Skip to main content

Abstract

The overall performance of a fuel cell or an electrochemical reactor depends greatly on properties of catalyst layers, where electrochemical reactions take place. Optimization of these structures in the past was mainly guided by experimental methods. For substantial progress in this field, combination of experiments with modeling is highly desirable. In this chapter focus is on macroscale models, since at the moment they provide more straightforward relationship to experimentally measurable quantities. After introducing the physical structure of a catalyst layer, we discuss typical macroscale modeling approaches such as interface, porous, and agglomerate models. We show how governing equations for the state fields, like potential or concentration can be derived and which typical simplifications can be made. For derivations, a porous electrode model has been chosen as a reference case. We prove that the interface model is a simplification of a porous model, where all gradients can be neglected. Furthermore, we demonstrate that the agglomerate model is an extension of the porous model, where in addition to macroscale, additional length scale is considered. Finally some selected examples regarding different macroscale models have been shown. Interface model has low capability to describe the structure of the catalyst layer, but it can be utilized to resolve complex reaction mechanisms, providing reaction kinetic parameters for distributed models. It was shown that the agglomerate models, having more structural parameters of the catalyst layer, are more suitable for catalyst layer optimization than the porous models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BET:

Brunauer–Emmett–Teller

CL:

comprising catalyst

EIS:

electrochemical impedance spectroscopy

FT:

Frumkin/Temkin

GDE:

gas diffusion electrode

GDL:

gas diffusion layer

NFRA:

nonlinear frequency response analysis

PEM:

polymer electrolyte membrane

PFSA:

perfluorosulfonic acid

SEM:

scanning electron microscopy

References

  1. I. Moussallem, J. Jörissen, U. Kunz, S. Pinnow, T. Turek: Chlor-alkali electrolysis with oxygen depolarized cathodes: History, present status and future prospects, J. Appl. Electrochem. 38, 1177–1194 (2008)

    Article  Google Scholar 

  2. W.K. Epting, J. Gelb, S. Litster: Resolving the three-dimensional microstructure of polymer electrolyte fuel cell electrodes using nanometer-scale x-ray computed tomography, Adv. Functional Mater. 22, 555–560 (2012)

    Article  Google Scholar 

  3. H.-R. Jhong, F.R. Brushett, L. Yin, D.M. Stevenson, P.J.A. Kenis: Combining structural and electrochemical analysis of electrodes using micro-computed tomography and a microfluidic fuel cell, J. Electrochem. Soc. 159, B292–B298 (2012)

    Article  Google Scholar 

  4. H. Markoetter, I. Manke, P. Krueger, T. Arlt, J. Haussmann, M. Klages, H. Riesemeier, C. Hartnig, J. Scholta, J. Banhart: Investigation of 3-D water transport paths in gas diffusion layers by combined in-situ synchrotron x-ray radiography and tomography, Electrochem. Commun. 13, 1001–1004 (2011)

    Article  Google Scholar 

  5. T. Vidaković-Koch, I. Gonzalez Martinez, R. Kuwertz, U. Kunz, T. Turek, K. Sundmacher: Electrochemical membrane reactors for sustainable chlorine recycling, Membranes 2, 510–528 (2012)

    Article  Google Scholar 

  6. M. Eikerling, A.A. Kornyshev, A.R. Kucernak: Water in polymer electrolyte fuel cells: Friend or foe?, Physics Today 59, 38–44 (2006)

    Article  Google Scholar 

  7. X. Yu, J.L. Yuan, B. Sunden: Review on the properties of nano-/microstructures in the catalyst layer of PEMFC, ASME J. Fuel Cell Sci. Technol. 8(3), 034001 (2011)

    Article  Google Scholar 

  8. A.A. Shah, K.H. Luo, T.R. Ralph, F.C. Walsh: Recent trends and developments in polymer electrolyte membrane fuel cell modelling, Electrochimica Acta 56, 3731–3757 (2011)

    Article  Google Scholar 

  9. J. Zhang: PEM Fuel Cell Catalysts and Catalyst Layers – Fundamentals and Applications (Springer, Berlin, Heidelberg 2008)

    Book  Google Scholar 

  10. Y. Wang, X. Feng: Analysis of reaction rates in the cathode electrode of polymer electrolyte fuel cell I. Single-layer electrodes, J. Electrochem. Soc. 155, B1289–B1295 (2008)

    Article  Google Scholar 

  11. H. Wendt, H. Vogt, G. Kreysa, D.M. Kolb, G.E. Engelmann, J.C. Ziegler, H. Goldacker, K. Jüttner, U. Galla, H. Schmieder, E. Steckhan: Ullmann’s Encyclopedia of Industrial Chemistry: Electrochemistry, Vol. 11, 6th edn. (Wiley-VCH, Weinheim 2000) p. 425

    Google Scholar 

  12. P.K. Das, X. Li, Z.S. Liu: A three-dimensional agglomerate model for the cathode catalyst layer of PEM fuel cells, J. Power Sources 179, 186–199 (2008)

    Article  Google Scholar 

  13. N. Khajeh-Hosseini-Dalasm, K. Fushinobu, K. Okazaki: Three-dimensional transient two-phase study of the cathode side of a PEM fuel cell, Int. J. Hydrogen Energy 35, 4234–4246 (2010)

    Article  Google Scholar 

  14. C. Song, J. Zhang: Electrocatalytic oxygen reduction reaction. In: PEM Fuel Cell Electrocatalysts and Catalyst Layers, ed. by J. Zhang (Springer, Berlin, Heidelberg 2008) p. 1119

    Google Scholar 

  15. M. Carmo, A.R. Dos Santos, J.G.R. Poco, M. Linardi: Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications, J. Power Sources 173, 860–866 (2007)

    Article  Google Scholar 

  16. D.J. Jones, J. Peron, Y. Nedellec, J. Roziere: The effect of dissolution, migration and precipitation of platinum in Nafion-based membrane electrode assemblies during fuel cell operation at high potential, J. Power Sources 185, 1209–1217 (2008)

    Article  Google Scholar 

  17. W. Bi, G.E. Gray, T.F. Fuller: PEM fuel cell PtC dissolution and deposition in Nafion electrolyte, Electrochem. Solid-State Lett. 10, B101–B104 (2007)

    Article  Google Scholar 

  18. S.-Y. Huang, P. Ganesan, S. Park, B.N. Popov: Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications, J. Am. Chem. Soc. 131, 13898–13899 (2009)

    Article  Google Scholar 

  19. L. Wang, B.L. Yi, H.M. Zhang, D.M. Xing: Pt/SiO2 as addition to multilayer SPSU/PTFE composite membrane for fuel cells, Polymers Adv. Technol. 19, 1809–1815 (2008)

    Article  Google Scholar 

  20. C. Coutanceau, S. Baranton, T.W. Napporn: Platinum fuel cell nanoparticle syntheses: Effect on morphology, structure and electrocatalytic behavior. In: The Delivery of Nanoparticles, ed. by A. A. Hashim, http://www.intechopen.com/books/the-delivery-of-nanoparticles/platinum-fuel-cell-nanoparticle-synthesises-effect-on-morphology-structure-and-electrocatalytic-beha (InTech, 2012)

  21. K.A. Mauritz, R.B. Moore: State of understanding of Nafion, Chemical Rev. 104, 4535–4586 (2004)

    Article  Google Scholar 

  22. J.T. Hinatsu, M. Mizuhata, H. Takenaka: Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor, J. Electrochem. Soc. 141, 1493–1498 (1994)

    Article  Google Scholar 

  23. D.R. Morris, X. Sun: Water-sorption and transport properties of Nafion, 117 H, J. Appl. Polymer Sci. 50, 1445–1452 (1993)

    Article  Google Scholar 

  24. S. Motupally, A.J. Becker, J.W. Weidner: Diffusion of water in Nafion 115 membranes, J. Electrochem. Soc. 147, 3171–3177 (2000)

    Article  Google Scholar 

  25. T.E. Springer, M.S. Wilson, S. Gottesfeld: Modeling and experimental diagnostics in polymer electrolyte fuel cells, J. Electrochem. Soc. 140, 3513–3526 (1993)

    Article  Google Scholar 

  26. D.M. Bernardi, M.W. Verbrugge: Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte, Aiche J. 37, 1151–1163 (1991)

    Article  Google Scholar 

  27. I. Inchem: Chemical Safety Information from Intergovernmental Organizations (WHO, Geneva 2011), IPCS INCHEM

    Google Scholar 

  28. R.H. Perry, D.W. Green: Perry’s Chemical Engineers’ Handbook, 6th edn. (McGraw-Hill, New York 1984)

    Google Scholar 

  29. M.S. Wilson, S. Gottesfeld: Thin-film catalyst layers for polymer electrolyte fuel cell electrodes, J. Appl. Electrochem. 22, 1–7 (1992)

    Article  Google Scholar 

  30. L. Gubler, G. Scherer: A proton-conducting polymer membrane as solid electrolyte – Function and required properties. In: Advances in Polymer Science, Vol. 215, ed. by G. Scherer (Springer, Berlin, Heidelberg 2008) pp. 1–14

    Google Scholar 

  31. J. Xie, K.L. More, T.A. Zawodzinski, W.H. Smith: Porosimetry of MEAs made by Thin Film Decal method and its effect on performance of PEFCs, J. Electrochem. Soc. 151, A1841–A1846 (2004)

    Article  Google Scholar 

  32. E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua: Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC, J. Power Sources 77, 136–142 (1999)

    Article  Google Scholar 

  33. F.A. Howes, S. Whitaker: The spatial averaging theorem revisited, Chem. Eng. Sci. 40, 1387–1392 (1985)

    Article  Google Scholar 

  34. P. De Vidts, R.E. White: Governing equations for transport in porous electrodes, J. Electrochem. Soc. 144, 1343–1353 (1997)

    Article  Google Scholar 

  35. J. Newman, K.E. Thomas-Alyea: Electrochemical Systems, 3rd edn. (Wiley, New York 2004)

    Google Scholar 

  36. R.B. Bird, W.E. Stewart, E.N. Lightfoot: Transport Phenomena (Wiley, Chichester 1960)

    Google Scholar 

  37. R. Krishna, J.A. Wesselingh: The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci. 52, 861–911 (1997)

    Article  Google Scholar 

  38. H.S. Fogler: Elements of Chemical Reaction Engineering (Prentice Hall, Englewood Cliffs 2005)

    Google Scholar 

  39. O. Levenspiel: Chemical Reaction Engineering, 3rd edn. (Wiley, Chichester 1999)

    Google Scholar 

  40. D. Harvey, J.G. Pharoah, K. Karan: A comparison of different approaches to modelling the PEMFC catalyst layer, J. Power Sources 179, 209–219 (2008)

    Article  Google Scholar 

  41. T. Vidakovic, M. Christov, K. Sundmacher: Rate expression for electrochemical oxidation of methanol on a direct methanol fuel cell anode, J. Electroanal. Chem. 580, 105–121 (2005)

    Article  Google Scholar 

  42. U. Krewer, M. Christov, T. Vidakovic’, K. Sundmacher: Impedance spectroscopic analysis of the electrochemical methanol oxidation kinetics, J. Electroanal. Chem. 589, 148–159 (2006)

    Article  Google Scholar 

  43. T. Vidakovic, M. Christov, K. Sundmacher: Investigation of electrochemical oxidation of methanol in a cyclone flow cell, Electrochimica Acta 49, 2179–2187 (2004)

    Article  Google Scholar 

  44. B. Bensmann, M. Petkovska, T. Vidaković-Koch, R. Hanke-Rauschenbach, K. Sundmacher: Nonlinear frequency response of electrochemical methanol oxidation kinetics: A theoretical analysis, J. Electrochem. Soc. 157, B1279–B1289 (2010)

    Article  Google Scholar 

  45. U. Krewer, T. Vidakovic-Koch, L. Rihko-Struckmann: Electrochemical oxidation of carbon containing fuels and their dynamics in low temperature fuel cells, ChemPhysChem 12, 2518–2544 (2011)

    Article  Google Scholar 

  46. P.S. Kauranen, E. Skou, J. Munk: Kinetics of methanol oxidation on carbon-supported Pt and Pt + Ru catalysts, J. Electroanal. Chem. 404, 1–13 (1996)

    Article  Google Scholar 

  47. T.R. Vidaković-Koch, V.V. Panić, M. Andrić, M. Petkovska, K. Sundmacher: Nonlinear frequency response analysis of the ferrocyanide oxidation kinetics. Part I. A theoretical analysis, J. Phys. Chem. C 115, 17341–17351 (2011)

    Article  Google Scholar 

  48. V.V. Panić, T.R. Vidaković-Koch, M. Andrić, M. Petkovska, K. Sundmacher: Nonlinear frequency response analysis of the ferrocyanide oxidation kinetics. Part II. Measurement routine and experimental validation, J. Phys. Chem. C 115, 17352–17358 (2011)

    Article  Google Scholar 

  49. J.X. Wang, T.E. Springer, R.R. Adzic: Dual-pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes, J. Electrochem. Soc. 153, A1732–A1740 (2006)

    Article  Google Scholar 

  50. M. Secanell, K. Karan, A. Suleman, N. Djilali: Optimal design of ultralow-platinum PEMFC anode electrodes, J. Electrochem. Soc. 155, B125–B134 (2008)

    Article  Google Scholar 

  51. K. Broka, P. Ekdunge: Oxygen and hydrogen permeation properties and water uptake of Nafion 117 membrane and recast film for PEM fuel cell, J. Appl. Electrochem. 27, 281–289 (1997)

    Article  Google Scholar 

  52. D. Song, Q. Wang, Z. Liu, T. Navessin, M. Eikerling, S. Holdcroft: Numerical optimization study of the catalyst layer of PEM fuel cell cathode, J. Power Sources 126, 104–111 (2004)

    Article  Google Scholar 

  53. S.C. Barton: Oxygen transport in composite mediated biocathodes, Electrochimica Acta 50, 2145–2153 (2005)

    Article  Google Scholar 

  54. D.-S. Chan, D.-J. Dai, H.-S. Wu: Dynamic modeling of anode function in enzyme-based biofuel cells using high mediator concentration, Energies 5, 2524–2544 (2012)

    Article  Google Scholar 

  55. E. Fontes, C. Lagergren, D. Simonsson: Mathematical modelling of the MCFC cathode on the linear polarisation of the NiO cathode, J. Electroanal. Chem. 432, 121–128 (1997)

    Article  Google Scholar 

  56. J. Deseure, Y. Bultel, L. Dessemond, E. Siebert: Theoretical optimisation of a SOFC composite cathode, Electrochimica Acta 50, 2037–2046 (2005)

    Article  Google Scholar 

  57. M.M. Hussain, X. Li, I. Dincer: Mathematical modeling of transport phenomena in porous SOFC anodes, Int. J. Thermal Sci. 46, 48–56 (2007)

    Article  Google Scholar 

  58. M. Eikerling: Water management in cathode catalyst layers of PEM fuel cells: A structure-based model, J. Electrochem. Soc. 153, E58–E70 (2006)

    Article  Google Scholar 

  59. K. Wiezell, P. Gode, G. Lindbergh: Steady-state and EIS investigations of hydrogen electrodes and membranes in polymer electrolyte fuel cells: I. Modeling, J. Electrochem. Soc. 153, A749–A758 (2006)

    Article  Google Scholar 

  60. P. Gode, F. Jaouen, G. Lindbergh, A. Lundblad, G. Sundholm: Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode, Electrochimica Acta 48, 4175–4187 (2003)

    Article  Google Scholar 

  61. M. Sahraoui, C. Kharrat, K. Halouani: Two-dimensional modeling of electrochemical and transport phenomena in the porous structures of a PEMFC, Int. J. of Hydrogen Energy 34, 3091–3103 (2009)

    Article  Google Scholar 

  62. S. Chupin, T. Colinart, S. Didierjean, Y. Dubé, K. Agbossou, G. Maranzana, O. Lottin: Numerical investigation of the impact of gas and cooling flow configurations on current and water distributions in a polymer membrane fuel cell through a pseudo-two-dimensional diphasic model, J. Power Sources 195, 5213–5227 (2010)

    Article  Google Scholar 

  63. M. Secanell, K. Karan, A. Suleman, N. Djilali: Multi-variable optimization of PEMFC cathodes using an agglomerate model, Electrochimica Acta 52, 6318–6337 (2007)

    Article  Google Scholar 

  64. R.M. Rao, D. Bhattacharyya, R. Rengaswamy, S.R. Choudhury: A two-dimensional steady state model including the effect of liquid water for a PEM fuel cell cathode, J. Power Sources 173, 375–393 (2007)

    Article  Google Scholar 

  65. G. Lin, W. He, T. Van Nguyen: Modeling liquid water effects in the gas diffusion and catalyst layers of the cathode of a PEM fuel cell, J. Electrochem. Soc. 151, A1999–A2006 (2004)

    Article  Google Scholar 

  66. W. Sun, B.A. Peppley, K. Karan: An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters, Electrochimica Acta 50, 3359–3374 (2005)

    Article  Google Scholar 

  67. F. Jaouen, G. Lindbergh, G. Sundholm: Investigation of mass-transport limitations in the solid polymer fuel cell cathode I. Mathematical model, J. Electrochem. Soc. 149, A437–A447 (2002)

    Article  Google Scholar 

  68. P. Dobson, C. Lei, T. Navessin, M. Secanell: Characterization of the PEM fuel cell catalyst layer microstructure by nonlinear least-squares parameter estimation, J. Electrochem. Soc. 159, B514–B523 (2012)

    Article  Google Scholar 

  69. N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky: Single domain PEMFC model based on agglomerate catalyst geometry, J. Power Sources 115, 81–89 (2003)

    Article  Google Scholar 

  70. J. Marquis, M.O. Coppens: Achieving ultra-high platinum utilization via optimization of PEM fuel cell cathode catalyst layer microstructure, Chemical Engineering Science 102, 151–162 (2013)

    Article  Google Scholar 

  71. S. Kamarajugadda, S. Mazumder: Numerical investigation of the effect of cathode catalyst layer structure and composition on polymer electrolyte membrane fuel cell performance, J. Power Sources 183, 629–642 (2008)

    Article  Google Scholar 

  72. T. Vidaković-Koch, V.K. Mittal, T.Q.N. Do, M. Varničić, K. Sundmacher: Application of electrochemical impedance spectroscopy for studying of enzyme kinetics, Electrochimica Acta 110, 94–104 (2013)

    Article  Google Scholar 

  73. D. Gerteisen, A. Hakenjos, J.O. Schumacher: AC impedance modelling study on porous electrodes of proton exchange membrane fuel cells using an agglomerate model, J. Power Sources 173, 346–356 (2007)

    Article  Google Scholar 

  74. Q. Guo, V.A. Sethuraman, R.E. White: Parameter estimates for a PEMFC cathode, J. Electrochem. Soc. 151, A983–A993 (2004)

    Article  Google Scholar 

  75. E.P. Walter, L. Pronzato: Identification of Parametric Models: From Experimental Data (Springer, Berlin, Heidelberg 1997)

    MATH  Google Scholar 

  76. D. Song, Q. Wang, Z. Liu, M. Eikerling, Z. Xie, T. Navessin, S. Holdcroft: A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells, Electrochimica Acta 50, 3347–3358 (2005)

    Article  Google Scholar 

  77. U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm: Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: A thin-film rotating ring-disk electrode study, J. Electroanal. Chem. 495, 134–145 (2001)

    Article  Google Scholar 

  78. P.K. Das, X. Li, Z.-S. Liu: Analytical approach to polymer electrolyte membrane fuel cell performance and optimization, J. Electroanal. Chem. 604, 72–90 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vidaković-Koch, T., Hanke-Rauschenbach, R., Gonzalez Martínez, I., Sundmacher, K. (2017). Catalyst Layer Modeling. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics