Skip to main content

Transport in Liquid-Phase Electrochemical Devices

  • Chapter
Springer Handbook of Electrochemical Energy

Part of the book series: Springer Handbooks ((SHB))

  • 6310 Accesses

Abstract

Transport of reactants and products in liquid-fed electrochemical cells is critical in terms of reactant utilization, concentration polarizations, and coulombic efficiencies. Design of electrochemical flow cells can benefit from adequately detailed models that capture the locally variable impact of reactant depletion and product build-up on electrochemical reactions throughout the cell. This chapter illustrates the importance of transport modeling by presenting a finite-volume, two-dimensional (2-D) model of a liquid-phase electrochemical cell with simple cell geometry, but complex multistep chemistry at each electrode incorporating parasitic reactions and/or mixed potentials. The modeled cell involves two half-cell reactions, borohydride (\(\mathrm{BH_{4}^{-}}\)) oxidation and hydrogen peroxide (H2O2) reduction, in planar flow channels with electrodes separated by flowing liquid-phase electrolytes and an ion-exchange membrane . This generic cell topology is representative of many fuel cells and flow batteries. The finite-volume model solves for conservation of mass, momentum, species, and charge in both the cathode and anode flow channels for ideal, dilute, and concentrated electrolytes. The model couples the flows to complex boundary conditions at the electrochemically active electrode surfaces and the selective ion-exchange membrane. Model results show that the balance of advection, diffusion, and migration in the liquid electrolytes results in complex profiles that predict boundary layer build-up and significant advection perpendicular to the flow path. The direct borohydride-hydrogen peroxide fuel cell transport model, used to illustrate these concepts, shows how liquid-phase transport limits conversion and dictates cell voltages within the context of the competing reactions at the two electrodes. The chapter ends by demonstrating how such a model can be implemented in design studies to explore strategies for improving practical cell performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CFD:

computational fluid dynamics

DBFC:

direct borohydride fuel cell

DMFC:

direct methanol fuel cell

FE:

finite element

FV:

finite volume

PEMFC:

proton-exchange membrane fuel cell

References

  1. I.B. Sprague, P. Dutta: Modeling of diffuse charge effects in a microfluidic based laminar flow fuel cell, Numer. Heat Transf. Part A 59(1), 1–27 (2011)

    Article  Google Scholar 

  2. J. Ge, H. Liu: A three-dimensional mathematical model for liquid-fed direct methanol fuel cells, J. Power Sources 160(1), 413–421 (2006)

    Article  MathSciNet  Google Scholar 

  3. Z.H. Wang, C.Y. Wang: Mathematical modeling of liquid-feed direct methanol fuel cells, J. Electrochem. Soc. 150(4), A508–A519 (2003)

    Article  Google Scholar 

  4. J.Q. Zou, Y. He, Z. Miao, X. Li: Non-isothermal modeling of direct methanol fuel cell, Int. J. Hydrogen Energy 35(13), 7206–7216 (2010)

    Article  Google Scholar 

  5. V.A. Danilov, J. Lim, I.L. Moon, H. Chang: Three-dimensional, two-phase, CFD model for the design of a direct methanol fuel cell, J. Power Sources 162(2), 992–1002 (2006)

    Article  Google Scholar 

  6. R.O. Stroman, G.S. Jackson: Modeling the performance of an ideal NaBH4-H2O2 direct borohydride fuel cell, J. Power Sources 247, 756–769 (2014)

    Article  Google Scholar 

  7. R.O. Stroman, G.S. Jacksonc, Y. Garsanyd, K. Swider-Lyonsa: A calibrated hydrogen-peroxide direct-borohydride fuel cell model, J. Power Sources 271, 421–430 (2014)

    Article  Google Scholar 

  8. J. Christensen, D. Cook, P. Albertus: An efficient parallelizable 3D thermoelectrochemical model of a Li-ion cell, J. Electrochem. Soc. 160(11), A2258–A2267 (2013)

    Article  Google Scholar 

  9. G. Qiu, A.S. Joshi, C.R. Dennison, K.W. Knehr, E.C. Kumbur, Y. Sun: 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery, Electrochim. Acta 64, 46–64 (2012)

    Article  Google Scholar 

  10. J.S. Newman, K.E. Thomas-Alyea: Electrochemical Systems, 3rd edn. (Wiley, Hoboken 2004) p. 647

    Google Scholar 

  11. I. Sprague, P. Dutta: Role of the diffuse layer in acidic and alkaline fuel cells, Electrochim. Acta 56(12), 4518–4525 (2011)

    Article  Google Scholar 

  12. J. Liu, C.W. Monroe: Solute-volume effects in electrolyte transport, Electrochim. Acta 135, 447–460 (2014)

    Article  Google Scholar 

  13. R.B. Bird, W.E. Stewart, E.N. Lightfoot: Transport Phenomena, 2nd edn. (Wiley, New York 2002)

    Google Scholar 

  14. G. Ottonello: Principles of Geochemistry (Columbia Univ. Press, New York 1997)

    Google Scholar 

  15. K.S. Pitzer, G. Mayorga: Thermodynamics of electrolytes II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent, J. Phys. Chem. 77(19), 2300–2308 (1973)

    Article  Google Scholar 

  16. S. Whitaker: Diffusion and dispersion in porous media, Am. Inst. Chem. Eng. J. 13(3), 420–427 (1967)

    Article  Google Scholar 

  17. H. Wu, P. Berg, X. Li: Non-isothermal transient modeling of water transport in PEM fuel cells, J. Power Sources 165, 232–243 (2007)

    Article  Google Scholar 

  18. D.H. Schwarz, N. Djilali: 3D modeling of catalyst layers in PEM fuel cells: Effects of transport limitations, J. Electrochem. Soc. 154(11), B1167–B1178 (2007)

    Article  Google Scholar 

  19. E.S. Oran, J.P. Boris: Numerical Simulation of Reactive Flow, 2nd edn. (Cambridge Univ. Press, Cambridge 2001)

    MATH  Google Scholar 

  20. J. Ma, N.A. Choudhury, Y. Sahai: A comprehensive review of direct borohydride fuel cells, Renew. Sustain. Energy Rev. 14(1), 183–199 (2010)

    Article  Google Scholar 

  21. U.B. Demirci: Direct borohydride fuel cell: Main issues met by the membrane-electrodes-assembly and potential solutions, J. Power Sources 172(2), 676–687 (2007)

    Article  Google Scholar 

  22. R. Retnamma, A.Q. Novais, C.M. Rangel: Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications: A review, Int. J. Hydrogen Energy 36(16), 9772–9790 (2011)

    Article  Google Scholar 

  23. D.M.F. Santos, C.A.C. Sequeira: Sodium borohydride as a fuel for the future, Renew. Sustain. Energy Rev. 15(8), 3980–4001 (2011)

    Article  Google Scholar 

  24. B.H. Liu, Z.P. Li: Current status and progress of direct borohydride fuel cell technology development, J. Power Sources 187(2), 291–297 (2009)

    Article  Google Scholar 

  25. C.P. de Leon, F.C. Walsh, D. Pletcher, D.J. Browning, J.B. Lakeman: Direct borohydride fuel cells, J. Power Sources 155(2), 172–181 (2006)

    Article  Google Scholar 

  26. I. Merino-Jimenez, C. Ponce de León, A.A. Shah, F.C. Walsh: Developments in direct borohydride fuel cells and remaining challenges, J. Power Sources 219, 339–357 (2012)

    Article  Google Scholar 

  27. G.H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu, E. Byrd, R. Gimlin, P.J. Shrestha, G. Benavides, J. Laystrom, D. Carroll: Direct NaBH4/H2O2 fuel cells, J. Power Sources 165(2), 509–516 (2007)

    Article  Google Scholar 

  28. R.C. Urian, C.J. Patrissi, S.P. Tucker, C.M. Deschenes, F.W. Bielwaski, D.W. Atwater: Direct borohydride/hydrogen peroxide fuel cell development, 43rd Power Sources Conference 2008 (Curran Associates, Red Hook 2011) pp. 295–298

    Google Scholar 

  29. R.C. Urian: Air independent fuel cells utilizing borohydride and hydrogen peroxide, Mater. Res. Soc. Symp. Proc. (2010), doi:10.1557/PROC-1213-T01-09

  30. D.M.F. Santos, C.A.C. Sequeira: Chronopotentiometric investigation of borohydride oxidation at a gold electrode, J. Electrochem. Soc. 157(1), F16–F21 (2010)

    Article  Google Scholar 

  31. C.R. Cloutier, A. Alfantazi, E. Gyenge: Physicochemical transport properties of aqueous sodium metaborate solutions for sodium borohydride hydrogen generation and storage and fuel cell applications, Adv. Mater. Res. 15–17, 267–274 (2006)

    Google Scholar 

  32. W.C. Schumb: Hydrogen Peroxide, Am. Chem. Soc. Monogr. (Reinhold, New York 1955)

    Google Scholar 

  33. J. Newman: Current distribution on a rotating disk below limiting current, J. Electrochem. Soc. 113(12), 1235–1241 (1966)

    Article  Google Scholar 

  34. J.M. Nielsen, A.W. Adamson, J.W. Cobble: The self-diffusion coefficients of the ions in aqueous sodium chloride and sodium sulfate at 25-degrees, J. Am. Chem. Soc. 74(2), 446–451 (1952)

    Article  Google Scholar 

  35. A. Poisson, J. Chanu: Semi-empirical equations for the partial molar volumes of some ions in water and seawater, Mar. Chem. 8, 289–298 (1980)

    Article  Google Scholar 

  36. T. Okada, S. Møller-Holst, O. Gorseth, S. Kjelstrup: Transport and equilibrium properties of Nafion membranes with H+ and Na+ ions, J. Electroanal. Chem. 442(1/2), 137–145 (1998)

    Article  Google Scholar 

  37. T. Okada, H. Satou, M. Okuno, M. Yuasa: Ion and water transport characteristics of perfluorosulfonated ionomer membranes with H+ and alkali metal cations, J. Phys. Chem. B 106(6), 1267–1273 (2002)

    Article  Google Scholar 

  38. C.E. Evans, R.D. Noble, S. Nazeri-Thompson, B. Nazeri, C.A. Koval: Role of conditioning on water uptake and hydraulic permeability of Nafion membranes, J. Membr. Sci. 279(1/2), 521–528 (2006)

    Article  Google Scholar 

  39. D.M.F. Santos, C.A.C. Sequeira: Effect of membrane separators on the performance of direct borohydride fuel cells, J. Electrochem. Soc. 159(2), B126–B132 (2012)

    Article  Google Scholar 

  40. N. Lakshminarayanaiah: Transport Phenomena in Membranes (Academic, New York 1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stroman, R.O., Jackson, G. (2017). Transport in Liquid-Phase Electrochemical Devices. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics