Advertisement

Wave Atom-Based Perceptual Image Hashing Against Content-Preserving and Content-Altering Attacks

  • Fang LiuEmail author
  • Lee-Ming Cheng
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8948)

Abstract

This paper presents a perceptual image hashing algorithm based on wave atom transform, which can distinguish maliciously attacked images from content-preserving ones. Wave atoms are employed due to their significantly sparser expansion and better feature extraction capability than traditional transforms, like discrete cosine transform (DCT) and discrete wavelet transform (DWT). Thus, it is expected to show better performance in image hashing. Moreover, a preprocessing method based on Fourier-Mellin transform is employed to keep the proposed scheme against geometric attacks. In addition, a randomized pixel modulation based on RC4 is performed to ensure the security. According to the experimental results, the proposed scheme is sensitive to content-altering attacks with the resiliency of content-preserving operations, including image compression, noising, filtering, and rotation. Moreover, compared with some other image hashing algorithms, the proposed approach also achieves better performance even in the aspect of robustness, which is more important in some image hashing application, for example image database retrieval or digital watermarking.

Keywords

Image hashing Authentication Robustness Wave atom transform 

References

  1. 1.
    Schneier, B.: Applied Cryptography. John Wiley & Sons Inc, USA (1996)Google Scholar
  2. 2.
    Bhattacharjee, S., Kutter, M.: Compression tolerant image authentication. In: Proceedings of International Conference on Image Processing, vol. 4(7), pp. 435–438, Chicago, USA (1998)Google Scholar
  3. 3.
    Venkatesan, R., Koon, S.M., Jakubowski, M.H., Moulin, P.: Robust image hashing. In: Proceedings of IEEE International Conference Image Processing, vol. 3, pp. 664–666, Vancouver, BC, Canada (2000)Google Scholar
  4. 4.
    Lu, C.S., Liao, H.Y.M.: Structural digital signature for image authentication. IEEE Trans. Multimedia 5, 161–173 (2003)CrossRefGoogle Scholar
  5. 5.
    Monga, V., Evans, B.L.: Robust perceptual image hashing using feature points. IEEE Int. Conf. Image Process. 1, 677–680 (2004)Google Scholar
  6. 6.
    Monga, V., Evans, B.L.: Perceptual image hashing via feature points: performance evaluation and tradeoffs. IEEE Trans. Image Process. 15(11), 3452–3465 (2006)CrossRefGoogle Scholar
  7. 7.
    Ahmed, F., Siyal, M.Y., Vali, U.A.: A secure and robust hash-based scheme for image authentication. Signal Process. 90(5), 1456–1470 (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fridrich, J., Goljan, M.: Robust hash functions for digital watermarking. In: Proceedings of IEEE International Conference Information Technology: Coding and Computing, pp. 178–183 (2000)Google Scholar
  9. 9.
    Lin, C.Y., Chang, S.F.: A robust image authentication system distinguishing JPEG compression from malicious manipulation. IEEE Trans. Circuits Syst. Video Technol. 11(2), 153–168 (2001)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Lefebvre, F., Macq, B., Legat, J.D.: RASH: Radon soft hash algorithm. In: Proceedings of European Signal Processing Conference, pp. 299–302 (2002)Google Scholar
  11. 11.
    Roover, C.D., Vleeschouwer, C.D., Lefebvre, F., Macq, B.: Robust video hashing based on radial projections of key frames. IEEE Trans. Signal Process. 53(10), 4020–4036 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Seo, J.S., Haitsma, J., Kalker, T., Yoo, C.D.: A robust image fingerprinting system using the rado transform. Signal Process. Image Commun. 19(4), 325–339 (2004)CrossRefGoogle Scholar
  13. 13.
    Swaminathan, A., Mao, Y., Wu, M.: Robust and secure image hashing. IEEE Trans. Inf. Forens. Sec. 1(2), 215–230 (2006)CrossRefGoogle Scholar
  14. 14.
    Wu, D., Zhou, X., Niu, X.: A novel image hash algorithm resistant to print–scan. Signal Process. 89(12), 2415–2424 (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Lei, Y., Wang, Y., Huang, J.: Robust image hash in Radon transform domain for authentication. Signal Process. Image Commun. 26(6), 280–288 (2011)CrossRefGoogle Scholar
  16. 16.
    Kozat, S.S., Venkatesan, R., Mihcak, M.K.: Robust perceptual image hashing via matrix invariants. In: Proceedings of IEEE International Conference on Image Processing, pp. 3443–3446 (2004)Google Scholar
  17. 17.
    Monga, V., Mihcak, M.K.: Robust and secure image hashing via non-negative matrix factorizations. IEEE Trans. Inf. Forens. Secur. 2(3), 376–390 (2007)CrossRefGoogle Scholar
  18. 18.
    Tang, Z., Wang, S., Zhang, X., Wei, W., Su, S.: Robust image hashing for tamper detection using non-negative matrix factorization. J. Ubiquitous Convergence Technol. 2(1), 18–26 (2008)Google Scholar
  19. 19.
    Lv, X., Wang, Z.J.: Perceptual image hashing based on shape contexts and local feature points. IEEE Trans. Inf. Forensics Secur. 7(3), 1081–1093 (2012)CrossRefGoogle Scholar
  20. 20.
    Lu, W., Wu, M.: Multimedia forensic hash based on visual words. In: Proceedings of IEEE Conference Image Processing, pp. 989–992, Hong Kong (2010)Google Scholar
  21. 21.
    Khelifi, F., Jiang, J.: Perceptual image hashing based on virtual watermark detection. IEEE Trans. Image Process. 19(4), 981–994 (2010)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Zhao, Y., Wang, S., Zhang, X., Yao, H.: Robust hashing for image authentication using Zernike moments and local features. IEEE Trans. Inf. Forensics Secur. 8(1), 55–63 (2013)CrossRefGoogle Scholar
  23. 23.
    Demanet, L., Ying, L.: Wave atoms and sparsity of oscillatory patterns. Appl. Comput. Harmonic Anal. 23(3), 368–387 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Liu, F., Cheng, L.-M.: Perceptual image hashing via wave atom transform. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011. LNCS, vol. 7128, pp. 468–478. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, Orlando/San Diego (1999)zbMATHGoogle Scholar
  26. 26.
    Antoine, J.P., Murenzi, R.: Two-dimensional directional wavelets and the scale-angle representation. Signal Process. 52, 259–281 (1996)CrossRefzbMATHGoogle Scholar
  27. 27.
    Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5, 1266–1271 (1996)CrossRefGoogle Scholar
  28. 28.
    Fair evaluation procedures for watermarking systems (2000). http://www.petitcolas.net/fabien/watermarking/stirmark
  29. 29.
    Guo, X.C., Hatzinakos, D.: Content based image hashing via wavelet and radon transform. In: Ip, H.H.-S., Au, O.C., Leung, H., Sun, M.-T., Ma, W.-Y., Hu, S.-M. (eds.) PCM 2007. LNCS, vol. 4810, pp. 755–764. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Electronic EngineeringCity University of Hong KongKowloon TongHong Kong

Personalised recommendations