engelbrecht, S.: ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biol. Sci. 22, 420–423 (1997)

    CAS  Google Scholar 

  17. Sabbert, D., Engelbrecht, S., Junge, W.: Functional and idling rotatory motion within F1-ATPase. Proc. Natl. Acad. Sci. 94, 4401–4405 (1997)

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Lim, M., Jackson, T.A., Anfinrud, P.A.: Binding of CO to myoglobin from a heme pocket docking site to form nearly linear Fe-C-O. Science 269, 962–966 (1995)

    CAS  PubMed  Google Scholar 

  19. Platt, J.R.: Molecular orbital predictions of organic spectra. J. Chem. Phys. 18, 1168–1173 (1950)

    CAS  Google Scholar 

  20. Pariser, R., Parr, R.G.: A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. I. J. Chem. Phys. 21, 466–471 (1953)

    CAS  Google Scholar 

  21. Pariser, R., Parr, R.G.: A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. II. J. Chem. Phys. 21, 767–776 (1953)

    CAS  Google Scholar 

  22. Ito, H., l'Haya, Y.: The electronic structure of naphthalene. Theor. Chim. Acta 2, 247–257 (1964)

    CAS  Google Scholar 

  23. Mataga, N., Kubota, T.: Molecular Interactions and Electronic Spectra. Dekker, New York (1970)

    Google Scholar 

  24. Pariser, R.: Theory of the electronic spectra and structure of the polyacenes and of alternant hydrocarbons. J. Chem. Phys. 24, 250–268 (1956)

    CAS  Google Scholar 

  25. Warshel, A., Karplus, M.: Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization. J. Am. Chem. Soc. 94, 5612–5625 (1972)

    CAS  Google Scholar 

  26. Gouterman, M.: Optical spectra and electronic structure of porphyrins and related rings. In: Dolphin, D. (ed.) The Porphyrins, pp. 1–165. Academic, New York (1978)

    Google Scholar 

  27. Gouterman, M.: Spectra of porphyrins. J. Mol. Spectrosc. 6, 138–163 (1961)

    CAS  Google Scholar 

  28. McHugh, A.J., Gouterman, M., Weiss, C.J.P., XXIV: Energy, oscillator strength and Zeeman splitting calculations (SCMO-CI) for phthalocyanine, porphyrins, and related ring systems. Theor. Chim. Acta 24, 346–370 (1972)

    CAS  Google Scholar 

  29. Parson, W.W., Warshel, A.: Spectroscopic properties of photosynthetic reaction centers. 2. Application of the theory to Rhodopseudomonas viridis. J. Am. Chem. Soc. 109, 6152–6163 (1987)

    CAS  Google Scholar 

  30. Warshel, A., Parson, W.W.: Spectroscopic properties of photosynthetic reaction centers. 1. Theory. J. Am. Chem. Soc. 109, 6143–6152 (1987)

    CAS  Google Scholar 

  31. Platt, J.R.: Classification of spectra of cata-condensed hydrocarbons. J. Chem. Phys. 17, 484–495 (1959)

    Google Scholar 

  32. Weber, G.: Fluorescence-polarization spectrum and electronic energy transfer in tyrosine, tryptophan and related compounds. Biochem. J. 75, 335–345 (1960)

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Song, P.-S., Kurtin, W.E.: A spectroscopic study of the polarized luminescence of indoles. J. Am. Chem. Soc. 91, 4892–4906 (1969)

    CAS  Google Scholar 

  34. Auer, H.E.: Far ultraviolet absorption and circular dichroism spectra of L-tryptophan and some derivatives. J. Am. Chem. Soc. 95, 3003–3011 (1973)

    CAS  PubMed  Google Scholar 

  35. Lami, H., Glasser, N.: Indole's solvatochromism revisited. J. Chem. Phys. 84, 597–604 (1986)

    CAS  Google Scholar 

  36. Callis, P.R.: Molecular orbital theory of the 1Lb and 1La states of indole. J. Chem. Phys. 95, 4230–4240 (1991)

    CAS  Google Scholar 

  37. Callis, P.R.: 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Meth. Enzymol. 278, 113–150 (1997)

    CAS  PubMed  Google Scholar 

  38. McHugh, A.J., Gouterman, M.: Oscillator strengths for electronic spectra of conjugated molecules from transition gradients III. Polyacenes. Theor. Chim. Acta 13, 249–258 (1969)

    CAS  Google Scholar 

  39. Chong, D.P.: Oscillator strengths for electronic spectra of conjugated molecules from transition gradients. I. Mol. Phys. 14, 275–280 (1968)

    CAS  Google Scholar 

  40. Schlessinger, J., Warshel, A.: Calculations of CD and CPL spectra as a tool for evaluation of the conformational differences between ground and excited states of chiral molecules. Chem. Phys. Lett. 28, 380–383 (1974)

    CAS  Google Scholar 

  41. Mulliken, R.S., Rieke, C.A., Orloff, D., Orloff, H.: Formulas and numerical tables for overlap integrals. J. Chem. Phys. 17, 1248–1267 (1949)

    CAS  Google Scholar 

  42. Král, M.: Optical rotatory power of complex compounds. Matrix elements of operators Del and R x Del. Collect. Czech. Chem. Commun. 35, 1939–1948 (1970)

    Google Scholar 

  43. Harada, N., Nakanishi, K.: Circular Dichroic Spectroscopy: Exciton Coupling in Organic Stereochemistry. University Science, Mill Valley, CA (1983)

    Google Scholar 

  44. Miller, J., Gerhauser, J.M., Matsen, F.A.: Quantum Chemistry Integrals and Tables. Univ. of Texas Press, Austin (1959)

    Google Scholar 

  45. Tavan, P., Schulten, K.: The low-lying electronic excitations in long polyenes: a PPP-MRD-CI study. J. Chem. Phys. 85, 6602–6609 (1986)

    CAS  Google Scholar 

  46. Chadwick, R.R., Gerrity, D.P., Hudson, B.S.: Resonance Raman spectroscopy of butadiene: demonstration of a 21Ag state below the 11Bu V state. Chem. Phys. Lett. 115, 24–28 (1985)

    CAS  Google Scholar 

  47. Koyama, Y., Rondonuwu, F.S., Fujii, R., Watanabe, Y.: Light-harvesting function of carotenoids in photosynthesis: the roles of the newly found 11Bu state. Biopolymers 74, 2–18 (2004)

    CAS  PubMed  Google Scholar 

  48. Birge, R.R.: 2-photon spectroscopy of protein-bound chromophores. Acc. Chem. Res. 19, 138–146 (1986)

    CAS  Google Scholar 

  49. Koyama, Y., Kuki, M., Andersson, P.-O., Gilbro, T.: Singlet excited states and the light-harvesting function of carotenoids in bacterial photosynthesis. Photochem. Photobiol. 63, 243–256 (1996)

    CAS  Google Scholar 

  50. Macpherson, A., Gilbro, T.: Solvent dependence of the ultrafast S2-S1 internal conversion rate of β-carotene. J. Phys. Chem. A 102, 5049–5058 (1998)

    CAS  Google Scholar 

  51. Polivka, T., Herek, J.L., Zigmantas, D., Akerlund, H.E., Sundström, V.: Direct observation of the (forbidden) S1 state in carotenoids. Proc. Natl. Acad. Sci. USA 96, 4914–4917 (1999)

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Born, M., Oppenheimer, R.: Zur Quantentheorie der Molekeln [On the quantum theory of molecules]. Ann. Phys. Lpz. 84, 457–484 (1927)

    CAS  Google Scholar 

  53. Struve, W.S.: Fundamentals of Molecular Spectroscopy. Wiley Interscience, New York (1989)

    Google Scholar 

  54. Condon, E.U.: The Franck-Condon principle and related topics. Am. J. Phys. 15, 365–374 (1947)

    CAS  Google Scholar 

  55. Manneback, C.: Computation of the intensities of vibrational spectra of electronic bands in diatomic molecules. Physica 17, 1001–1010 (1951)

    CAS  Google Scholar 

  56. Lyle, P.A., Kolaczkowski, S.V., Small, G.J.: Photochemical hole-burned spectra of protonated and deuterated reaction centers of Rhodobacter sphaeroides. J. Phys. Chem. 97, 6924–6933 (1993)

    CAS  Google Scholar 

  57. Zazubovich, V., Tibe, I., Small, G.J.: Bacteriochlorophyll a Franck-Condon factors for the S0 ⟶S1(Qy) transition. J. Phys. Chem. B 105, 12410–12417 (2001)

    CAS  Google Scholar 

  58. Sharp, T.E., Rosenstock, H.M.: Franck-Condon factors for polyatomic molecules. J. Chem. Phys. 41, 3453–3463 (1964)

    CAS  Google Scholar 

  59. Sando, G.M., Spears, K.G.: Ab initio computation of the Duschinsky mixing of vibrations and nonlinear effects. J. Phys. Chem. A 104, 5326–5333 (2001)

    Google Scholar 

  60. Sando, G.M., Spears, K.G., Hupp, J.T., Ruhoff, P.T.: Large electron transfer rate effects from the Duschinsky mixing of vibrations. J. Phys. Chem. A 105, 5317–5325 (2001)

    CAS  Google Scholar 

  61. Jankowiak, R., Small, G.J.: Hole-burning spectroscopy and relaxation dynamics of amorphous solids at low temperatures. Science 237, 618–625 (1987)

    CAS  PubMed  Google Scholar 

  62. Volker, S.: Spectral hole-burning in crystalline and amorphous organic solids. Optical relaxation processes at low temperatures. In: Funfschilling, J. (ed.) Relaxation Processes in Molecular Excited States, pp. 113–242. Kluwer Academic Publ, Dordrecht (1989)

    Google Scholar 

  63. Friedrich, J.: Hole burning spectroscopy and physics of proteins. Meth. Enzymol. 246, 226–259 (1995)

    CAS  PubMed  Google Scholar 

  64. Reddy, N.R.S., Lyle, P.A., Small, G.J.: Applications of spectral hole burning spectroscopies to antenna and reaction center complexes. Photosynth. Res. 31, 167–194 (1992)

    CAS  PubMed  Google Scholar 

  65. Reddy, N.R.S., Picorel, R., Small, G.J.: B896 and B870 components of the Rhodobacter sphaeroides antenna: a hole burning study. J. Phys. Chem. 96, 6458–6464 (1992)

    CAS  Google Scholar 

  66. Wu, H.-M., Reddy, N.R.S., Small, G.J.: Direct observation and hole burning of the lowest exciton level (B870) of the LH2 antenna complex of Rhodopseudomonas acidophila (strain 10050). J. Phys. Chem. 101, 651–656 (1997)

    CAS  Google Scholar 

  67. Small, G.J.: On the validity of the standard model for primary charge separation in the bacterial reaction center. Chem. Phys. 197, 239–257 (1995)

    CAS  Google Scholar 

  68. Johnson, E.T., Nagarajan, V., Zazubovich, V., Riley, K., Small, G.J., et al.: Effects of ionizable residues on the absorption spectrum and initial electron-transfer kinetics in the photosynthetic reaction center of Rhodopseudomonas sphaeroides. Biochemistry 42, 13673–13683 (2003)

    CAS  PubMed  Google Scholar 

  69. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., et al.: Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745 (2000)

    CAS  PubMed  Google Scholar 

  70. Stenkamp, R.E., Filipek, S., Driessen, C.A.G.G., Teller, D.C., Palczewski, K.: Crystal structure of rhodopsin: a template for cone visual pigments and other G protein-coupled receptors. Biochim. Biophys. Acta 1565, 168–182 (2002)

    CAS  PubMed  Google Scholar 

  71. Teller, D.C., Stenkamp, R.E., Palczewski, K.: Evolutionary analysis of rhodopsin and cone pigments: connecting the three-dimensional structure with spectral tuning and signal transfer. FEBS Lett. 2003, 151–159 (2003)

    Google Scholar 

  72. Kochendoerfer, G.G., Kaminaka, S., Mathies, R.A.: Ultraviolet resonance Raman examination of the light-induced protein structural changes in rhodopsin activation. Biochemistry 36, 13153–13159 (1997)

    CAS  PubMed  Google Scholar 

  73. Kochendoerfer, G.G., Lin, S.W., Sakmar, T.P., Mathies, R.A.: How color visual pigments are tuned. Trends Biol. Sci. 24, 300–305 (1999)

    CAS  Google Scholar 

  74. Ottolenghi, M., Sheves, M.: Synthetic retinals as probes for the binding site and photoreactions in rhodopsins. J. Membr. Biol. 112, 193–212 (1989)

    CAS  PubMed  Google Scholar 

  75. Aharoni, A., Ottolenghi, M., Sheves, M.: Retinal isomerization in bacteriorhodopsin is controlled by specific chromophore-protein interactions. A study with noncovalent artificial pigments. Biochemistry 40, 13310–13319 (2001)

    CAS  PubMed  Google Scholar 

  76. Nathans, J.: Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. Biochemistry 29, 9746–9752 (1990)

    CAS  PubMed  Google Scholar 

  77. Asenjo, A.B., Rim, J., Oprian, D.D.: Molecular determinants of human red/green color discrimination. Neuron 12, 1131–1138 (1994)

    CAS  PubMed  Google Scholar 

  78. Ebrey, T.G., Takahashi, Y.: Photobiology of retinal proteins. In: Coohil, T.P., Velenzo, D.P. (eds.) Photobiology for the 21st Century, pp. 101–133. Valdenmar Publ, Overland Park, KS (2001)

    Google Scholar 

  79. Kamauchi, M., Ebrey, T.G.: Visual pigments as photoreceptors. In: Spudich, J., Briggs, W. (eds.) Handbook of Photosensory Receptors, pp. 43–76. Wiley-VCH, Weinheim (2005)

    Google Scholar 

  80. Deng, H., Callender, R.H.: A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin. Biochemistry 26, 7418–7426 (1987)

    CAS  PubMed  Google Scholar 

  81. Sancar, A.: Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103, 2203–2237 (2003)

    CAS  PubMed  Google Scholar 

  82. Malhotra, K., Kim, S.T., Sancar, A.: Characterization of a medium wavelength type DNA photolyase: purification and properties of a photolyase from Bacillus firmus. Biochemistry 33, 8712–8718 (1994)

    CAS  PubMed  Google Scholar 

  83. Limantara, L., Sakamoto, S., Koyama, Y., Nagae, H.: Effects of nonpolar and polar solvents on the Qx and Qy energies of bacteriochlorophyll a and bacteriopheophytin a. Photochem. Photobiol. 65, 330–337 (1997)

    CAS  Google Scholar 

  84. Lee, F.S., Chu, Z.T., Warshel, A.: Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs. J. Comp. Chem. 14, 161–185 (1993)

    CAS  Google Scholar 

  85. Vivian, J.T., Callis, P.R.: Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 80, 2093–2109 (2001)

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Mercer, I.P., Gould, I.R., Klug, D.R.: A quantum mechanical/molecular mechanical approach to relaxation dynamics: calculation of the optical properties of solvated bacteriochlorophyll-a. J. Phys. Chem. B 103, 7720–7727 (1999)

    CAS  Google Scholar 

  87. Liptay, W.: Dipole moments of molecules in excited states and the effect of external electric fields on the optical absorption of molecules in solution. In: Sinanoglu, O. (ed.) Modern Quantum Chemistry Part III: Action of Light and Organic Crystals. Academic, New York (1965)

    Google Scholar 

  88. Liptay, W.: Electrochromism and solvatochromism. Angew. Chem. Int. Ed. Engl. 8, 177–188 (1969)

    CAS  Google Scholar 

  89. Liptay, W.: Dipole moments and polarizabilities of molecules in excited states. In: Lim, E.C. (ed.) Excited States, pp. 129–230. Academic, New York (1974)

    Google Scholar 

  90. Middendorf, T.R., Mazzola, L.T., Lao, K.Q., Steffen, M.A., Boxer, S.G.: Stark-effect (electroabsorption) spectroscopy of photosynthetic reaction centers at 1.5 K Evidence that the special pair has a large excited-state polarizability. Biochim. Biophys. 1143, 223–234 (1993)

    CAS  Google Scholar 

  91. Lao, K., Moore, L.J., Zhou, H., Boxer, S.G.: Higher-order Stark spectroscopy: polarizability of photosynthetic pigments. J. Phys. Chem. 99, 496–500 (1995)

    CAS  Google Scholar 

  92. Bublitz, G., Boxer, S.G.: Stark spectroscopy: applications in chemistry, biology and materials science. Annu. Rev. Phys. Chem. 48, 213–242 (1997)

    CAS  PubMed  Google Scholar 

  93. Boxer, S.G.: Stark realities. J. Phys. Chem. B 113, 2972–2983 (2009)

    CAS  PubMed  Google Scholar 

  94. Nagae, H. Theory of solvent effects on electronic absorption spectra of rodlike or disklike solute molecules: frequency shifts. J. Chem. Phys. 106 (1997)

    Google Scholar 

  95. Premvardhan, L.L., Buda, F., van der Horst, M.A., Lührs, D.C., Hellingwerf, K.J., et al.: Impact of photon absorption on the electronic properties of p-coumaric acid derivatives of the photoactive yellow protein chromophore. J. Phys. Chem. B 108, 5138–5148 (2004)

    CAS  Google Scholar 

  96. Premvardhan, L.L., van der Horst, M.A., Hellingwerf, K.J., van Grondelle, R.: Stark spectroscopy on photoactive yellow protein, E46Q, and a nonisomerizing derivative, probes photo-induced charge motion. Biophys. J. 84, 3226–3239 (2003)

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Premvardhan, L.L., van der Horst, M.A., Hellingwerf, K.J., van Grondelle, R.: How light-induced charge transfer accelerates the receptor-state recovery of photoactive yellow protein from its signalling state. Biophys. J. 89, L64–L66 (2005)

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Bublitz, G.U., Laidlaw, W.M., Denning, R.G., Boxer, S.G.: Effective charge transfer distances in cyanide-bridged mixed-valence transform metal complexes. J. Am. Chem. Soc. 120, 6068–6075 (1998)

    CAS  Google Scholar 

  99. Moore, L.J., Zhou, H.L., Boxer, S.G.: Excited-state electronic asymmetry of the special pair in photosynthetic reaction center mutants: absorption and Stark spectroscopy. Biochemistry 38, 11949–11960 (1999)

    CAS  PubMed  Google Scholar 

  100. Kador, L., Haarer, D., Personov, R.: Stark effect of polar and unpolar dye molecules in amorphous hosts, studied via persistent spectral hole burning. J. Chem. Phys. 86, 213–242 (1987)

    Google Scholar 

  101. Gafert, J., Friedrich, J., Vanderkooi, J.M., Fidy, J.: Structural changes and internal fields in proteins. A hole-burning Stark effect study of horseradish peroxidase. J. Phys. Chem. 99, 5223–5227 (1995)

    CAS  Google Scholar 

  102. Pierce, D.W., Boxer, S.G.: Stark effect spectroscopy of tryptophan. Biophys. J. 68, 1583–1591 (1995)

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Zhou, H., Boxer, S.G.: Probing excited-state electron transfer by resonance Stark spectroscopy. 1. Experimental results for photosynthetic reaction centers. J. Phys. Chem. B 102, 9139–9147 (1998)

    CAS  Google Scholar 

  104. Zhou, H., Boxer, S.G.: Probing excited-state electron transfer by resonance Stark spectroscopy. 2. Theory and application. J. Phys. Chem. B 102, 9148–9160 (1998)

    CAS  Google Scholar 

  105. Treynor, T.P., Andrews, S.S., Boxer, S.G.: Intervalence band Stark effect of the special pair radical cation in bacterial photosynthetic reaction centers. J. Phys. Chem. B 107, 11230–11239 (2003)

    CAS  Google Scholar 

  106. Treynor, T.P., Boxer, S.G.: A theory of intervalence band stark effects. J. Phys. Chem. A 108, 1764–1778 (2004)

    CAS  Google Scholar 

  107. Kalyanasundaram, K.: Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogs. Coord. Chem. Rev. 46, 159–244 (1982)

    CAS  Google Scholar 

  108. Dallinger, R.F., Woodruff, W.H.: Time-resolved resonance Raman study of the lowest (dπ*,3CT) excited state of tris(2,2–bipyridine)ruthenium(II). J. Am. Chem. Soc. 101, 4391–4393 (1979)

    CAS  Google Scholar 

  109. Bradley, P.G., Kress, N., Hornberger, B.A., Dallinger, R.F., Woodruff, W.H.: Vibrational spectroscopy of the electronically excited state. 5. Time-resolved resonance Raman study of tris(bipyridine)ruthenium(II) and related complexes. Definitive evidence for the “localized” MLCT state. J. Am. Chem. Soc. 103, 7441–7446 (1981)

    CAS  Google Scholar 

  110. Casper, J.V., Westmoreland, T.D., Allen, G.H., Bradley, P.G., Meyer, T.J., et al.: Molecular and electronic structure in the metal-to-ligand charge-transfer excited states of d6 transition-metal complexes in solution. J. Am. Chem. Soc. 106, 3492–3500 (1984)

    Google Scholar 

  111. Smothers, W.K., Wrighton, M.S.: Raman spectroscopy of electronic excited organometallic complexes: a comparison of the metal to 2,2'-bipyridine charge-transfer state of fac-(2,2'-bipyridine)tricarbonylhalorhenium and tris(2,2'-bipyridine)ruthenium(II). J. Am. Chem. Soc. 105, 1067–1069 (1983)

    CAS  Google Scholar 

  112. Felix, F., Ferguson, J., Güdel, J.U., Ludi, A.: The electronic spectrum of Ru(bpy)3 2+. J. Am. Chem. Soc. 102, 4096–4102 (1980)

    CAS  Google Scholar 

  113. De Armond, M.K., Myrick, M.L.: The life and times of [Ru(bpy)3]2+: localized orbitals and other strange occurrences. Acc. Chem. Res. 22, 364–370 (1989)

    Google Scholar 

  114. Malone, R.A., Kelley, D.F.: Interligand electron transfer and transition state dynamics in Ru(II)trisbipyridine. J. Chem. Phys. 95, 8970–8976 (1991)

    CAS  Google Scholar 

  115. Thompson, D.W., Ito, A., Meyer, T.J.: [Ru(bpy)3]2+* and other remarkable metal-to ligand charge transfer (MLCT) excited states. Pure and Appl. Chem. 85, 1257–1305 (2013)

    CAS  Google Scholar 

  116. Curtis, J.C., Sullivan, B.P., Meyer, T.J.: Hydrogen-bonding-induced solvatochromatism in the charge-transfer transitions of ruthenium(II) and ruthenium(III) complexes. Inorg. Chem. 22, 224–236 (1983)

    CAS  Google Scholar 

  117. Riesen, H., Krausz, E.: Stark effects in the lowest-excited 3MLCT states of [Ru(bpy-d8)2]2+ in [Zn(bpy)3](ClO4)2 (bpy = 2,2'-bipyridine). Chem. Phys. Lett. 260, 130–135 (1996)

    CAS  Google Scholar 

  118. Coe, B.J., Helliwell, M., Peers, M.K., Raftery, J., Rusanova, D., et al.: Synthesis, structures, and optical properties of ruthenium(II) complexes of the Tris(1-pyrazolyl)methane ligand. Inorg. Chem. 53, 3798–37811 (2014)

    CAS  PubMed  Google Scholar 

  119. Oh, D.H., Boxer, S.G.: Stark effect spectra of Ru(diimine)3 2+ complexes. J. Am. Chem. Soc. 111, 1130–1132 (1989)

    CAS  Google Scholar 

  120. Sykora, J., Sima, J.: Development and basic terms of photochemistry of coordination compounds. Coord. Chem. Rev. 107, 1–212 (1990)

    Google Scholar 

  121. Vogler, A., Kunkely, H.: Photoreactivity of metal-to-ligand charge transfer excited states. Coord. Chem. Rev. 177, 81–96 (1998)

    CAS  Google Scholar 

  122. Vogler, A., Kunkely, H.: Photochemistry induced by metal-to-ligand charge transfer excitation. Coord. Chem. Rev. 208, 321–329 (2000)

    CAS  Google Scholar 

  123. O'Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Google Scholar 

  124. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)

    PubMed  Google Scholar 

  125. Zhao, Y., Swierk, J.R., Megiatto Jr., J.D., Sherman, B., Youngblood, W.J., et al.: Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proc. Natl. Acad. Sci. U.S.A. 109, 15612–15616 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Alibabaei, L., Brennaman, M.K., Norris, M.R., Kalanyan, B., Song, W., et al.: Solar water splitting in a molecular photoelectrochemical cell. Proc. Natl. Acad. Sci. U.S.A. 110, 20008–20013 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Robin, M.B.: Higher Excited States of Polyatomic Molecules, vol. III. Academic, New York (1985)

    Google Scholar 

  128. Shand, N.C., Ning, C.-L., Siggel, M.R.F., Walker, I.C., Pfab, J.: One- and two-photon spectroscopy of the 3s ← n Rydberg transition of propionaldehyde (propanal). J. Chem. Soc. Faraday Trans. 93, 2883–2888 (1997)

    CAS  Google Scholar 

  129. Morisawa, Y., Ikehata, A., Higashi, N., Ozaki, Y.: Low-n Rydberg transitions of liquid ketones studied by attenuated total reflection far-ultraviolet spectroscopy. J. Phys. Chem. A 115, 562–568 (2011)

    CAS  PubMed  Google Scholar 

  130. Morisawa, Y., Yasunaga, M., Fukuda, R., Ehara, M., Ozaki, Y.: Electronic transitions in liquid amides studied by using attenuated total reflection far-ultraviolet spectroscopy and quantum chemical calculations. J. Chem. Phys. 139, 154301 (2013)

    PubMed  Google Scholar 

  131. Knox, R.S., Parson, W.W.: Entropy production and the second law in photosynthesis. Biochim. Biophys. Acta 1767, 1189–1193 (2007)

    CAS  PubMed  Google Scholar 

  132. Yourgrau, W., van der Merwe, A., Raw, G.: Treatise on Irreversible and Statistical Thermodynamics. Macmillan, New York (1966)

    Google Scholar 

  133. Kittel, C., Kroemer, H.: Thermal Physics. W.H. Freeman, San Francisco (1980)

    Google Scholar 

  134. Engel, T., Reid, P.: Thermodynamics, Statistical Thermodynamics, and Kinetics. Benjamin Cummings, San Francisco (2006)

    Google Scholar 

  135. Goldstein, S., Lebowitz, J.L.: On the (Boltzmann) entropy of non-equilibrium systems. Physica D 193, 53–66 (2004)

    Google Scholar 

  136. Weinstein, M.A.: Thermodynamics of radiative emission processes. Phys. Rev. 119, 499–501 (1960)

    CAS  Google Scholar 

  137. Knox, R.S.: Conversion of light into free energy. In: Gerischer, H., Katz, J.J. (eds.) Light Induced Charge Separation at Interfaces in Biology and Chemistry, pp. 45–59. Verlag Chemie, Weinheim (1979)

    Google Scholar 

  138. Duysens, L.N.M.: The path of light in photosynthesis. Brookhaven Symp. Biol. 11, 18–25 (1958)

    Google Scholar 

  139. Parson, W.W.: Thermodynamics of the primary reactions of photosynthesis. Photochem. Photobiol. 28, 389–393 (1978)

    CAS  Google Scholar 

  140. Ross, R.T.: Thermodynamic limitations on the conversion of radiant energy into work. J. Chem. Phys. 45, 1–7 (1966)

    CAS  Google Scholar 

  141. Planck, M.: The Theory of Heat Radiation (Engl transl by M. Masius), 2nd edn. Dover, New York (1959)

    Google Scholar 

  142. Slater, J.C.: Introduction to Chemical Physics. McGraw-Hill, New York (1939)

    Google Scholar 

  143. Rosen, P.: Entropy of radiation. Phys. Rev. 96, 555 (1954)

    CAS  Google Scholar 

  144. Ore, A.: Entropy of radiation. Phys. Rev. 98, 887–888 (1955)

    CAS  Google Scholar 

  145. McQuarrie, D.A.: Statistical Mechanics. University Science, Sausalito, CA (2000)

    Google Scholar 

  146. Zhang, D., Closs, G.L., Chung, D.D., Norris, J.R.: Free energy and entropy changes in vertical and nonvertical triplet energy transfer processes between rigid and nonrigid molecules. A laser photolysis study. J. Am. Chem. Soc. 115, 3670–3673 (1993)

    CAS  Google Scholar 

  147. Merkel, P.B., Dinnocenzo, J.P.: Thermodynamic energies of donor and acceptor triplet states. J. Photochem. Photobiol. A Chem. 193, 110–121 (2008)

    CAS  Google Scholar 

  148. Connolly, J.S., Samuel, E.B., Franzen, A.F.: Effects of solvent on the fluorescence properties of bacteriochlorophyll a. Photochem. Photobiol. 36, 565–574 (1982)

    CAS  Google Scholar 

  149. Warshel, A., Lappicirella, V.A.: Calculations of ground- and excited-state potential surfaces for conjugated heteroatomic molecules. J. Am. Chem. Soc. 103, 4664–4673 (1981)

    CAS  Google Scholar 

  150. Slater, L.S., Callis, P.R.: Molecular orbital theory of the 1La and 1Lb states of indole. 2. An ab initio study. J. Phys. Chem. 99, 4230–4240 (1995)

    Google Scholar 

  151. Stavenga, D.G., Smits, R.P., Hoenders, B.J.: Simple exponential functions describing the absorbance bands of visual pigment spectra. Vision Res. 33, 1011–1017 (1993)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parson, W.W. (2015). Electronic Absorption. In: Modern Optical Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46777-0_4

Download citation

Publish with us

Policies and ethics