Skip to main content

Part of the book series: Mathematics in Industry ((TECMI,volume 21))

Abstract

This chapter contains three advanced topics in model order reduction (MOR): nonlinear MOR, MOR for multi-terminals (or multi-ports) and finally an application in deriving a nonlinear macromodel covering phase shift when coupling oscillators. The sections are offered in a preferred order for reading, but can be read independently.

Section 6.1, written by Michael Striebel and E. Jan W. ter Maten, deals with MOR for nonlinear problems. Well-known methods like TPWL (Trajectory PieceWise Linear) and POD (Proper Orthogonal Decomposition) are presented. Development for POD led to some extensions: Missing Point Estimation, Adapted POD, DEIM (Discrete Empirical Interpolation Method).

Section 6.2, written by Roxana Ionutiu and Joost Rommes, deals with the multi-terminal (or multi-port) problem. A crucial outcome of the research is that one should detect “important” internal unknowns, which one should not eliminate in order to keep a sparse reduced model. Such circuits come from verification problems, in which lots of parasitic elements are added to the original design. Analysis of effects due to parasitics is of vital importance during the design of large-scale integrated circuits, since it gives insight into how circuit performance is affected by undesired parasitic effects. Due to the increasing amount of interconnect and metal layers, parasitic extraction and simulation may become very time consuming or even unfeasible. Developments are presented, for reducing systems describing R and \(\mathit{RC}\) netlists resulting from parasitic extraction. The methods exploit tools from graph theory to improve sparsity preservation especially for circuits with multi-terminals. Circuit synthesis is applied after model reduction, and the resulting reduced netlists are tested with industrial circuit simulators. With the novel RC reduction method SparseMA, experiments show reduction of 95 % in the number of elements and 46x speed-up in simulation time.

Section 6.3, written by Davit Harutyunyan, Joost Rommes, E. Jan W. ter Maten and Wil H.A. Schilders, addresses the determination of phase shift when perturbing or coupling oscillators. It appears that for each oscillator the phase shift can be approximated by solving an additional scalar ordinary differential equation coupled to the main system of equations. This introduces a nonlinear coupling effect to the phase shift. That just one scalar evolution equation can describe this is a great outcome of Model Order Reduction. The motivation behind this example is described as follows. Design of integrated RF circuits requires detailed insight in the behavior of the used components. Unintended coupling and perturbation effects need to be accounted for before production, but full simulation of these effects can be expensive or infeasible. In this section we present a method to build nonlinear phase macromodels of voltage controlled oscillators. These models can be used to accurately predict the behavior of individual and mutually coupled oscillators under perturbation at a lower cost than full circuit simulations. The approach is illustrated by numerical experiments with realistic designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Section 6.1 has been written by Michael Striebel and E. Jan W. ter Maten.

  2. 2.

    Most frequently V is constructed to be orthogonal, such that W = V can be chosen.

  3. 3.

    This means, the matrix has exactly one non-zero entry per row at most one non-zero per column.

  4. 4.

    Section 6.2 has been written by Roxana Ionutiu and Joost Rommes. For an extended treatment on the topics of this section see also the Ph.D. Thesis of the first author [68].

  5. 5.

    Section 6.3 has been written by Davit Harutyunyan, Joost Rommes, E. Jan W. ter Maten and Wil H.A. Schilders.

  6. 6.

    Similar to singular values of matrices, the Hankel singular values and corresponding vectors can be used to identify the dominant subspaces of the system’s statespace: the larger the Hankel singular value, the more dominant.

  7. 7.

    Matlab code for plotting the PSD is given in [107].

References

References for Section 6.1

  1. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  2. Astrid, P.: Reduction of process simulation models: a proper orthogonal decomposition approach. Ph.D.-thesis, Technische Universiteit Eindhoven (2004)

    Google Scholar 

  3. Astrid, P., Verhoeven, A.: Application of least squares mpe technique in the reduced order modeling of electrical circuits. In: Proceedings of the 17th International Symposium on MTNS, Kyoto, pp. 1980–1986 (2006)

    Google Scholar 

  4. Astrid, P., Weiland, S., Willcox, K., Backx, T.: Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans. Autom. Control 53(10), 2237–2251 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bai, Z., Skoogh, D.: Krylov subspace techniques for reduced-order modeling of nonlinear dynamical systems. Appl. Numer. Math. 43, 9–44 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bai, Z., Skoogh, D.: A projection method for model reduction of bilinear dynamical systems. Linear Algebra Appl. 415(2–3), 406–425 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bechtold, T., Striebel, M., Mohaghegh, K., ter Maten, E.J.W.: Nonlinear model order reduction in nanoelectronics: combination of POD and TPWL. PAMM Proc. Appl. Maths Mech. 8(1), 10057–10060 (2009). doi:10.1002/pamm.200810057. (Special Issue on Proceedings GAMM Annual Meeting 2008)

    Google Scholar 

  8. Benner, P., Breiten, T.: Krylov-subspace based model reduction of nonlinear circuit models using bilinear and quadratic-linear approximations. In: Günther, M., Bartel, A., Brunk, M., Schöps, S., Striebel, M. (eds.) Progress in Industrial Mathematics at ECMI 2010. Mathematics in Industry, vol. 17, pp. 153–159. Springer, Berlin/New York (2012)

    Chapter  Google Scholar 

  9. Benner, P., Damm, T.: Lyapunov equations, energy functionals and model order reduction of bilinear and stochastic systems. SIAM J. Control Optim. 49(2), 686–711 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bittner, K., Urban, K.: Adaptive wavelet methods using semiorthogonal spline wavelets: sparse evaluation of nonlinear functions. Appl. Comput. Harmon. Anal. 24, 91–119 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cai, W., Wang, J.: Adaptive multiresolution collocation methods for initial-boundary value problems of nonlinear PDEs. SIAM J. Numer. Anal. 33(3), 937–970 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chaturantabut, C., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chaturantabut, C., Sorensen, D.C.: A state space error estimate for POD-DEIM nonlinear model reduction. SIAM J. Numer. Anal. 50(1), 46–63 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Condon, M., Ivanov, R.: Nonlinear systems – algebraic gramians and model reduction. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 24(1), 202–219 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Condon, M., Ivanov, R.: Krylov subspaces from bilinear representations of nonlinear systems. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 26(2), 399–406 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dautbegović, E., Condon, M., Brennan, C.: An efficient nonlinear circuit simulation technique. IEEE. Trans. Microw. Theory Tech. 53(2), 548–555 (2005)

    Article  Google Scholar 

  17. Dautbegović, E.: Wavelets in ciruit simulation. In: Roos, J., Costa, L.R.J. (eds.) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry, vol. 14, pp. 131–141. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  18. Dong, N., Roychowdhury, J.: General-purpose nonlinear model-order reduction using piecewise-polynomial representations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(2), 249–264 (2008)

    Article  Google Scholar 

  19. Freund, R.W.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math. 123(1–2), 395–421 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fujimoto, K., Scherpen, J.M.A.: Singular value analysis and balanced realizations for nonlinear systems. In: Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds.) Model Order Reduction: Theory, Research Aspects and Applications, pp. 251–272. Springer, Berlin/Heidelberg (2008)

    Chapter  Google Scholar 

  21. Gad, E., Nakhla, M.: Efficient model reduction of linear periodically time-varying systems via compressed transient system function. IEEE Trans. Circuit Syst. 1 52(6), 1188–1204 (2005)

    Google Scholar 

  22. Gu, C.: Model order reduction of nonlinear dynamical systems. Ph.D.-thesis, University of California, Berkeley (2012). http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-217.pdf

  23. Günther, M.: Simulating digital circuits numerically – a charge-oriented ROW approach. Numer. Math. 79, 203–212 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Holmes, P., Lumley, J., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambrige University Press, Cambrige (1996)

    MATH  Google Scholar 

  25. Ionescu, T.C.: Balanced truncation for dissipative and symmetric nonlinear systems. Ph.D.-thesis, Rijksuniversiteit Groningen (2009)

    Google Scholar 

  26. Ionescu, T.C., Scherpen, J.M.A.: Nonlinear cross gramians. In: Korytowski, A., Malanowski, K., Mitkowski, W., Szymkat, M. (eds.) System Modeling and Optimization. Series: IFIP Advances in Information and Communication Technology, vol. 312, pp. 293–306. Springer, Berlin/Heidelberg (2009)

    Chapter  Google Scholar 

  27. Loève, M.: Probability Theory. Van Nostrand, New York (1955)

    MATH  Google Scholar 

  28. Martinez, J.A.: Model order reduction of nonlinear dynamic systems using multiple projection bases and optimized state-space sampling. Ph.D.-thesis, University of Pittsburgh (2009). http://d-scholarship.pitt.edu/6685/

  29. Mohaghegh, K., Striebel, M., ter Maten, J., Pulch, R.: Nonlinear model order reduction based on trajectory piecewise linear approach: comparing different linear cores. In: Roos, J., Costa, L.R.G. (eds.) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry, vol. 14, pp. 563–570. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  30. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Article  MATH  Google Scholar 

  31. Pinnau, R.: Model reduction via proper orthogonal decomposition. In: Schilders, W., van der Vorst, H., Rommes, J. (eds.) Model Order Reduction: Theory, Applications, and Research Aspects, pp. 95–109. Springer, Berlin (2008)

    Chapter  Google Scholar 

  32. Rathinam, M., Petzold, L.R.: A new look at proper orthogonal decomposition. SIAM J. Numer. Anal. 41(5), 1893–1925 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rewieński, M.J., White, J.: A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. CAD Int. Circuit. Syst. 22(2), 155–170 (2003)

    Article  Google Scholar 

  34. Rewieński, M.J.: A trajectory piecewise-linear approach to model order reduction of nonlinear dynamical systems. Ph.D.-thesis, Massachusetts Institute of Technology (2003)

    Google Scholar 

  35. Striebel, M., Rommes, J.: Model order reduction of nonlinear systems in circuit simulation: status, open issues, and applications. CSC Preprint 08-07, Chemnitz University of Technology (2008). http://www.tu-chemnitz.de/mathematik/csc/index.php

  36. Striebel, M., Rommes, J.: Model order reduction of nonlinear systems in circuit simulation: status and applications. In: Benner, P., Hinze, M., ter Maten, E.J.W. (eds.) Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74, pp. 289–301. Springer, Dordrecht (2011)

    Chapter  Google Scholar 

  37. Striebel, M., Rommes, J.: Model order reduction of parameterized nonlinear systems by interpolating input-output behavior. In: Michielsen, B., Poirier, J.-R. (eds.) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry, vol. 16, pp. 405–413. Springer, Heidelberg (2012)

    Google Scholar 

  38. Striebel, M., Rommes, J.: Model order reduction of nonlinear systems by interpolating input-output behavior. In: Günther, M., Bartel, A., Brunk, M., Schöps, S., Striebel, M. (eds.) Progress in Industrial Mathematics at ECMI 2010. Mathematics in Industry, vol. 17, pp. 145–151. Springer, Berlin/New York (2012)

    Chapter  Google Scholar 

  39. Tiwary, S.K., Rutenbar, R.A.: Scalable trajectory methods for on-demand analog macromodel extraction. In: DAC ’05: Proceedings of the 42nd Annual Conference on Design Automation, San Diego, pp. 403–408. ACM, New York (2005)

    Google Scholar 

  40. Vasilyev, D., Rewieński, M., White, J.: A TBR-based trajectory piecewise-linear algorithm for generating accurate low-order models for nonlinear analog circuits and MEMS. In: Proceedings of the Design Automation Conference, Anaheim, pp. 490–495 (2003)

    Google Scholar 

  41. Verhoeven, A.: Redundancy reduction of IC models by multirate time-integration and model order reduction. Ph.D.-thesis, TU Eindhoven (2008). http://alexandria.tue.nl/extra2/200712281.pdf

  42. Verhoeven, A., Voss, T., Astrid, P., ter Maten, E.J.W., Bechtold, T.: Model order reduction for nonlinear problems in circuit simulation. PAMM Proc. Appl. Math. Mech. 7(1), 1021603–1021604 (2008). doi:10.1002/pamm.200700537. (Special Issue Proceedings ICIAM-2007)

    Google Scholar 

  43. Verhoeven, A., ter Maten, J., Striebel, M., Mattheij, R.: Model order reduction for nonlinear IC models. In: Korytowski, A., Malanowski, K., Mitkowski, W., Szymkat, M. (eds.) System Modeling and Optimization. Series: IFIP Advances in Information and Communication Technology, vol. 312, pp. 476–491. Springer, Berlin/Heidelberg (2009)

    Chapter  Google Scholar 

  44. Verhoeven, A., Striebel, M., ter Maten, E.J.W.: Model order reduction for nonlinear IC models with POD. In: Roos, J., Costa, L.R.J. (eds.) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry, vol. 14, pp. 571–578. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  45. Verhoeven, A., Striebel, M., Rommes, J., ter Maten, E.J.W., Bechtold, T.: Proper orthogonal decomposition model order reduction of nonlinear IC models. In: Fitt, A.D., Norbury, J., Ockendon, H., Wilson, E. (eds.) Progress in Industrial Mathematics at ECMI 2008, Mathematics in Industry, vol. 15, pp. 441–446. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  46. Verriest, E.I.: Time variant balancing and nonlinear balanced realizations. In: Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds.) Model Order Reduction: Theory, Research Aspects and Applications, pp.213–250. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  47. Volkwein, S.: Model reduction using proper orthogonal decomposition. TU Graz (2008). http://www.uni-graz.at/imawww/volkwein/POD.pdf

  48. Voß, T.: Model reduction for nonlinear differential algebraic equations. MSc.-thesis, Bergische Universität Wuppertal. Also published as Nat.Lab. Unclassified Report PR-TN-2005/00919, Philips Research (2005)

    Google Scholar 

  49. Voß, T., Pulch, R., ter Maten, J., El Guennouni, A.: Trajector piecewise linear aproach for nonlinear differential-algebraic equations in circuit simulation. In: Ciuprina, G., Ioan, D. (eds.) Scientific Computing in Electrical Engineering. Mathematics in Industry, vol. 11, pp. 167–173. Springer, Berlin/New York (2007)

    Chapter  Google Scholar 

  50. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Article  Google Scholar 

  51. Zhou, D., Cai, W.: A fast wavelet collocation method for highspeed circuit simulation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(8), 920–930 (1999)

    Article  MATH  Google Scholar 

  52. Zhou. D., Cai, W., Zhang, W.: An adaptive wavelet method for nonlinear circuit simulation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(8), 930–938 (1999)

    Google Scholar 

  53. Zong, K., Yang, F., Zeng, X.: A wavelet-collocation-based trajectory piecewise-linear algorithm for time-domain model-order reduction of nonlinear circuits. IEEE. Trans. Circuits Syst. I Regular Papers 57(11), 2981–2990 (2010)

    Article  MathSciNet  Google Scholar 

References for Section 6.2

  1. Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benner, P., Schneider, A.: Model order and terminal reduction approaches via matrix decomposition and low rank approximation. In: Roos, J., Costa, L.R.J. (eds.) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry, vol. 14, pp. 523–530. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  3. Benner, P., Schneider, A.: On stability, passivity and reciprocity preservation of ESVDMOR. In: [58], pp. 277–287 (2011)

    Google Scholar 

  4. Benner, P., Schneider, A.: Model reduction for linear descriptor systems with many ports. In: Günther, M., Bartel, A., Brunk, M., Schöps, S., Striebel, M. (eds.) Progress in Industrial Mathematics at ECMI 2010. Mathematics in Industry, vol. 17, pp. 137–144. Springer, Berlin/New York (2012)

    Chapter  Google Scholar 

  5. Benner, P., Hinze, M., ter Maten, E.J.W. (eds.) Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74. Springer, Dordrecht (2011)

    Google Scholar 

  6. Cadence: AssuraRCX. http://www.cadence.com

  7. Chua, L.O., Lin, P.: Computer Aided Analysis of Electric Circuits: Algorithms and Computational Techniques, 1st edn. Prentice Hall, Englewood Cliffs (1975)

    Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms, 1st edn. MIT, Cambridge (1990)

    MATH  Google Scholar 

  9. Davis, T.A.: Suite sparse: a suite of sparse matrix packages. http://www.cise.ufl.edu/research/sparse/SuiteSparse/

  10. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  11. Jivaro: available from EdXact SA, Voiron. http://www.edxact.com

  12. Electrostatic discharge association. http://www.esda.org

  13. Freund, R.W.: SPRIM: Structure-preserving reduced-order interconnect macromodeling. In: Technical Digest of the 2004 IEEE/ACM International Conference on CAD, Los Alamitos, pp. 80–87 (2004)

    Google Scholar 

  14. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  15. Ionutiu, R.: Model order reduction for multi-terminal systems – with applications to circuit simulation. Ph.D.-thesis, TU Eindhoven (2011). http://alexandria.tue.nl/extra2/716352.pdf

  16. Ionutiu, R., Rommes, J.: Circuit synthesis of reduced order models. Technical report 2008/00316, NXP Semiconductors (2009)

    Google Scholar 

  17. Ionutiu, R., Rommes, J.: A framework for synthesis of reduced order models. In: Coupled Multiscale Simulation and Optimization in Nanoelectronics, Ch. 4, Section 4.5, this volume (2015)

    Google Scholar 

  18. Ionutiu, R., Rommes, J., Antoulas, A.C.: Passivity Preserving Model Reduction using the Dominant Spectral Zero Method. In: Coupled Multiscale Simulation and Optimization in Nanoelectronics, Ch. 4, Section 4.4, this volume (2015)

    Google Scholar 

  19. Karypis, G., Kumar, V.: METIS, A software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. http://glaros.dtc.umn.edu/gkhome/metis/

  20. Kerns, K.J., Yang, A.T.: Stable and efficient reduction of large, multiport networks by pole analysis via congruence transformations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) 16(7), 734–744 (1997)

    Google Scholar 

  21. Kerns, K.J., Yang, A.T.: Preservation of passivity during RLC network reduction via split congruence transformations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) 17(7), 582–591 (1998)

    Google Scholar 

  22. Kolyer, J.M., Watson, D.: ESD: From A to Z. Springer, Boston (1996)

    Book  Google Scholar 

  23. McCalla, W.J.: Fundamentals of Computer Aided Circuit Simulation, 1st edn. Kluwer Academic, Boston (1988)

    Google Scholar 

  24. Miettinen, P., Honkala, M., Roos, J.: Using METIS and hMETIS Algorithms in Circuit Partitioning. Circuit Theory Laboratory Report Series CT-49. Helsinki University of Technology, Espoo (2006)

    Google Scholar 

  25. Pstar: In-house industrial circuit simulator. NXP Semiconductors, Eindhoven. http://www.nxp.com

  26. Phillips, J.R., Silveira, L.M.: Poor man’s tbr: a simple model reduction scheme. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) 24(1), 283–288 (2005)

    Google Scholar 

  27. Rommes, J., Martins, N.: Efficient computation of transfer function dominant poles using subspace acceleration IEEE Trans. Power Syst. 21(3), 1218–1226 (2006)

    Article  Google Scholar 

  28. Rommes, J., Martins, N.: Efficient computation of multivariable transfer function dominant poles using subspace acceleration. IEEE Trans. Power Syst. 21(4), 1471–1483 (2006)

    Article  Google Scholar 

  29. Rommes, J.: Methods for eigenvalue problems with applications in model order reduction. Ph.D.-thesis, Utrecht University (2007). http://igitur-archive.library.uu.nl/dissertations/2007-0626-202553/index.htm

  30. Rommes, J., Lenaers, P., Schilders, W.H.A.: Reduction of large resistor networks. In: Roos, J., Costa, L.R.J. (eds.) Scientific Computing in Electrical Engineering 2008. Series Mathematics in Industry, vol. 14, pp. 555–562. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  31. Rommes, J., Schilders, W.H.A.: Efficient methods for large resistor networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) 29(1), 28–39 (2010)

    Google Scholar 

  32. Rommes, J., Martins, N.: Model reduction using modal approximation. This COMSON Handbook (2013)

    Google Scholar 

  33. Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds.): Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol. 13. Springer, Berlin (2008)

    Google Scholar 

  34. Yang, F., Zeng, X., Su, Y., Zhou, D.: RLC equivalent circuit synthesis method for structure-preserved reduced-order model of interconnect in VLSI. Commun. Comput. Phys. 3(2), 376–396 (2008)

    MATH  Google Scholar 

  35. Zečević, A.I., Šiljak, D.D.: Balanced decompositions of sparse systems for multilevel prallel processing. IEEE Trans. Circuit Syst. I Fund. Theory Appl. 41(3), 220–233 (1994)

    Article  Google Scholar 

  36. Zhou, Q., Sun, K., Mohanram, K., Sorensen, D.C.: Large power grid analysis using domain decomposition. In: Proceedings of the Design Automation and Test in Europe (DATE), Munich, pp. 27–32 (2006)

    Google Scholar 

References for Section 6.3

  1. Adler, R.: A study of locking phenomena in oscillators. Proc. I.R.E. Waves Electron. 34, 351–357 (1946)

    Google Scholar 

  2. Agarwal, S., Roychowdhury, J.: Efficient multiscale simulation of circadian rhythms using automated phase macromodelling techniques. In: Proceedingsof the Pacific Symposium on Biocomputing, Kohala Coast, vol. 13, pp. 402–413 (2008)

    Google Scholar 

  3. Aikio, J.P.: Frequency domain model fitting and Volterra analysis implemented on top of harmonic balance simulation. Ph.D.-thesis, Faculty of Technology of the University of Oulu (2007). http://jultika.oulu.fi/Record/isbn978-951-42-8420-5

  4. Aikio, J.P., Makitalo, M., Rahkonen, T.: Harmonic load-pull technique based on Volterra analysis. In: European Microwave Conference, Rome, pp. 1696–1699 (2009)

    Google Scholar 

  5. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  6. Banai, A., Farzaneh, F.: Locked and unlocked behaviour of mutually coupled microwave oscillators. IEE Proc. Antennas Propag. 147, 13–18 (2000)

    Article  Google Scholar 

  7. Benner, P., Mehrmann, V., Sorensen, D. (eds.): Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45. Springer, Berlin/New York (2005)

    Google Scholar 

  8. Benner, P., Hinze, M., ter Maten, E.J.W. (eds.): Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74. Springer, Dordrecht (2011)

    Google Scholar 

  9. Boyland, P.L.: Bifurcations of circle maps: Arnol’d tongues, bistability and rotation intervals. Commun. Math. Phys. 106(3), pp. 353–381 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brachtendorf, H.G.: Theorie und Analyse von autonomen und quasiperiodisch angeregten elektrischen Netzwerken. Habilitationsschrift, Universität Bremen (2001)

    Google Scholar 

  11. Demir, A., Mehrotra, A., Roychowdhury, J.: Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans. Circuit Syst. I 47(5), 655–674 (2000)

    Article  Google Scholar 

  12. Demir, A., Long, D., Roychowdhury, J.: Computing phase noise eigenfunctions directly from steady-state jacobian matrices. IEEE/ACM International Conference on Computer Aided Design, ICCAD-2000, San Jose, pp. 283–288 (2000)

    Google Scholar 

  13. Galton, I., Towne, D.A., Rosenberg, J.J., Jensen, H.T.: Clock distribution using coupled oscillators. In: IEEE International Symposium on Circuits and Systems, Atlanta, vol. 3, pp. 217–220 (1996)

    Google Scholar 

  14. Günther, M.: Simulating digital circuits numerically – a charge-oriented ROW approach. Numer. Math. 79, 203–212 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Harutyunyan, D., Rommes, J., ter Maten, J., Schilders, W.: Simulation of mutually coupled oscillators using nonlinear phase macromodels. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) 28(10), 1456–1466 (2009)

    Google Scholar 

  16. Günther, M., Feldmann, U., ter Maten, J.: Modelling and discretization of circuit problems. In: [123], pp. 523–659 (2005)

    Google Scholar 

  17. Harutyunyan, D., Rommes, J.: Simulation of coupled oscillators using nonlinear phase macromodels and model order reduction. In: [97], pp. 163–175 (2011)

    Google Scholar 

  18. Heidari, M.E., Abidi, A.A.: Behavioral models of frequency pulling in oscillators. In: IEEE International Behavioral Modeling and Simulation Workshop, San Jose, pp. 100–104 (2007)

    Google Scholar 

  19. Houben, S.H.J.M.: Circuits in motion: the numerical simulation of electrical oscillators. Ph.D.-thesis, Technische Universiteit Eindhoven (2003). http://alexandria.tue.nl/extra2/200310849.pdf

  20. Kevenaar, T.A.M.: Periodic steady state analysis using shooting and wave-form-Newton. Int. J. Circuit Theory Appl. 22(1), 51–60 (1994)

    Article  MATH  Google Scholar 

  21. Kundert, K., White, J., Sangiovanni-Vincentelli, A.: An envelope-following method for the efficient transient simulation of switching power and filter circuits. In: IEEE International Conference on Computer-Aided Design, ICCAD-88. Digest of Technical Papers, Santa Clara, pp. 446–449 (1988)

    Google Scholar 

  22. Lai, X., Roychowdhury, J.: Capturing oscillator injection locking via nonlinear phase-domain macromodels. IEEE Trans. Micro. Theory Tech. 52(9), 2251–2261 (2004)

    Article  Google Scholar 

  23. Lai, X., Roychowdhury, J.: Automated oscillator macromodelling techniques for capturing amplitude variations and injection locking. In: IEEE/ACM International Conference onComputer Aided Design, ICCAD-2004, San Jose, pp. 687–694 (2004)

    Google Scholar 

  24. Lai, X., Roychowdhury, J.: Fast and accurate simulation of coupled oscillators using nonlinear phase macromodels. In: 2005 IEEE MTT-S International Microwave Symposium Digest, Long Beach, pp. 871–874 (2005)

    Google Scholar 

  25. Lai, X., Roychowdhury, J.: Fast simulation of large networks of nanotechnological and biochemical oscillators for investigating self-organization phenomena. In: Proceedings of the IEEE Asia South-Pacific Design Automation Conference, Yokohama, pp. 273–278 (2006)

    Google Scholar 

  26. Maffezzoni, P.: Unified computation of parameter sensitivity and signal-injection sensitivity in nonlinear oscillators. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(5), 781–790 (2008)

    Article  MathSciNet  Google Scholar 

  27. Maffezzoni, P., D’Amore, D.: Evaluating pulling effects in oscillators due to small-signal injection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(1), 22–31 (2009)

    Article  Google Scholar 

  28. Mathworks: Matlab 7 (2009). http://www.mathworks.com/

  29. Moore, B.C.: Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans. Autom. Control 26(1), pp. 17–32 (1981)

    Article  MATH  Google Scholar 

  30. Pulch, R.: Polynomial chaos expansions for analysing oscillators with uncertainties. In: Troch, I., Breitenecker, F. (eds.) Proceedings MATHMOD 09 Vienna, ARGESIM Report 35 (Full Papers), TU Vienna (2009)

    Google Scholar 

  31. Razavi, B.: A study of injection locking and pulling in oscillators. IEEE J. Solid-State Circuit 39(9), 1415–1424 (2004)

    Article  Google Scholar 

  32. Rentrop, P., Günther, M., Hoschek, M., Feldmann, U.: CHORAL—a charge-oriented algorithm for the numerical integration of electrical circuits. In: Jäger, W., Krebs, H.-J. (eds.) Mathematics—Key Technology for the Future, pp. 429–438. Springer, Berlin (2003)

    Chapter  Google Scholar 

  33. Semlyen, A., Medina, A.: Computation of the periodic steady state in systems with nonlinear components using a hybrid time and frequency domain method. IEEE Trans. Power Syst. 10(3), 1498–1504 (1995)

    Article  Google Scholar 

  34. Schilders, W.H.A., ter Maten, E.J.W. (eds.) Numerical Methods in Electromagnetics. Handbook of Numerical Analysis, vol. 13. Elsevier, Amsterdam/Oxford (2005)

    Google Scholar 

  35. Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds.): Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol. 13. Springer, Berlin (2008)

    Google Scholar 

  36. Stykel, T.: Gramian based model reduction for descriptor systems. Math. Control Signals Syst. 16, 297–319 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. ter Maten, E.J.W., Fijnvandraat, J.G., Lin, C., Peters, J.M.F.: Periodic AC and periodic noise in RF simulation for electronic circuit design. In: Antreich, K., Bulirsch, R., Gilg, A., Rentrop, P. (eds.) Modeling, Simulation and Optimization of Integrated Circuits. International Series of Numerical Mathematics, vol. 146, pp. 121–134. Birkhäuser Verlag, Basel (2003)

    Chapter  Google Scholar 

  38. Wan, Y., Lai, X., Roychowdhury, J.: Understanding injection locking in negative resistance lc oscillators intuitively using nonlinear feedback analysis. In: Proceedings of the IEEE Custom Integrated Circuits Conference, San Jose, pp. 729–732 (2005)

    Google Scholar 

  39. Wang, Z., Lai, X., Roychowdhury, J.: PV-PPV: parameter variability aware, automatically extracted, nonlinear time-shifted oscillator macromodels. In: Proceedings of the Design Automation Conference DAC’07, Yokohama, pp. 142–147 (2007)

    Google Scholar 

  40. Yanzhu, Z., Dingyu, X.: Modeling and simulating transmission lines using fractional calculus. In: International Conference on Wireless Communications, Networking and Mobile Computing (WiCom 2007), Shanghai, pp. 3115–3118 (2007). doi:10.1109/WICOM.2007.773

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davit Harutyunyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harutyunyan, D., Ionutiu, R., ter Maten, E.J.W., Rommes, J., Schilders, W.H.A., Striebel, M. (2015). Advanced Topics in Model Order Reduction. In: Günther, M. (eds) Coupled Multiscale Simulation and Optimization in Nanoelectronics. Mathematics in Industry(), vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46672-8_6

Download citation

Publish with us

Policies and ethics