Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter describes various processes for electrodeposition of nanomaterials including:

  1. 1.

    Template-free direct electrodeposition of nanoparticles with unique shapes, nanowires, nanotubes, and conducting polymer nanostructures

  2. 2.

    Fabrication of various templates for template-assisted electrodeposition, and electrodeposition of nanowires, -rods, -tubes using the templates

  3. 3.

    Electrodeposition of nanoparticles, -wires, -wire arrays on highly oriented pyrolytic graphite (GlossaryTerm

    HOPG

    )

  4. 4.

    Electrodeposition using lithographically patterned methods, such as photolithographic, interference lithographic, electron-beam lithography (GlossaryTerm

    EBL

    ) methods, and electrochemical lithographic methods.

Finally, examples of using the electrodeposited nanomaterials for the lithium-ion batteries (GlossaryTerm

LIB

s), and pseudocapacitors are presented.

This chapter outlines the representative electrochemical strategies in the recent literature for the fabrication of nanostructured materials, such as metals, alloys, polymers, and semiconductors. In view of the fact, the electrodeposited nanomaterials have numerous applications; this chapter will focus on the applications of these nanomaterials for the energy storage and conversions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAM:

anodic alumina membrane

AAO:

anodic aluminum oxide

AFM:

atomic force microscopy

CA:

chronoamperometry

CdS:

cadmium sulfide

CdSe:

cadmium selenide

CM:

crystal modifier

CNT:

carbon nanotube

CP:

chronopotentiometry

CTAB:

cetyltrimethyl ammonium bromide

CV:

cyclic voltammetry

CVD:

chemical vapor deposition

DBSA:

dodecylbenzene sulfonic acid

DC:

direct current

DMF:

dimethylformamide

DMSO:

dimethylsulfoxide

DVB:

divinylbenzene

EBL:

electron-beam lithography

EDLC:

electrochemical double-layer capacitor

EDS:

energy-dispersive spectroscopy

EL:

electrochemical lithography

EMIC:

ethyl-3-methylimidazolium chloride

ESED:

electrochemical step-edge decoration

fcc:

face-centered cubic

FESEM:

field emission scanning electron microscopy

GC:

glassy carbon

HA:

hard anodization

HDWNT:

hybrid double-walled nanotube

HFGM:

hierarchical flowerlike gold microstructure

HOPG:

highly ordered pyrolytic graphite

IDC:

interparticle diffusional coupling

IL:

interference lithography

ionic liquid

ITO:

indium tin oxide

L-CSA:

L-camphorsulfonic acid

LIB:

lithium-ion battery

LPNE:

lithographically patterned nanowire electrodeposition

LSP:

localized surface plasmon

MA:

mild anodization

MIBK:IPA:

methyl isobutyl keton isopropanol

MO:

methyl orange

NC:

nano crystal

NR:

nanorod

NSA:

naphthalenesulfonic acid

NW:

nanowire

OTS:

octadecyltrichlorosilane

PANI:

polyaniline

PBS:

phosphate buffer solution

PC:

polycarbonate

PEDOT:

poly(3,4-ethylenedioxythiophene)

PET:

poly(ethylene terephthalate)

PMMA:

poly(methyl methacrylate)

PPy:

polypyrrole

PR:

photoresist

PSA:

1-pyrenesulfonic acid

PVD:

physical vapor deposition

PVP:

poly(vinylpyrrolidone)

RD:

rhombic-dodecahedral

RIE:

reactive-ion etching

SCE:

saturated calomel electrode

SC:

supercapacitor

SDBS:

sodium dodecyl benzene sulfonate

SDS:

sodium dodecyl sulfate

SEI:

solid electrolyte interphase

SEM:

scanning electron microscopy

SERS:

surface-enhanced Raman scattering

STM:

scanning tunneling microscopy

TB:

tetragonal bipyramidal

TEM:

transmission electron microscopy

TFSM:

thiol-top-functionalized silane monolayer

THH:

tetrahexahedral

TU:

thiourea

UPD:

underpotential deposition

UV:

ultraviolet

XRD:

x-ray diffraction

References

  1. N. Tian, Z.-Y. Zhou, N.-F. Yu, L.-Y. Wang, S.-G. Sun: Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation, J. Am. Chem. Soc. 132, 7580–7581 (2010)

    Article  Google Scholar 

  2. Z.-Y. Zhou, N. Tian, Z.-Z. Huang, D.-J. Chen, S.-G. Sun: Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method, Faraday Discuss. 140, 81–92 (2009)

    Article  Google Scholar 

  3. N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z.L. Wang: Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science 316, 732–735 (2007)

    Article  Google Scholar 

  4. N. Tian, Z.-Y. Zhou, S.-G. Sun: Electrochemical preparation of Pd nanorods with high-index facets, Chem. Commun. 12, 1502–1504 (2009)

    Article  Google Scholar 

  5. L. Wei, Y.-J. Fan, N. Tian, Z.-Y. Zhou, X.-Q. Zhao, B.-W. Mao, S.-G. Sun: Electrochemically shape-controlled synthesis in deep eutectic solvents – A new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity, J. Phys. Chem. C 116, 2040–2044 (2012)

    Article  Google Scholar 

  6. Y.-J. Deng, N. Tian, Z.-Y. Zhou, R. Huang, Z.-L. Liu, J. Xiao, S.-G. Sun: Alloy tetrahexahedral Pd–Pt catalysts: Enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure, Chem. Sci. 3, 1157–1161 (2012)

    Article  Google Scholar 

  7. Y.-X. Chen, S.-P. Chen, Z.-Y. Zhou, N. Tian, Y.-X. Jiang, S.-G. Sun, Y. Ding, Z.L. Wang: Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry, J. Am. Chem. Soc. 131, 10860–10862 (2009)

    Article  Google Scholar 

  8. Y.-X. Chen, S.-P. Chen, Q.-S. Chen, Z.-Y. Zhou, S.-G. Sun: Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction, Electrochim. Acta 53, 6938–6943 (2008)

    Article  Google Scholar 

  9. A. Radi, D. Pradhan, Y. Sohn, K.T. Leung: Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu--Cu2O core--shell nanoparticles on Si(100) by one-step, templateless, capping-agent-free electrodeposition, ACS Nano 4, 1553–1560 (2010)

    Article  Google Scholar 

  10. S.C. Tang, X.K. Meng, S. Vongehr: An additive-free electrochemical route to rapid synthesis of large-area copper nano-octahedra on gold film substrates, Electrochem. Commun. 11, 867–870 (2009)

    Article  Google Scholar 

  11. W.-Y. Ko, W.-H. Chen, C.-Y. Cheng, K.-J. Lin: Architectural growth of Cu nanoparticles through electrodeposition, Nanoscale Res. Lett. 4, 1481–1485 (2009)

    Article  Google Scholar 

  12. W.-Y. Ko, W.-H. Chen, S.-D. Tzeng, S. Gwo, K.-J. Lin: Synthesis of pyramidal copper nanoparticles on gold substrate, Chem. Mater. 18, 6097–6099 (2006)

    Article  Google Scholar 

  13. W. Qiu, M. Xu, F. Chen, X. Yang, Y. Nan, H. Chen: Morphology evolution route of PbS crystals via environment-friendly electrochemical deposition, Cryst. Eng. Comm. 13, 4689–4694 (2011)

    Article  Google Scholar 

  14. L. Wang, S. Guo, X. Hu, S. Dong: Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures: Electrodeposited superhydrophobic surface, Electrochem. Commun. 10, 95–99 (2008)

    Article  Google Scholar 

  15. M.J. Siegfried, K.-S. Choi: Elucidation of an overpotential-limited branching phenomenon observed during the electrocrystallization of cuprous oxide, Angew. Chem. Int. Ed. 47, 368–372 (2008)

    Article  Google Scholar 

  16. Y. Tian, H. Liu, G. Zhao, T. Tatsuma: Shape-controlled electrodeposition of gold nanostructures, J. Phys. Chem. B 110, 23478–23481 (2006)

    Article  Google Scholar 

  17. S. Tang, X. Meng, C. Wang, Z. Cao: Flower like Ag microparticles with novel nanostructure synthesized by an electrochemical approach, Mater. Chem. Phys. 114, 842–847 (2009)

    Article  Google Scholar 

  18. H. Zhang, W. Zhou, Y. Du, P. Yang, C. Wang: One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation, Electrochem. Commun. 12, 882–885 (2010)

    Article  Google Scholar 

  19. Y.-X. Nan, F. Chen, L.-G. Yang, H.-Z. Chen: Electrochemical synthesis and charge transport properties of CdS nanocrystalline thin films with a conifer-like structure, J. Phys. Chem. C 114, 11911–11917 (2010)

    Article  Google Scholar 

  20. Z.L. Bao, K.L. Kavanagh: Aligned Co nanodiscs by electrodeposition on GaAs, J. Cryst. Growth 287, 514–517 (2006)

    Article  Google Scholar 

  21. F.K. Jia, K.W. Wong, R. Du: Direct growth of highly catalytic palladium nanoplates array onto gold substrate by a template-free electrochemical route, Electrochem. Commun. 11, 519–521 (2009)

    Article  Google Scholar 

  22. F. Jia, K.-W. Wong, L. Zhang: Electrochemical synthesis of nanostructured palladium of different morphology directly on gold substrate through a cyclic deposition/dissolution route, J. Phys. Chem. C 113, 7200–7206 (2009)

    Article  Google Scholar 

  23. G. Liu, W. Cai, L. Kong, G. Duan, F. Lue: Vertically cross-linking silver nanoplate arrays with controllable density based on seed-assisted electrochemical growth and their structurally enhanced SERS activity, J. Mater. Chem. 20, 767–772 (2010)

    Article  Google Scholar 

  24. G.-R. Li, C.-Z. Yao, X.-H. Lu, F.-L. Zheng, Z.-P. Feng, X.-L. Yu, C.-Y. Su, Y.-X. Tong: Facile and efficient electrochemical synthesis of PbTe dendritic structures, Chem. Mater. 20, 3306–3314 (2008)

    Article  Google Scholar 

  25. T. Hang, M. Li, Q. Fei, D. Mao: Characterization of nickel nanocones routed by electrodeposition without any template, Nanotechnology 19(3), 035201 (2008)

    Article  Google Scholar 

  26. T. Hang, A. Hu, M. Li, D. Mao: Structural control of a cobalt nanocone array grown by directional electrodeposition, Cryst. Eng. Comm. 12, 2799–2802 (2010)

    Article  Google Scholar 

  27. T. Hang, A. Hu, H. Ling, M. Li, D. Mao: Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition, Appl. Surf. Sci. 256, 2400–2404 (2010)

    Article  Google Scholar 

  28. W. Ye, J. Yan, Q. Ye, F. Zhou: Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures: Growth and their multiple applications, J. Phys. Chem. C 114, 15617–15624 (2010)

    Article  Google Scholar 

  29. X. Qin, Z. Miao, Y. Fang, D. Zhang, J. Ma, L. Zhang, Q. Chen, X. Shao: Preparation of dendritic nanostructures of silver and their characterization for electroreduction, Langmuir 28, 5218–5226 (2012)

    Article  Google Scholar 

  30. Y. Zhang, Y. Ni, X. Wang, J. Xia, J. Hong: Polycrystalline Cu7Te4 dendritic microstructures constructed by spherical nanoparticles: Fast electrodeposition, influencing factors, and the shape evolution, Cryst. Growth Des. 11, 4368–4377 (2011)

    Article  Google Scholar 

  31. Y.-J. Song, J.-Y. Kim, K.-W. Park: Synthesis of Pd dendritic nanowires by electrochemical deposition, Cryst. Growth Des. 9, 505–507 (2009)

    Article  Google Scholar 

  32. Y. Ni, Y. Zhang, L. Zhang, J. Hong: Mass synthesis of dendritic Bi nanostructures by a facile electrodeposition route and influencing factors, Cryst. Eng. Comm. 13, 794–799 (2011)

    Article  Google Scholar 

  33. V. Fleury, J.H. Kaufman, D.B. Hibbert: Mechanism of a morphology transition in ramified electrochemical growth, Nature 367, 435–438 (1994)

    Article  Google Scholar 

  34. T.-H. Lin, C.-W. Lin, H.-H. Liu, J.-T. Sheu, W.-H. Hung: Potential-controlled electrodeposition of gold dendrites in the presence of cysteine, Chem. Commun. 47, 2044–2046 (2011)

    Article  Google Scholar 

  35. M. Wang, S. Zhong, X.B. Yin, J.M. Zhu, R.W. Peng, Y. Wang, K.Q. Zhang, N.B. Ming: Nanostructured copper filaments in electrochemical deposition, Phys. Rev. Lett. 86, 3827–3830 (2001)

    Article  Google Scholar 

  36. M. Zhang, G. Zuo, Z. Zong, H. Cheng, Z. He, C. Yang, G. Zou: Self-assembly of copper micro/nanoscale parallel wires by electrodeposition on a silicon substrate, Small 2, 727–731 (2006)

    Article  Google Scholar 

  37. M.Z. Zhang, G.H. Zuo, Z.C. Zong, H.Y. Chen, Z. He, C.M. Yang, D.M. Li, G.T. Zou: Self-assembly from the branch pattern to parallel wire array in electrodeposition, Appl. Phys. Lett. 88, 203106 (2006)

    Article  Google Scholar 

  38. S. Zhong, T. Koch, M. Wang, T. Scherer, S. Walheim, H. Hahn, T. Schimmel: Nanoscale twinned copper nanowire formation by direct electrodeposition, Small 5, 2265–2270 (2009)

    Article  Google Scholar 

  39. X.-P. Huang, W. Han, Z.-L. Shi, D. Wu, M. Wang, R.-W. Peng, N.-B. Ming: Electrodeposition of periodically nanostructured straight cobalt filament arrays, J. Phys. Chem. C 113, 1694–1697 (2009)

    Article  Google Scholar 

  40. S. Peulon, D. Lincot: Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions, J. Electrochem. Soc. 145, 864–874 (1998)

    Article  Google Scholar 

  41. T. Yoshida, D. Komatsu, N. Shimokawa, H. Minoura: Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths, Thin Solid Films 451, 166–169 (2004)

    Article  Google Scholar 

  42. M. Izaki: Electrolyte optimization for cathodic growth of zinc oxide Films, J. Electrochem. Soc. 143, L53–L55 (1996)

    Article  Google Scholar 

  43. M. Izaki, T. Omi: Transparent zinc oxide films prepared by electrochemical reaction, Appl. Phys. Lett. 68, 2439–2440 (1996)

    Article  Google Scholar 

  44. M. Lai, D.J. Riley: Templated electrosynthesis of zinc oxide nanorods, Chem. Mater. 18, 2233–2237 (2006)

    Article  Google Scholar 

  45. T. Pauporté, D. Lincot: Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride, Appl. Phys. Lett. 75, 3817–3819 (1999)

    Article  Google Scholar 

  46. S. Peulon, D. Lincot: Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Adv. Mater. 8, 166 (1996)

    Article  Google Scholar 

  47. R. Liu, A.A. Vertegel, E.W. Bohannan, T.A. Sorenson, J.A. Switzer: Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold, Chem. Mater. 13, 508–512 (2001)

    Article  Google Scholar 

  48. T. Pauporte, R. Cortes, M. Froment, B. Beaumont, D. Lincot: Electrocrystallization of epitaxial zinc oxide onto gallium nitride, Chem. Mater. 14, 4702–4708 (2002)

    Article  Google Scholar 

  49. T. Pauporte, D. Lincot, B. Viana, F. Pelle: Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition, Appl. Phys. Lett. 89(23), 233112–233112 (2006)

    Article  Google Scholar 

  50. D. Pradhan, S. Sindhwani, K.T. Leung: Parametric study on dimensional control of ZnO nanowalls and nanowires by electrochemical deposition, Nanoscale Res. Lett. 5, 1727–1736 (2010)

    Article  Google Scholar 

  51. J. Lee, Y. Tak: Electrodeposition of ZnO on ITO electrode by potential modulation method, Electrochem. Solid State Lett. 4, C63–C65 (2001)

    Article  Google Scholar 

  52. R. Tena-Zaera, J. Elias, G. Wang, C. Levy-Clement: Role of chloride ions on electrochemical deposition of ZnO nanowire arrays from O-2 reduction, J. Phys. Chem. C 111, 16706–16711 (2007)

    Article  Google Scholar 

  53. J. Elias, R. Tena-Zaera, C. Levy-Clement: Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays, J. Phys. Chem. C 112, 5736–5741 (2008)

    Article  Google Scholar 

  54. T. Pauporte, E. Jouanno, F. Pelle, B. Viana, P. Aschehoug: Key growth parameters for the electrodeposition of ZnO films with an intense UV-light emission at room temperature, J. Phys. Chem. C 113, 10422–10431 (2009)

    Article  Google Scholar 

  55. T. Pauporte, G. Bataille, L. Joulaud, F.J. Vermersch: Well-aligned ZnO nanowire arrays prepared by seed-layer-free electrodeposition and their cassie-wenzel transition after hydrophobization, J. Phys. Chem. C 114, 194–202 (2010)

    Article  Google Scholar 

  56. O. Lupan, T. Pauporte, B. Viana, I.M. Tiginyanu, V.V. Ursaki, R. Cortes: Epitaxial electrodeposition of ZnO nanowire arrays on p-GaN for efficient UV-light-emitting diode fabrication, ACS Appl. Mater. Interfaces 2, 2083–2090 (2010)

    Article  Google Scholar 

  57. D. Pradhan, Z. Su, S. Sindhwani, J.F. Honek, K.T. Leung: Electrochemical growth of ZnO nanobelt-like structures at 0 °C: Synthesis, characterization, and in-situ glucose oxidase embedment, J. Phy. Chem. C 115, 18149–18156 (2011)

    Article  Google Scholar 

  58. Z. Feng, Q. Zhang, L. Lin, H. Guo, J. Zhou, Z. Lin: Preferential growth of CdSe nanowires on conducting glass: Template-free electrodeposition and application in photovoltaics, Chem. Mater. 22, 2705–2710 (2010)

    Article  Google Scholar 

  59. G. She, W. Shi, X. Zhang, T. Wong, Y. Cai, N. Wang: Template-free electrodeposition of one-dimensional nanostructures of tellurium, Cryst. Growth Des. 9, 663–666 (2009)

    Article  Google Scholar 

  60. K. Hoshino, Y. Hitsuoka: One-step template-free electrosynthesis of cobalt nanowires from aqueous [Co(NH)]Cl solution, Electrochem. Commun. 7, 821–828 (2005)

    Article  Google Scholar 

  61. A. Ghahremaninezhad, E. Asselin, D.G. Dixon: Electrodeposition and growth mechanism of copper sulfide nanowires, J. Phys. Chem. C 115, 9320–9334 (2011)

    Article  Google Scholar 

  62. J.-M. Yang, S.-P. Gou, I.W. Sun: Single-step large-scale and template-free electrochemical growth of Ni–Zn alloy filament arrays from a zinc chloride based ionic liquid, Chem. Commun. 46, 2686–2688 (2010)

    Article  Google Scholar 

  63. A. Ghahremaninezhad, E. Asselin, D.G. Dixon: One-step template-free electrosynthesis of 300 µm long copper sulfide nanowires, Electrochem. Commun. 13, 12–15 (2011)

    Article  Google Scholar 

  64. J.-M. Yang, Y.-T. Hsieh, T.-T. Chu-Tien, I.W. Sun: Electrodeposition of distinct one-dimensional Zn biaxial microbelt from the zinc chloride-1-ethyl-3-methylidazolium chloride ionic liquid, J. Electrochem. Soc. 158, D235–D239 (2011)

    Article  Google Scholar 

  65. L. Liang, C.J. Liu, F. Windisch Jr., G.J. Exarhos, Y. Lin: Direct assembly of large arrays of oriented conducting polymer nanowires, Angew. Chem. Int. Ed. 41, 3665–3668 (2002)

    Article  Google Scholar 

  66. J. Liu, Y. Lin, L. Liang, J.A. Voigt, D.L. Huber, Z.R. Tian, E. Coker, B. Mckenzie, M.J. McDermott: Templateless assembly of molecularly aligned conductive polymer nanowires a new approach for oriented nanostructures, Chemistry 9, 604–611 (2003)

    Article  Google Scholar 

  67. K. Wang, J. Huang, Z. Wei: Conducting polyaniline nanowire arrays for high performance supercapacitors, J. Phys. Chem. C 114, 8062–8067 (2010)

    Article  Google Scholar 

  68. L. Jiang, Z. Cui: One-step synthesis of oriented polyaniline nanorods through electrochemical deposition, Polym. Bull. 56, 529–537 (2006)

    Article  Google Scholar 

  69. Y. Guo, Y. Zhou: Polyaniline nanofibers fabricated by electrochemical polymerization: A mechanistic study, Eur. Polym. J. 43, 2292–2297 (2007)

    Article  Google Scholar 

  70. S. Mu, Y. Yang: Spectral characteristics of polyaniline nanostructures synthesized by using cyclic voltammetry at different scan rates, J. Phys. Chem. B 112, 11558–11563 (2008)

    Article  Google Scholar 

  71. H. Zhang, J. Wang, Z. Wang, F. Zhang, S. Wang: Electrodeposition of polyaniline nanostructures: A lamellar structure, Synth. Met. 159, 277–281 (2009)

    Article  Google Scholar 

  72. R.M. Nyffenegger, R.M. Penner: Nanometer-scale electropolymerization of aniline using the scanning tunneling microscope, J. Phys. Chem. 100, 17041–17049 (1996)

    Article  Google Scholar 

  73. D. Ge, J. Wang, Z. Wang, S. Wang: Electrochemical synthesis of polypyrrole nanowires on composite electrode, Synth. Met. 132, 93–95 (2002)

    Article  Google Scholar 

  74. Y. Yang, M. Wan: Microtubules of polypyrrole synthesized by an electrochemical template-free method, J. Mater. Chem. 11, 2022–2027 (2001)

    Article  Google Scholar 

  75. Y.S. Yang, J. Liu, M.X. Wan: Self-assembled conducting polypyrrole micro/nanotubes, Nanotechnology 13, 771–773 (2002)

    Article  Google Scholar 

  76. S. Gupta: Template-free synthesis of conducting-polymer polypyrrole micro/nanostructures using electrochemistry, Appl. Phys. Lett. 88(6), 0631081 (2006)

    Article  Google Scholar 

  77. L.T. Qu, G.Q. Shi: Electrochemical synthesis of novel polypyrrole microstructures, Chem. Commun. 2, 206–207 (2003)

    Article  Google Scholar 

  78. L.T. Qu, G.Q. Shi, F. Chen, J.X. Zhang: Electrochemical growth of polypyrrole microcontainers, Macromolecules 36, 1063–1067 (2003)

    Article  Google Scholar 

  79. V. Bajpai, P.G. He, L.M. Dai: Conducting-polymer microcontainers: Controlled syntheses and potential applications, Adv. Funct. Mater. 14, 145–151 (2004)

    Article  Google Scholar 

  80. J. Wang, Y. Xu, F. Yan, J. Zhu, J. Wang: Template-free prepared micro/nanostructured polypyrrole with ultrafast charging–discharging rate and long cycle life, J. Power Sources 196, 2373–2379 (2011)

    Article  Google Scholar 

  81. G.W. Lu, C. Li, G.Q. Shi: Polypyrrole micro- and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid, Polymer 47, 1778–1784 (2006)

    Article  Google Scholar 

  82. X. Yang, T. Dai, Z. Zhu, Y. Lu: Electrochemical synthesis of functional polypyrrole nanotubes via a self-assembly process, Polymer 48, 4021–4027 (2007)

    Article  Google Scholar 

  83. J. Zang, S.-J. Bao, C.M. Li, H. Bian, X. Cui, Q. Bao, C.Q. Sun, J. Guo, K. Lian: Well-aligned cone-shaped nanostructure of polypyrrole/RuO2 and its electrochemical supercapacitor, J. Phys. Chem. C 112, 14843–14847 (2008)

    Article  Google Scholar 

  84. J. Zang, C.M. Li, S.-J. Bao, X. Cui, Q. Bao, C.Q. Sun: Template-free electrochemical synthesis of superhydrophilic polypyrrole nanofiber network, Macromolecules 41, 7053–7057 (2008)

    Article  Google Scholar 

  85. M. Li, Z. Wei, L. Jiang: Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy, J. Mater. Chem. 18, 2276 (2008)

    Google Scholar 

  86. J.C. Hulteen, C.R. Martin: A general template-based method for the preparation of nanomaterials, J. Mater. Chem. 7, 1075–1087 (1997)

    Article  Google Scholar 

  87. K. Wada, T. Shimohira, M. Yamada, N. Baba: Microstructure of porous anodic oxide-films on aluminum, J. Mater. Sci. 21, 3810–3816 (1986)

    Article  Google Scholar 

  88. R.C. Furneaux, W.R. Rigby, A.P. Davidson: The formation of controlled-porosity membranes from anodically oxidized aluminium, Nature 337, 147–149 (1989)

    Article  Google Scholar 

  89. A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele: Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys. 84, 6023–6026 (1998)

    Article  Google Scholar 

  90. F.Y. Li, L. Zhang, R.M. Metzger: On the growth of highly ordered pores in anodized aluminum oxide, Chem. Mater. 10, 2470–2480 (1998)

    Article  Google Scholar 

  91. H. Masuda, K. Fukuda: Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina, Science 268, 1466–1468 (1995)

    Article  Google Scholar 

  92. H. Masuda, F. Hasegwa, S. Ono: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J. Electrochem. Soc. 144, L127–L130 (1997)

    Article  Google Scholar 

  93. W. Lee: The anodization of aluminum for nanotechnology applications, JOM 62, 57–63 (2010)

    Article  Google Scholar 

  94. P. Bocchetta, C. Sunseri, A. Bottino, G. Capannelli, G. Chiavarotti, S. Piazza, F. Di Quarto: Asymmetric alumina membranes electrochemically formed in oxalic acid solution, J. Appl. Electrochem. 32, 977–985 (2002)

    Article  Google Scholar 

  95. J.H. Yuan, F.Y. He, D.C. Sun, X.H. Xia: A simple method for preparation of through-hole porous anodic alumina membrane, Chem. Mater. 16, 1841–1844 (2004)

    Article  Google Scholar 

  96. J.M. Montero-Moreno, M. Sarret, C. Muller: Influence of the aluminum surface on the final results of a two-step anodizing, Surf. Coat. Technol. 201, 6352–6357 (2007)

    Article  Google Scholar 

  97. Z. Su, W. Zhou: Formation mechanism of porous anodic aluminium and titanium oxides, Adv. Mater. 20, 3663–3667 (2008)

    Article  Google Scholar 

  98. J.M. Montero-Moreno, M. Belenguer, M. Sarret, C.M. Mueller: Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques, Electrochim. Acta 54, 2529–2535 (2009)

    Article  Google Scholar 

  99. T.T. Xu, R.D. Piner, R.S. Ruoff: An improved method to strip aluminum from porous anodic alumina films, Langmuir 19, 1443–1445 (2003)

    Article  Google Scholar 

  100. G.D. Sulka, K.G. Parkola: Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid, Electrochim. Acta 52, 1880–1888 (2007)

    Article  Google Scholar 

  101. M.L. Tian, S.Y. Xu, J.G. Wang, N. Kumar, E. Wertz, Q. Li, P.M. Campbell, M.H.W. Chan, T.E. Mallouk: Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step, Nano Lett. 5, 697–703 (2005)

    Article  Google Scholar 

  102. Y. Li, M. Zheng, L. Ma, W. Shen: Fabrication of highly ordered nanoporous alumina films by stable high-field anodization, Nanotechnology 17, 5101–5105 (2006)

    Article  Google Scholar 

  103. J.M. Montero-Moreno, M. Sarret, C. Mueller: Some considerations on the influence of voltage in potentiostatic two-step anodizing of AA1050, J. Electrochem. Soc. 154, C169–C174 (2007)

    Article  Google Scholar 

  104. S. Ono, M. Saito, M. Ishiguro, H. Asoh: Controlling factor of self-ordering of anodic porous alumina, J. Electrochem. Soc. 151, B473–B478 (2004)

    Article  Google Scholar 

  105. S.Z. Chu, K. Wada, S. Inoue, M. Isogai, A. Yasumori: Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization, Adv. Mater. 17, 2115–2119 (2005)

    Article  Google Scholar 

  106. W. Lee, R. Ji, U. Goesele, K. Nielsch: Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nat. Mater. 5, 741–747 (2006)

    Article  Google Scholar 

  107. K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U. Goesele: Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization, ACS Nano 2, 302–310 (2008)

    Article  Google Scholar 

  108. W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, U. Gosele: Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium, Nat. Nanotechnol. 3, 234–239 (2008)

    Article  Google Scholar 

  109. W. Lee, J.-C. Kim, U. Goesele: Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions, Adv. Funct. Mater. 20, 21–27 (2010)

    Article  Google Scholar 

  110. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, T. Tamamura: Square and triangular nanohole array architectures in anodic alumina, Adv. Mater. 13, 189–192 (2001)

    Article  Google Scholar 

  111. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura: Highly ordered nanochannel-array architecture in anodic alumina, Appl. Phys. Lett. 71, 2770–2772 (1997)

    Article  Google Scholar 

  112. H. Asoh, K. Nishio, M. Nakao, T. Tamamura, H. Masuda: Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al, J. Electrochem. Soc. 148, B152–B156 (2001)

    Article  Google Scholar 

  113. A. Apel: Tracketching technique in membrane technology, Radiat. Meas. 34, 559–566 (2001)

    Article  Google Scholar 

  114. N.J. Gerein, J.A. Haber: Effect of ac electrodeposition conditions on the growth of high aspect ratio copper nanowires in porous aluminum oxide templates, J. Phys. Chem. B 109, 17372–17385 (2005)

    Article  Google Scholar 

  115. A.L. Friedman, L. Menon: Optimal parameters for synthesis of magnetic nanowires in porous alumina templates – Electrodeposition study, J. Electrochem. Soc. 154, E68–E70 (2007)

    Article  Google Scholar 

  116. F. Maurer, J. Broetz, S. Karim, M. Eugenia, T. Molares, C. Trautmann, H. Fuess: Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions, Nanotechnology 18(13), 135709 (2007)

    Article  Google Scholar 

  117. D. Borissov, S. Isik-Uppenkamp, M. Rohwerder: Fabrication of iron nanowire arrays by electrodeposition into porous alumina, J. Phys. Chem. C 113, 3133–3138 (2009)

    Article  Google Scholar 

  118. K. Nielsch, F. Muller, A.P. Li, U. Gosele: Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Adv. Mater. 12, 582–586 (2000)

    Article  Google Scholar 

  119. M. Qu, G. Zhao, Q. Wang, X. Cao, J. Zhang: Fabrication of superhydrophobic surfaces by a Pt nanowire array on Ti/Si substrates, Nanotechnology 19(19), 055707 (2008)

    Article  Google Scholar 

  120. K. Kim, M. Kim, S.M. Cho: Pulsed electrodeposition of palladium nanowire arrays using AAO template, Mater. Chem. Phys. 96, 278–282 (2006)

    Article  Google Scholar 

  121. C. Xu, H. Wang, P.K. Shen, S.P. Jiang: Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells, Adv. Mater. 19, 4256–4259 (2007)

    Article  Google Scholar 

  122. F. Cheng, H. Wang, Z. Sun, M. Ning, Z. Cai, M. Zhang: Electrodeposited fabrication of highly ordered Pd nanowire arrays for alcohol electrooxidation, Electrochem. Commun. 10, 798–801 (2008)

    Article  Google Scholar 

  123. S. Shin, B.S. Kim, K.M. Kim, B.H. Kong, H.K. Cho, H.H. Cho: Tuning the morphology of copper nanowires by controlling the growth processes in electrodeposition, J. Mater. Chem. 21, 17967–17971 (2011)

    Article  Google Scholar 

  124. J. Choi, G. Sauer, K. Nielsch, R.B. Wehrspohn, U. Gosele: Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio, Chem. Mater. 15, 776–779 (2003)

    Article  Google Scholar 

  125. D.J. Sellmyer, M. Zheng, R. Skomski: Magnetism of Fe, Co and Ni nanowires in self-assembled arrays, J. Phys. Condens. Matter 13, R433–R460 (2001)

    Article  Google Scholar 

  126. J.H. Lim, W.S. Chae, H.O. Lee, L. Malkinski, S.G. Min, J.B. Wiley, J.H. Jun, S.H. Lee, J.S. Jung: Fabrication and magnetic properties of Fe nanostructures in anodic alumina membrane, J. Appl. Phys. 107, 09A334 (2010)

    Article  Google Scholar 

  127. V. Haehnel, S. Faehler, P. Schaaf, M. Miglierini, C. Mickel, L. Schultz, H. Schloerb: Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes, Acta Mater. 58, 2330–2337 (2010)

    Article  Google Scholar 

  128. J. Qin, J. Nogues, M. Mikhaylova, A. Roig, J.S. Munoz, M. Muhammed: Differences in the magnetic properties of Co, Fe, and Ni 250–300 nm wide nanowires electrodeposited in amorphous anodized alumina templates, Chem. Mater. 17, 1829–1834 (2005)

    Article  Google Scholar 

  129. F.S. Li, T. Wang, L.Y. Ren, J.R. Sun: Structure and magnetic properties of Co nanowires in self-assembled arrays, J. Phys. Condens. Matter 16, 8053–8060 (2004)

    Article  Google Scholar 

  130. P. Wang, L. Gao, Z. Qiu, X. Song, L. Wang, S. Yang, R.-I. Murakami: A multistep ac electrodeposition method to prepare Co nanowires with high coercivity, J. Appl. Phys. 104, 064304 (2008)

    Article  Google Scholar 

  131. M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R.D. Kirby, D.J. Sellmyer: Magnetic properties of Ni nanowires in self-assembled arrays, Phys. Rev. B 62, 12282–12286 (2000)

    Article  Google Scholar 

  132. R. Inguanta, S. Piazza, C. Sunseri: Influence of electrodeposition techniques on Ni nanostructures, Electrochim. Acta 53, 5766–5773 (2008)

    Article  Google Scholar 

  133. J.K. Lee, Y. Yi, H.J. Lee, S. Uhm, J. Lee: Electrocatalytic activity of Ni nanowires prepared by galvanic electrodeposition for hydrogen evolution reaction, Catal. Today 146, 188–191 (2009)

    Article  Google Scholar 

  134. A. Gambirasi, S. Cattarin, M. Musiani, L. Vazquez-Gomez, E. Verlato: Direct electrodeposition of metal nanowires on electrode surface, Electrochim. Acta 56, 8582–8588 (2011)

    Article  Google Scholar 

  135. J.G. Wang, M.L. Tian, T.E. Mallouk, M.H.W. Chan: Microtwinning in template-synthesized single-crystal metal nanowires, J. Phys. Chem. B 108, 841–845 (2004)

    Article  Google Scholar 

  136. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R.B. Wehrspohn, J. Choi, H. Hofmeister, U. Gosele: Highly ordered monocrystalline silver nanowire arrays, J. Appl. Phys. 91, 3243–3247 (2002)

    Article  Google Scholar 

  137. M.L. Tian, J.U. Wang, J. Kurtz, T.E. Mallouk, M.H.W. Chan: Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism, Nano Lett. 3, 919–923 (2003)

    Article  Google Scholar 

  138. F.Y. Yang, K. Liu, K.M. Hong, D.H. Reich, P.C. Searson, C.L. Chien: Large magnetoresistance of electrodeposited single-crystal bismuth thin films, Science 284, 1335–1337 (1999)

    Article  Google Scholar 

  139. L. Li, Y. Zhang, G.H. Li, L.D. Zhang: A route to fabricate single crystalline bismuth nanowire arrays with different diameters, Chem. Phys. Lett. 378, 244–249 (2003)

    Article  Google Scholar 

  140. J.G. Wang, M.L. Tian, N. Kumar, T.E. Mallouk: Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition, Nano Lett. 5, 1247–1253 (2005)

    Article  Google Scholar 

  141. M.L. Tian, J.G. Wang, J. Snyder, J. Kurtz, Y. Liu, P. Schiffer, T.E. Mallouk, M.H.W. Chan: Synthesis and characterization of superconducting single-crystal Sn nanowires, Appl. Phys. Lett. 83, 1620–1622 (2003)

    Article  Google Scholar 

  142. H. Pan, B.H. Liu, J.B. Yi, C. Poh, S. Lim, J. Ding, Y.P. Feng, C.H.A. Huan, J.Y. Lin: Growth of single crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties, J. Phys. Chem. B 109, 3094–3098 (2005)

    Article  Google Scholar 

  143. X. Huang, L. Li, X. Luo, X. Zhu, G. Li: Orientation-controlled synthesis and ferromagnetism of single crystalline Co nanowire arrays, J. Phys. Chem. C 112, 1468–1472 (2008)

    Article  Google Scholar 

  144. X.H. Huang, G.H. Li, X.C. Dou, L. Li: Magnetic properties of single crystalline Co nanowire arrays with different diameters and orientations, J. Appl. Phys. 105, 084306 (2009)

    Article  Google Scholar 

  145. J.M. Baik, M. Schierhorn, M. Moskovits: Fe nanowires in nanoporous alumina: Geometric effect versus influence of pore walls, J. Phys. Chem. C 112, 2252–2255 (2008)

    Article  Google Scholar 

  146. S. Thongmee, H.L. Pang, J.B. Yi, J. Ding, J.Y. Lin, L.H. Van: Unique nanostructures in NiCo alloy nanowires, Acta Mater. 57, 2482–2487 (2009)

    Article  Google Scholar 

  147. S.Z. Chu, S. Inoue, K. Wada, Y. Kanke, K. Kurashima: Fabrication and characterization of integrated ultrahigh-density Fe–Pt alloy nanowire arrays on glass, J. Electrochem. Soc. 152, C42–C47 (2005)

    Article  Google Scholar 

  148. S.Z. Chu, S. Inoue, K. Wada, K. Kurashima: Fabrication of integrated arrays of ultrahigh density magnetic nanowires on glass by anodization and electrodeposition, Electrochim. Acta 51, 820–826 (2005)

    Article  Google Scholar 

  149. V. Haehnel, S. Faehler, L. Schultz, H. Schloerb: Electrodeposition of Fe70Pd30 nanowires from a complexed ammonium-sulfosalicylic electrolyte with high stability, Electrochem. Commun. 12, 1116–1119 (2010)

    Article  Google Scholar 

  150. A. Ramazani, M.A. Kashi, S. Kabiri, M. Zanguri: The influence of asymmetric electrodeposition voltage on the microstructure and magnetic properties of Fe x Co1−x nanowire arrays, J. Cryst. Growth 327, 78–83 (2011)

    Article  Google Scholar 

  151. K.V. Singh, A.A. Martinez-Morales, G.T.S. Andavan, K.N. Bozhilov, M. Ozkan: A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication during template-assisted electrodeposition, Chem. Mater. 19, 2446–2454 (2007)

    Article  Google Scholar 

  152. W.-L. Wang, C.-C. Wan, Y.-Y. Wang: Investigation of electrodeposition of Bi2Te3 nanowires into nanoporous alumina templates with a rotating electrode, J. Phys. Chem. B 110, 12974–12980 (2006)

    Article  Google Scholar 

  153. H. Sun, X. Li, Y. Chen, D. Guo, Y. Xie, W. Li, B. Liu, X. Zhang: Diameter- and current--density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition, Nanotechnology 20, 425603 (2009)

    Article  Google Scholar 

  154. E.A. Hernandez-Pagan, W. Wang, T.E. Mallouk: Template electrodeposition of single-phase p- and n-type copper indium diselenide (CuInSe2) nanowire arrays, ACS Nano 5, 3237–3241 (2011)

    Article  Google Scholar 

  155. M. Chen, P.C. Searson, C.L. Chien: Micromagnetic behavior of electrodeposited Ni/Cu multilayer nanowires, J. Appl. Phys. 93, 8253–8255 (2003)

    Article  Google Scholar 

  156. Y.K. Su, D.H. Qin, H.L. Zhang, H. Li, H.L. Li: Microstructure and magnetic properties of bamboo-like CoPt/Pt multilayered nanowire arrays, Chem. Phys. Lett. 388, 406–410 (2004)

    Article  Google Scholar 

  157. H.P. Liang, Y.G. Guo, J.S. Hu, C.F. Zhu, L.J. Wan, C.L. Bai: Ni–Pt multilayered nanowire arrays with enhanced coercivity and high remanence ratio, Inorg. Chem. 44, 3013–3015 (2005)

    Article  Google Scholar 

  158. F.H. Xue, G.T. Fei, B. Wu, P. Cui, L.D. Zhang: Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays, J. Am. Chem. Soc. 127, 15348–15349 (2005)

    Article  Google Scholar 

  159. B. Yoo, F. Xiao, K.N. Bozhilov, J. Herman, M.A. Ryan, N.V. Myung: Electrodeposition of thermoelectric superlattice nanowires, Adv. Mater. 19, 296–299 (2007)

    Article  Google Scholar 

  160. X. Dou, G. Li, H. Lei, X. Huang, L. Li, I.W. Boyd: Template epitaxial growth of thermoelectric Bi/BiSb superlattice nanowires by charge-controlled pulse electrodeposition, J. Electrochem. Soc. 156, K149–K154 (2009)

    Article  Google Scholar 

  161. S.R. Nicewarner-Pena, R.G. Freeman, B.D. Reiss, L. He, D.J. Pena, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan: Submicrometer metallic barcodes, Science 294, 137–141 (2001)

    Article  Google Scholar 

  162. B.R. Martin, D.J. Dermody, B.D. Reiss, M.M. Fang, L.A. Lyon, M.J. Natan, T.E. Mallouk: Orthogonal self-assembly on colloidal gold-platinum nanorods, Adv. Mater. 11, 1021–1025 (1999)

    Article  Google Scholar 

  163. J.G. Wang, M.L. Tian, T.E. Mallouk, M.H.W. Chan: Microstructure and interdiffusion of template-synthesized Au/Sn/Au junction nanowires, Nano Lett. 4, 1313–1318 (2004)

    Article  Google Scholar 

  164. S. Anandakumar, V.S. Rani, T.S. Ramulu, H.-J. Yang, B.H. Lim, J. Kim, S.S. Yoon, C. Kim: Electrodeposition of multi-segmented CoNiP-Au nanowires for bio-barcodes, J. Electrochem. Soc. 158, E124–E127 (2011)

    Article  Google Scholar 

  165. F. Li, J.B. Wiley: Preparation of free-standing metal wire arrays by in situ assembly, J. Mater. Chem. 18, 3977–3980 (2008)

    Article  Google Scholar 

  166. L. Liu, W. Lee, R. Scholz, E. Pippel, U. Gosele: Tailor-made inorganic nanopeapods: Structural design of linear noble metal nanoparticle chains, Angew. Chem. Int. Ed. 47, 7004–7008 (2008)

    Article  Google Scholar 

  167. M. Rauber, J. Broetz, J. Duan, J. Liu, S. Mueller, R. Neumann, O. Picht, M.E. Toimil-Molares, W. Ensinger: Segmented all-platinum nanowires with controlled morphology through manipulation of the local electrolyte distribution in fluidic nanochannels during electrodeposition, J. Phys. Chem. C 114, 22502–22507 (2010)

    Article  Google Scholar 

  168. H.-M. Bok, K.L. Shuford, S. Kim, S.K. Kim, A.S. Park: Multiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods, Nano Lett. 8, 2265–2270 (2008)

    Article  Google Scholar 

  169. C.X. Ji, P.C. Searson: Fabrication of nanoporous gold nanowires, Appl. Phys. Lett. 81, 4437–4439 (2002)

    Article  Google Scholar 

  170. Z. Liu, P.C. Searson: Single nanoporous gold nanowire sensors, J. Phys. Chem. B 110, 4318–4322 (2006)

    Article  Google Scholar 

  171. L. Liu, W. Lee, Z. Huang, R. Scholz, U. Goesele: Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane, Nanotechnology 19, 335604 (2008)

    Article  Google Scholar 

  172. D. van Noort, C.F. Mandenius: Porous gold surfaces for biosensor applications, Biosens. Bioelectron. 15, 203–209 (2000)

    Article  Google Scholar 

  173. H.-O. Lee, E.-M. Kim, H. Yu, J.-S. Jung, W.-S. Chae: Advanced porous gold nanofibers for highly efficient and stable molecular sensing platforms, Nanotechnology 20, 325604 (2009)

    Article  Google Scholar 

  174. S.-H. Yoo, S. Park: Platinum-coated, nanoporous gold nanorod arrays: Synthesis and characterization, Adv. Mater. 19, 1612–1615 (2007)

    Article  Google Scholar 

  175. X. Zhang, W. Lu, J. Da, H. Wang, D. Zhao, P.A. Webley: Porous platinum nanowire arrays for direct ethanol fuel cell applications, Chem. Commun. 2, 195–197 (2009)

    Article  Google Scholar 

  176. F. Li, J.B. He, W.L.L. Zhou, J.B. Wiley: Synthesis of porous wires from directed assemblies of nanospheres, J. Am. Chem. Soc. 125, 16166–16167 (2003)

    Article  Google Scholar 

  177. X. Zhang, D. Li, L. Bourgeois, H. Wang, P.A. Webley: Direct electrodeposition of porous gold nanowire arrays for biosensing applications, Chem. Phys. Chem. 10, 436–441 (2009)

    Google Scholar 

  178. Y.H. Wang, C.H. Ye, X.S. Fang, L. Zhang: A simple method for synthesizing copper nanotube arrays, Chem. Lett. 33, 166–167 (2004)

    Article  Google Scholar 

  179. X. Zhang, H. Wang, L. Bourgeois, R. Pan, D. Zhao, P.A. Webley: Direct electrodeposition of gold nanotube arrays for sensing applications, J. Mater. Chem. 18, 463–467 (2008)

    Article  Google Scholar 

  180. L. Soleimany, A. Dolati, M. Ghorbani: A study on the kinetics of gold nanowire electrodeposition in polycarbonate templates, J. Electroanal. Chem. 645, 28–34 (2010)

    Article  Google Scholar 

  181. Y. Zhao, Y.G. Guo, Y.L. Zhang, K. Jiao: Fabrication and characterization of highly ordered Pt nanotubule arrays, Phys. Chem. Chem. Phys. 6, 1766–1768 (2004)

    Article  Google Scholar 

  182. W. Lee, M. Alexe, K. Nielsch, U. Gosele: Metal membranes with hierarchically organized nanotube arrays, Chem. Mater. 17, 3325–3327 (2005)

    Article  Google Scholar 

  183. L. Li, Y.W. Yang, X.H. Huang, G.H. Li, R. Ang, L.D. Zhang: Fabrication and electronic transport properties of Bi nanotube arrays, Appl. Phys. Lett. 88, 103119 (2006)

    Article  Google Scholar 

  184. L. Liu, W. Zhou, S. Xie, L. Song, S. Luo, D. Liu, J. Shen, Z. Zhang, Y. Xiang, W. Ma, Y. Ren, C. Wang, G. Wang: Highly efficient direct electrodeposition of Co-Cu alloy nanotubes in an anodic alumina template, J. Phys. Chem. C 112, 2256–2261 (2008)

    Article  Google Scholar 

  185. H. Cao, L. Wang, Y. Qiu, Q. Wu, G. Wang, L. Zhang, X. Liu: Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays, Chem. Phys. Chem. 7, 1500–1504 (2006)

    Google Scholar 

  186. R. Xiao, S. Il Cho, R. Liu, S.B. Lee: Controlled electrochemical synthesis of conductive polymer nanotube structures, J. Am. Chem. Soc. 129, 4483–4489 (2007)

    Article  Google Scholar 

  187. D. Mo, J. Liu, H.J. Yao, J.L. Duan, M.D. Hou, Y.M. Sun, Y.F. Chen, Z.H. Xue, L. Zhang: Preparation and characterization of CdS nanotubes and nanowires by electrochemical synthesis in ion-track templates, J. Cryst. Growth 310, 612–616 (2008)

    Article  Google Scholar 

  188. Q. Huang, D.P. Young, J.Y. Chan, J. Jiang, E.J. Podlaha: Electrodeposition of FeCoNiCu/Cu compositionally modulated multilayers, J. Electrochem. Soc. 149, C349–C354 (2002)

    Article  Google Scholar 

  189. Q. Huang, E.J. Podlaha: Simulation of pulsed electrodeposition for giant magnetoresistance FeCoNiCu/Cu multilayers, J. Electrochem. Soc. 151, C119–C126 (2004)

    Article  Google Scholar 

  190. D.M. Davis, E.J. Podlaha: CoNiCu and Cu nanotube electrodeposition, Electrochem. Solid State Lett. 8, D1–D4 (2005)

    Article  Google Scholar 

  191. Y. Fukunaka, M. Motoyama, Y. Konishi, R. Ishii: Producing shape-controlled metal nanowires and nanotubes by an electrochemical method, Electrochem. Solid State Lett. 9, C62–C64 (2006)

    Article  Google Scholar 

  192. M. Motoyama, Y. Fukunaka, Y.H. Ogata, F.B. Prinz: Impact of accompanying hydrogen generation on metal nanotube electrodeposition, J. Electrochem. Soc. 157, D357–D369 (2010)

    Article  Google Scholar 

  193. X. Zhang, D. Dong, D. Li, T. Williams, H. Wang, P.A. Webley: Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities, Electrochem. Commun. 11, 190–193 (2009)

    Article  Google Scholar 

  194. L. Li, S. Pan, X. Dou, Y. Zhu, X. Huang, Y. Yang, G. Li, L. Zhang: Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes, J. Phys. Chem. C 111, 7288–7291 (2007)

    Article  Google Scholar 

  195. M. Lai, J.A.G. Martinez, M. Gratzel, D.J. Riley: Preparation of tin dioxide nanotubes via electrosynthesis in a template, J. Mater. Chem. 16, 2843–2845 (2006)

    Article  Google Scholar 

  196. M. Lai, J.-H. Lim, S. Mubeen, Y. Rheem, A. Mulchandani, M.A. Deshusses, N.V. Myung: Size-controlled electrochemical synthesis and properties of SnO2 nanotubes, Nanotechnology 20, 185602 (2009)

    Article  Google Scholar 

  197. E. Mafakheri, A. Salimi, R. Hallaj, A. Ramazani, M.A. Kashi: Synthesis of iridium oxide nanotubes by electrodeposition into polycarbonate template: fabrication of chromium (III) and arsenic (III) electrochemical sensor, Electroanalysis 23, 2429–2437 (2011)

    Article  Google Scholar 

  198. X.-H. Li, B. Zhou, L. Pu, J.-J. Zhu: Electrodeposition of Bi2Te3 and Bi2Te3 derived alloy nanotube arrays, Cryst. Growth Des. 8, 771–775 (2008)

    Article  Google Scholar 

  199. W. Lee, R. Scholz, K. Niesch, U. Gosele: A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes, Angew. Chem. Int. Ed. 44, 6050–6054 (2005)

    Article  Google Scholar 

  200. M.V. Kamalakar, A.K. Raychaudhuri: A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field, Adv. Mater. 20, 149–154 (2008)

    Article  Google Scholar 

  201. C. Mu, Y.X. Yn, R.M. Wang, K. Wu, D.S. Xu, G.L. Guo: Uniform metal nanotube arrays by multistep template replication and electrodeposition, Adv. Mater. 16, 1550–1553 (2004)

    Article  Google Scholar 

  202. M.S. Sander, H. Gao: Aligned arrays of nanotubes and segmented nanotubes on substrates fabricated by electrodeposition onto nanorods, J. Am. Chem. Soc. 127, 12158–12159 (2005)

    Article  Google Scholar 

  203. P.R. Evans, W.R. Hendren, R. Atkinson, R.J. Pollard: Nickel-coated gold-core nanorods produced by template assisted electrodeposition, J. Electrochem. Soc. 154, K79–K82 (2007)

    Article  Google Scholar 

  204. H. Wang, C. Xu, F. Cheng, M. Zhang, S. Wang, S.P. Jiang: Pd/Pt core-shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells, Electrochem. Commun. 10, 1575–1578 (2008)

    Article  Google Scholar 

  205. T.N. Narayanan, M.M. Shaijumon, P.M. Ajayan, M.R. Anantharaman: Synthesis of high coercivity core-shell nanorods based on nickel and cobalt and their magnetic properties, Nanoscale Res. Lett. 5, 164–168 (2010)

    Article  Google Scholar 

  206. D.H. Park, Y.B. Lee, M.Y. Cho, B.H. Kim, S.H. Lee, Y.K. Hong, J. Joo, H.C. Cheong, S.R. Lee: Fabrication and magnetic characteristics of hybrid double walled nanotube of ferromagnetic nickel encapsulated conducting polypyrrole, Appl. Phys. Lett. 90, 093122 (2007)

    Article  Google Scholar 

  207. K.R. Ward, N.S. Lawrence, R.S. Hartshorne, R.G. Compton: The theory of cyclic voltammetry of electrochemically heterogeneous surfaces: Comparison of different models for surface geometry and applications to highly ordered pyrolytic graphite, Phys. Chem. Chem. Phys. 14, 7264–7275 (2012)

    Article  Google Scholar 

  208. H.P. Chang, A.J. Bard: Observation and characterization by scanning tunneling microscopy of structures generated by cleaving highly oriented pyrolytic-graphite, Langmuir 7, 1143–1153 (1991)

    Article  Google Scholar 

  209. R.L. McCreery: Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev. 108, 2646–2687 (2008)

    Article  Google Scholar 

  210. H. Liu, F. Favier, K. Ng, M.P. Zach, R.M. Penner: Size-selective electrodeposition of meso-scale metal particles: A general method, Electrochim. Acta 47, 671–677 (2001)

    Article  Google Scholar 

  211. J.V. Zoval, J. Lee, S. Gorer, R.M. Penner: Electrochemical preparation of platinum nanocrystallites with size selectivity on basal plane oriented graphite surfaces, J. Phys. Chem. B 102, 1166–1175 (1998)

    Article  Google Scholar 

  212. C.J. Boxley, H.S. White, T.E. Lister, P.J. Pinhero: Electrochemical deposition and reoxidation of Au at highly oriented pyrolytic graphite. Stabilization of Au nanoparticles on the upper plane of step edges, J. Phys. Chem. B 107, 451–458 (2003)

    Article  Google Scholar 

  213. J.L. Fransaer, R.M. Penner: Brownian dynamics simulation of the growth of metal nanocrystal ensembles on electrode surfaces from solution. I. Instantaneous nucleation and diffusion-controlled growth, J. Phys. Chem. B 103, 7643–7653 (1999)

    Article  Google Scholar 

  214. R.M. Penner: Brownian dynamics simulations of the growth of metal nanocrystal ensembles on electrode surfaces in solution: 2. The effect of deposition rate on particle size dispersion, J. Phys. Chem. B 105, 8672–8678 (2001)

    Article  Google Scholar 

  215. H. Liu, R.M. Penner: Size-selective electrodeposition of mesoscale metal particles in the uncoupled limit, J. Phys. Chem. B 104, 9131–9139 (2000)

    Article  Google Scholar 

  216. M. Bayati, J.M. Abad, R.J. Nichols, D.J. Schiffrin: Substrate structural effects on the synthesis and electrochemical properties of platinum nanoparticles on highly oriented pyrolytic graphite, J. Phys. Chem. C 114, 18439–18448 (2010)

    Article  Google Scholar 

  217. R.M. Penner: Mesoscopic metal particles and wires by electrodeposition, J. Phys. Chem. B 106, 3339–3353 (2002)

    Article  Google Scholar 

  218. F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner: Hydrogen sensors and switches from electrodeposited palladium mesowire arrays, Science 293, 2227–2231 (2001)

    Article  Google Scholar 

  219. E.C. Walter, F. Favier, R.M. Penner: Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches, Anal. Chem. 74, 1546–1553 (2002)

    Article  Google Scholar 

  220. V.C. Diculescu, A.-M. Chiorcea-Paquim, O. Corduneanu, A.M. Oliveira-Brett: Palladium nanoparticles and nanowires deposited electrochemically: AFM and electrochemical characterization, J. Solid State Electrochem. 11, 887–898 (2007)

    Article  Google Scholar 

  221. E.C. Walter, B.J. Murray, F. Favier, G. Kaltenpoth, M. Grunze, R.M. Penner: Noble and coinage metal nanowires by electrochemical step edge decoration, J. Phys. Chem. B 106, 11407–11411 (2002)

    Article  Google Scholar 

  222. B.J. Murray, E.C. Walter, R.M. Penner: Amine vapor sensing with silver mesowires, Nano Lett. 4, 665–670 (2004)

    Article  Google Scholar 

  223. Y.K. Xiao, G. Yu, J. Yuan, J.Y. Wang, Z.Z. Chen: Fabrication of Pd-Ni alloy nanowire arrays on HOPG surface by electrodeposition, Electrochim. Acta 51, 4218–4227 (2006)

    Article  Google Scholar 

  224. T.J. Davies, M.E. Hyde, R.G. Compton: Nanotrench arrays reveal insight into graphite electrochemistry, Angew. Chem. Int. Ed. 44, 5121–5126 (2005)

    Article  Google Scholar 

  225. C.E. Cross, J.C. Hemminger, R.M. Penner: Physical vapor deposition of one-dimensional nanoparticle arrays on graphite: Seeding the electrodeposition of gold nanowires, Langmuir 23, 10372–10379 (2007)

    Article  Google Scholar 

  226. M.P. Zach, K.H. Ng, R.M. Penner: Molybdenum nanowires by electrodeposition, Science 290, 2120–2123 (2000)

    Article  Google Scholar 

  227. M.P. Zach, K. Inazu, K.H. Ng, J.C. Hemminger, R.M. Penner: Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration, Chem. Mater. 14, 3206–3216 (2002)

    Article  Google Scholar 

  228. Q. Li, J.T. Newberg, E.C. Walter, J.C. Hemminger, R.M. Penner: Polycrystalline molybdenum disulfide (2H-MoS2) nano- and microribbons by electrochemical/chemical synthesis, Nano Lett. 4, 277–281 (2004)

    Article  Google Scholar 

  229. Q. Li, E.C. Walter, W.E. van der Veer, B.J. Murray, J.T. Newberg, E.W. Bohannan, J.A. Switzer, J.C. Hemminger, R.M. Penner: Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis, J. Phys. Chem. B 109, 3169–3182 (2005)

    Article  Google Scholar 

  230. Q.G. Li, J.B. Olson, R.M. Penner: Nanocrystalline alpha-MnO2 nanowires by electrochemical step-edge decoration, Chem. Mater. 16, 3402–3405 (2004)

    Article  Google Scholar 

  231. Q.G. Li, R.M. Penner: Photoconductive cadmium sulfide hemicylindrical shell nanowire ensembles, Nano Lett. 5, 1720–1725 (2005)

    Article  Google Scholar 

  232. E.J. Menke, Q. Li, R.M. Penner: Bismuth telluride (Bi2Te3) nanowires synthesized by cyclic electrodeposition/stripping coupled with step edge decoration, Nano Lett. 4, 2009–2014 (2004)

    Article  Google Scholar 

  233. E.J. Menke, M.A. Brown, Q. Li, J.C. Hemminger, R.M. Penner: Bismuth telluride (Bi2Te3) nanowires: Synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation, Langmuir 22, 10564–10574 (2006)

    Article  Google Scholar 

  234. M.E. Hyde, T.J. Davies, R.G. Compton: Fabrication of random assemblies of metal nanobands: A general method, Angew. Chem. Int. Ed. 44, 6491–6496 (2005)

    Article  Google Scholar 

  235. F. Li, M. Zhu, C. Liu, W.L. Zhou, J.B. Wiley: Patterned metal nanowire arrays from photolithographically-modified templates, J. Am. Chem. Soc. 128, 13342–13343 (2006)

    Article  Google Scholar 

  236. F. Yang, D.K. Taggart, R.M. Penner: Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture, Nano Lett. 9, 2177–2182 (2009)

    Article  Google Scholar 

  237. R. Ji, W. Lee, R. Scholz, U. Gösele, K. Nielsch: Templated fabrication of nanowire and nanoring arrays based on interference lithography and electrochemical deposition, Adv. Mater. 18, 2593–2596 (2006)

    Article  Google Scholar 

  238. H.M. Saavedra, T.J. Mullen, P. Zhang, D.C. Dewey, S.A. Claridge, P.S. Weiss: Hybrid strategies in nanolithography, Rep. Prog. Phys. 73, 036501 (2010)

    Article  Google Scholar 

  239. W. Xu, J. Wong, C.C. Cheng, R. Johnson, A. Scherer: Fabrication of ultrasmall magnets by electroplating, J. Vac. Sci. Technol. B 13, 2372–2375 (1995)

    Article  Google Scholar 

  240. S. Biring, K.-T. Tsai, U.K. Sur, Y.-L. Wang: High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication, Nanotechnology 19, 355302 (2008)

    Article  Google Scholar 

  241. D.M. Kolb, R. Ullmann, T. Will: Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope, Science 275, 1097–1099 (1997)

    Article  Google Scholar 

  242. E.J. Menke, M.A. Thompson, C. Xiang, L.C. Yang, R.M. Penner: Lithographically patterned nanowire electrodeposition, Nat. Mater. 5, 914–919 (2006)

    Article  Google Scholar 

  243. C. Xiang, S.-C. Kung, D.K. Taggart, F. Yang, M.A. Thompson, A.G. Gueell, Y. Yang, R.M. Penner: Lithographically patterned nanowire electrodeposition: A method for patterning electrically continuous metal nanowires on dielectrics, ACS Nano 2, 1939–1949 (2008)

    Article  Google Scholar 

  244. C. Xiang, A.G. Guell, M.A. Brown, J.Y. Kim, J.C. Hemminger, R.M. Penner: Coupled electrooxidation and electrical conduction in a single gold nanowire, Nano Lett. 8, 3017–3022 (2008)

    Article  Google Scholar 

  245. C. Xiang, Y. Yang, R.M. Penner: Cheating the diffraction limit: Electrodeposited nanowires patterned by photolithography, Chem. Commun. 8, 859–873 (2009)

    Article  Google Scholar 

  246. C. Xiang, J.Y. Kim, R.M. Penner: Reconnectable Sub-5 nm nanogaps in ultralong gold nanowires, Nano Lett. 9, 2133–2138 (2009)

    Article  Google Scholar 

  247. S.C. Kung, W. Xing, K.C. Donavan, F. Yang, R.M. Penner: Photolithographically patterned silver nanowire electrodeposition, Electrochim. Acta 55, 8074–8080 (2010)

    Article  Google Scholar 

  248. Y. Yang, S.C. Kung, D.K. Taggart, C. Xiang, F. Yang, M.A. Brown, A.G. Guell, T.J. Kruse, J.C. Hemminger, R.M. Penner: Synthesis of PbTe nanowire arrays using lithographically patterned nanowire electrodeposition, Nano Lett. 8, 2447–2451 (2008)

    Article  Google Scholar 

  249. S. Ghosh, J.E. Hujdic, A. Villicana-Bedolla, E.J. Menke: Gold core-semiconductor shell nanowires prepared by lithographically patterned nanowire electrodeposition, J. Phys. Chem. C 115, 17670–17675 (2011)

    Article  Google Scholar 

  250. D. Xia, Z. Ku, S.C. Lee, S.R.J. Brueck: Nanostructures and functional materials fabricated by interferometric lithography, Adv. Mater. 23, 147–179 (2011)

    Article  Google Scholar 

  251. D.F. Spicer, A.C. Rodger, G.L. Varnell: Computer-controlled pattern generating system for use with electron-beam writing instruments, J. Vac. Sci. Technol. 10, 1052–1055 (1973)

    Article  Google Scholar 

  252. G.L. Varnell, D.F. Spicer, A.C. Rodger: E-beam writing techniques for semiconductor-device fabrication, J. Vac. Sci. Technol. 10, 1048–1051 (1973)

    Article  Google Scholar 

  253. R. Maoz, E. Frydman, S.R. Cohen, J. Sagiv: Constructive nanolithography: Site-defined silver self-assembly on nanoelectrochemically patterned monolayer templates, Adv. Mater. 12, 424–429 (2000)

    Article  Google Scholar 

  254. H. Duan, J. Zhao, Y. Zhang, E. Xie, L. Han: Preparing patterned carbonaceous nanostructures directly by overexposure of PMMA using electron-beam lithography, Nanotechnology 20, 135306 (2009)

    Article  Google Scholar 

  255. J.L. Duvail, S. Dubois, L. Piraux, A. Vaures, A. Fert, D. Adam, M. Champagne, F. Rousseaux, D. Decanini: Electrodeposition of patterned magnetic nanostructures, J. Appl. Phys. 84, 6359–6365 (1998)

    Article  Google Scholar 

  256. M.J. Burek, J.R. Greer: Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating, Nano Lett. 10, 69–76 (2010)

    Article  Google Scholar 

  257. T.N. Lo, Y.T. Chen, C.W. Chiu, C.J. Liu, S.R. Wu, I.K. Lin, C.I. Su, W.D. Chang, Y. Hwu, B.Y. Shew, C.C. Chiang, J.H. Je, G. Margaritondo: E-beam lithography and electrodeposition fabrication of thick nanostructured devices, J. Phys. D 40, 3172–3176 (2007)

    Article  Google Scholar 

  258. L.M. Moretto, M. Tormen, M. De Leo, A. Carpentiero, P. Ugo: Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography, Nanotechnology 22(18), 185305 (2011)

    Article  Google Scholar 

  259. F.C. Simeone, C. Albonetti, M. Cavallini: Progress in micro- and nanopatterning via electrochemical lithography, J. Phys. Chem. C 113, 18987–18994 (2009)

    Article  Google Scholar 

  260. M. Lee, R. O’Hayre, F.B. Prinz, T.M. Gur: Electrochemical nanopatterning of Ag on solid-state ionic conductor RbAg4I5 using atomic force microscopy, Appl. Phys. Lett. 85, 3552–3554 (2004)

    Article  Google Scholar 

  261. X. Zhang, F. Shi, J. Niu, Y. Jiang, Z. Wang: Superhydrophobic surfaces: From structural control to functional application, J. Mater. Chem. 18, 621–633 (2008)

    Article  Google Scholar 

  262. M. Chang, X. Cao, H. Zeng: Electrodeposition growth of vertical ZnO nanorod/polyaniline heterostructured films and their optical properties, J. Phys. Chem. C 113, 15544–15547 (2009)

    Article  Google Scholar 

  263. Z.-L. Wang, G.-R. Li, Y.-N. Ou, Z.-P. Feng, D.L. Qu, Y.-X. Tong: Electrochemical deposition of Eu3+-doped CeO2 nanobelts with enhanced optical properties, J. Phys. Chem. C 115, 351–356 (2011)

    Article  Google Scholar 

  264. O. Azzaroni, P.L. Schilardi, R.C. Salvarezza: Templated electrodeposition of patterned soft magnetic films, Appl. Phys. Lett. 80, 1061–1063 (2002)

    Article  Google Scholar 

  265. X. Yu, C. Cao, X. An: Facile conversion of Fe nanotube arrays to novel alpha-Fe2O3 nanoparticle nanotube arrays and their magnetic properties, Chem. Mater. 20, 1936–1940 (2008)

    Article  Google Scholar 

  266. L. Xu, S. Zhang, W. Liu, Z. Du: Vertically cobalt nanoplate arrays based on one-step electrochemical growth and their magnetic properties, J. Phys. Chem. C 116, 2801–2806 (2012)

    Article  Google Scholar 

  267. F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K.-H. Lee, N.V. Myung: Recent progress in electrodeposition of thermoelectric thin films and nanostructures, Electrochim. Acta 53, 8103–8117 (2008)

    Article  Google Scholar 

  268. Y. Zhao, J.S. Dyck, C. Burda: Toward high-performance nanostructured thermoelectric materials: The progress of bottom-up solution chemistry approaches, J. Mater. Chem. 21, 17049–17058 (2011)

    Article  Google Scholar 

  269. C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y.S. Yan: Proton exchange membrane fuel cells with carbon nanotube based electrodes, Nano Lett. 4, 345–348 (2004)

    Article  Google Scholar 

  270. Y. Li, X.-Y. Yang, Y. Feng, Z.-Y. Yuan, B.-L. Su: One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: Synthesis, characterizations, properties and applications, Crit. Rev. Solid State Mater. Sci. 37, 1–74 (2012)

    Article  Google Scholar 

  271. B.J. Plowman, S.K. Bhargava, A.P. O’Mullane: Electrochemical fabrication of metallic nanostructured electrodes for electroanalytical applications, Analyst 136, 5107–5119 (2011)

    Article  Google Scholar 

  272. A.M. Kumar, S. Jung, T. Ji: Protein biosensors based on polymer nanowires, carbon nanotubes and zinc oxide nanorods, Sensors 11, 5087–5111 (2011)

    Article  Google Scholar 

  273. S. Guo, E. Wang: Functional micro/nanostructures: Simple synthesis and application in sensors, fuel cells, and gene delivery, Acc. Chem. Res. 44, 491–500 (2011)

    Article  Google Scholar 

  274. X. Dou, G. Li, H. Lei: Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires, Nano Lett. 8, 1286–1290 (2008)

    Article  Google Scholar 

  275. Y.-C. Yang, T.-K. Huang, Y.-L. Chen, J.-Y. Mevellec, S. Lefrant, C.-Y. Lee, H.-T. Chiu: Electrochemical growth of gold nanostructures for surface-enhanced Raman scattering, J. Phys. Chem. C 115, 1932–1939 (2011)

    Article  Google Scholar 

  276. I. Gurrappa, L. Binder: Electrodeposition of nanostructured coatings and their characterization-A review, Sci. Technol. Adv. Mater. 9, 043001 (2008)

    Article  Google Scholar 

  277. W.C. West, N.V. Myung, J.F. Whitacre, B.V. Ratnakumar: Electrodeposited amorphous manganese oxide nanowire arrays for high energy and power density electrodes, J. Power Sources 126, 203–206 (2004)

    Article  Google Scholar 

  278. J.-K. Lee, G.-P. Kim, I.K. Song, S.-H. Baeck: Electrodeposition of mesoporous V2O5 with enhanced lithium-ion intercalation property, Electrochem. Commun. 11, 1571–1574 (2009)

    Article  Google Scholar 

  279. X. Li, P. Li, M. Luo, X. Chen, J. Chen: Controllable solvo-hydrothermal electrodeposition of lithium vanadate uniform carnation-like nanostructure and their electrochemical performance, J. Solid State Electrochem. 14, 1325–1332 (2010)

    Article  Google Scholar 

  280. Y.-H. Huang, K.-S. Park, J.B. Goodenough: Improving lithium batteries by tethering carbon-coated LiFePO4 to polypyrrole, J. Electrochem. Soc. 153, A2282–A2286 (2006)

    Article  Google Scholar 

  281. K.-S. Park, S.B. Schougaard, J.B. Goodenough: Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries, Adv. Mater. 19, 848–851 (2007)

    Article  Google Scholar 

  282. I. Boyano, J. Alberto Blazquez, I. de Meatza, M. Bengoechea, O. Miguel, H. Grande, Y. Huang, J.B. Goodenough: Preparation of C-LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition, J. Power Sources 195, 5351–5359 (2010)

    Article  Google Scholar 

  283. M. Schmuck, A. Balducci, B. Rupp, W. Kern, S. Passerini, M. Winter: Alloying of electrodeposited silicon with lithium-a principal study of applicability as anode material for lithium ion batteries, J. Solid State Electrochem. 14, 2203–2207 (2010)

    Article  Google Scholar 

  284. R.-G. Lue, J. Yang, J.-L. Wang, Y.-N. Nuli: Electrodeposition and electrochemical property of porous Li-Si film anodes for lithium-ion batteries, Acta Phys. Chim. Sin. 27, 759–763 (2011)

    Google Scholar 

  285. R. Lv, J. Yang, J. Wang, Y. NuLi: Electrodeposited porous-microspheres Li-Si films as negative electrodes in lithium-ion batteries, J. Power Sources 196, 3868–3873 (2011)

    Article  Google Scholar 

  286. T. Momma, S. Aoki, H. Nara, T. Yokoshima, T. Osaka: Electrodeposited novel highly durable SiOC composite anode for Li battery above several thousands of cycles, Electrochem. Commun. 13, 969–972 (2011)

    Article  Google Scholar 

  287. H. Nara, T. Yokoshima, T. Momma, T. Osaka: Highly durable SiOC composite anode prepared by electrodeposition for lithium secondary batteries, Energ. Environ. Sci. 5, 6500–6505 (2012)

    Article  Google Scholar 

  288. K. Ui, S. Kikuchi, Y. Kadoma, N. Kumagai, S. Ito: Electrochemical characteristics of Sn film prepared by pulse electrode position method as negative electrode for lithium secondary batteries, J. Power Sources 189, 224–229 (2009)

    Article  Google Scholar 

  289. K. Ui, S. Kikuchi, Y. Jimba, N. Kumagai: Preparation of Co-Sn alloy film as negative electrode for lithium secondary batteries by pulse electrodeposition method, J. Power Sources 196, 3916–3920 (2011)

    Article  Google Scholar 

  290. H.C. Shin, M.L. Liu: Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries, Adv. Funct. Mater. 15, 582–586 (2005)

    Article  Google Scholar 

  291. L. Huang, Y. Yang, L.-J. Xue, H.-B. Wei, F.-S. Ke, J.-T. Li, S.-G. Sun: Electrodeposition and electrochemical properties of novel ternary tin-cobalt-phosphorus alloy electrodes for lithium-ion batteries, Electrochem. Commun. 11, 6–9 (2009)

    Article  Google Scholar 

  292. J. Park, J. Eom, H. Kwon: Fabrication of Sn-C composite electrodes by electrodeposition and their cycle performance for Li-ion batteries, Electrochem. Commun. 11, 596–598 (2009)

    Article  Google Scholar 

  293. S.-L. Chou, J.-Z. Wang, H.-K. Liu, S.-X. Dou: SnO2 meso-scale tubes: One-step, room temperature electrodeposition synthesis and kinetic investigation for lithium storage, Electrochem. Commun. 11, 242–246 (2009)

    Article  Google Scholar 

  294. J. Park, S. Rajendran, H. Kwon: Effects of substrate morphology and ageing on cycle performance of a Sn-anode fabricated by electroplating, J. Power Sources 159, 1409–1415 (2006)

    Article  Google Scholar 

  295. H. Zhao, C. Jiang, X. He, J. Ren, C. Wan: Advanced structures in electrodepo sited tin base anodes for lithium ion batteries, Electrochim. Acta 52, 7820–7826 (2007)

    Article  Google Scholar 

  296. N. Tamura, A. Fujimoto, M. Kamino, S. Fujitani: Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries, Electrochim. Acta 49, 1949–1956 (2004)

    Article  Google Scholar 

  297. F.-S. Ke, L. Huang, H.-B. Wei, J.-S. Cai, X.-Y. Fan, F.-Z. Yang, S.-G. Sun: Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion batteries, J. Power Sources 170, 450–455 (2007)

    Article  Google Scholar 

  298. S.D. Beattie, J.R. Dahn: Single bath, pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion batteries, J. Electrochem. Soc. 150, A894–A898 (2003)

    Article  Google Scholar 

  299. W. Choi, J.Y. Lee, H.S. Lim: Electrochemical lithiation reactions of Cu6Sn5 and their reaction products, Electrochem. Commun. 6, 816–820 (2004)

    Article  Google Scholar 

  300. F.-S. Ke, L. Huang, J.-S. Cai, S.-G. Sun: Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries, Electrochim. Acta 52, 6741–6747 (2007)

    Article  Google Scholar 

  301. H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma, T. Osaka: Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries, Electrochem. Solid State Lett. 6, A218–A220 (2003)

    Article  Google Scholar 

  302. J. Hassoun, S. Panero, B. Scrosati: Electrodeposited Ni-Sn intermetallic electrodes for advanced lithium ion batteries, J. Power Sources 160, 1336–1341 (2006)

    Article  Google Scholar 

  303. H. Bryngelsson, J. Eskhult, K. Edstroem, L. Nyholm: Electrodeposition and electrochemical characterisation of thick and thin coatings of Sb and Sb/Sb2O3 particles for Li-ion battery anodes, Electrochim. Acta 53, 1062–1073 (2007)

    Article  Google Scholar 

  304. J.M. Mosby, A.L. Prieto: Direct electrodeposition of CU2Sb for lithium-ion battery anodes, J. Am. Chem. Soc. 130, 10656–10661 (2008)

    Article  Google Scholar 

  305. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon: Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries, Nature 407, 496–499 (2000)

    Article  Google Scholar 

  306. S. Mitra, P. Poizot, A. Finke, J.-M. Tarascon: Growth and electrochemical characterization versus lithium of Fe3O4 electrodes made via electrodeposition, Adv. Funct. Mater. 16, 2281–2287 (2006)

    Article  Google Scholar 

  307. M.-S. Wu, Y.-H. Ou, Y.-P. Lin: Electrodeposition of iron oxide nanorods on carbon nanofiber scaffolds as an anode material for lithium-ion batteries, Electrochim. Acta 55, 3240–3244 (2010)

    Article  Google Scholar 

  308. A. Xiao, J. Yang, W. Zhang: Mesoporous cobalt oxide film prepared by electrodeposition as anode material for Li ion batteries, J. Porous Mater. 17, 583–588 (2010)

    Article  Google Scholar 

  309. J. Morales, L. Sanchez, S. Bijani, L. Martinez, M. Gabas, J.R. Ramos-Barrado: Electrodeposition of Cu2O: An excellent method for obtaining films of controlled morphology and good performance in Li-ion batteries, Electrochem. Solid State Lett. 8, A159–A162 (2005)

    Article  Google Scholar 

  310. S. Bijani, M. Gabas, L. Martinez, J.R. Ramos-Barrado, J. Morales, L. Sanchez: Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries, Thin Solid Films 515, 5505–5511 (2007)

    Article  Google Scholar 

  311. L. Huang, X.-M. Zheng, Y.-S. Wu, L.-J. Xue, F.-S. Ke, G.-Z. Wei, S.-G. Sun: Electrodeposition and lithium storage performance of novel three-dimensional porous Fe-Sb-P amorphous alloy electrode, Electrochem. Commun. 11, 585–588 (2009)

    Article  Google Scholar 

  312. J.W. Long, B. Dunn, D.R. Rolison, H.S. White: Three-dimensional battery architectures, Chem. Rev. 104, 4463–4492 (2004)

    Article  Google Scholar 

  313. E. Perre, P.L. Taberna, D. Mazouzi, P. Poizot, T. Gustafsson, K. Edstrom, P. Simon: Electrodeposited Cu2Sb as anode material for 3-dimensional Li-ion microbatteries, J. Mater. Res. 25, 1485–1491 (2010)

    Article  Google Scholar 

  314. L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nat. Mater. 5, 567–573 (2006)

    Article  Google Scholar 

  315. J. Hassoun, S. Panero, P. Simon, P.L. Taberna, B. Scrosati: High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries, Adv. Mater. 19, 1632–1635 (2007)

    Article  Google Scholar 

  316. A. Finke, P. Poizot, C. Guery, L. Dupont, P.-L. Taberna, P. Simon, J.-M. Tarascon: Electrochemical method for direct deposition of nanometric bismuth and its electrochemical properties vs Li, Electrochem. Solid State Lett. 11, E5–E9 (2008)

    Article  Google Scholar 

  317. L. Bazin, S. Mitra, P.L. Taberna, P. Poizot, M. Gressier, M.J. Menu, A. Barnabe, P. Simon, J.M. Tarascon: High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries, J. Power Sources 188, 578–582 (2009)

    Article  Google Scholar 

  318. L. Huang, H.B. Wei, F.S. Ke, X.Y. Fan, J.T. Li, S.G. Sun: Electrodeposition and lithium storage performance of three-dimensional porous reticular Sn-Ni alloy electrodes, Electrochim. Acta 54, 2693–2698 (2009)

    Article  Google Scholar 

  319. E. Perre, L. Nyholm, T. Gustafsson, P.-L. Taberna, P. Simon, K. Edstrom: Direct electrodeposition of aluminium nano-rods, Electrochem. Commun. 10, 1467–1470 (2008)

    Article  Google Scholar 

  320. G. Oltean, L. Nyholm, K. Edstrom: Galvanostatic electrodeposition of aluminium nano-rods for Li-ion three-dimensional micro-battery current collectors, Electrochim. Acta 56, 3203–3208 (2011)

    Article  Google Scholar 

  321. S.K. Cheah, E. Perre, M. Rooth, M. Fondell, A. Harsta, L. Nyholm, M. Boman, T. Gustafsson, J. Lu, P. Simon, K. Edstrom: Self-supported three-dimensional nanoelectrodes for microbattery applications, Nano Lett. 9, 3230–3233 (2009)

    Article  Google Scholar 

  322. J.K. Chang, W.T. Tsai: Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors, J. Electrochem. Soc. 150, A1333–A1338 (2003)

    Article  Google Scholar 

  323. W. Xiao, H. Xia: J.-Y.-H. Fuh, L. Lu: Electrochemical synthesis and supercapacitive properties of epsilon-MnO2 with porous/nanoflaky hierarchical architectures, J. Electrochem. Soc. 156, A627–A633 (2009)

    Article  Google Scholar 

  324. J.-K. Chang, C.-H. Huang, W.-T. Tsai, M.-J. Deng, I.W. Sun, P.-Y. Chen: Manganese films electrodeposited at different potentials and temperatures in ionic liquid and their application as electrode materials for supercapacitors, Electrochim. Acta 53, 4447–4453 (2008)

    Article  Google Scholar 

  325. S.C. Pang, M.A. Anderson, T.W. Chapman: Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide, J. Electrochem. Soc. 147, 444–450 (2000)

    Article  Google Scholar 

  326. C.C. Hu, T.W. Tsou: Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition, Electrochim. Acta 47, 3523–3532 (2002)

    Article  Google Scholar 

  327. C.C. Hu, T.W. Tsou: Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition, Electrochem. Commun. 4, 105–109 (2002)

    Article  Google Scholar 

  328. J.K. Chang, C.T. Lin, W.T. Tsai: Manganese oxide/carbon composite electrodes for electrochemical capacitors, Electrochem. Commun. 6, 666–671 (2004)

    Article  Google Scholar 

  329. J.K. Chang, W.T. Tsai: Effects of temperature and concentration on the structure and specific capacitance of manganese oxide deposited in manganese acetate solution, J. Appl. Electrochem. 34, 953–961 (2004)

    Article  Google Scholar 

  330. B. Babakhani, D.G. Ivey: Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors, J. Power Sources 195, 2110–2117 (2010)

    Article  Google Scholar 

  331. W. Wei, X. Cui, X. Mao, W. Chen, D.G. Ivey: Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapacitor applications-Effect of supersaturation ratio, Electrochim. Acta 56, 1619–1628 (2011)

    Article  Google Scholar 

  332. I. Zhitomirsky, M. Cheong, J. Wei: The cathodic electrodeposition of manganese oxide films for electrochemical supercapacitors, J. Min. Met. Mater. Soc. 59, 66–69 (2007)

    Article  Google Scholar 

  333. J. Wei, N. Nagarajan, I. Zhitomirsky: Manganese oxide films for electrochemical supercapacitors, J. Mater. Process. Technol. 186, 356–361 (2007)

    Article  Google Scholar 

  334. J. Wei, I. Zhitomirsky: Electrosynthesis of manganese oxide films, Surf. Eng. 24, 40–46 (2008)

    Article  Google Scholar 

  335. G.M. Jacob, I. Zhitomirsky: Microstructure and properties of manganese dioxide films prepared by electrodeposition, Appl. Surf. Sci. 254, 6671–6676 (2008)

    Article  Google Scholar 

  336. J.-K. Chang, C.-H. Huang, M.-T. Lee, W.-T. Tsai, M.-J. Deng, I.W. Sun: Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes, Electrochim. Acta 54, 3278–3284 (2009)

    Article  Google Scholar 

  337. C.C. Hu, C.C. Wang: Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition, J. Electrochem. Soc. 150, A1079–A1084 (2003)

    Article  Google Scholar 

  338. B. Dong, T. Xue, C.-L. Xu, H.-L. Li: Electrodeposition of mesoporous manganese dioxide films from lyotropic liquid crystalline phases, Microporous Mesoporous Mater. 112, 627–631 (2008)

    Article  Google Scholar 

  339. C.L. Xu, S.J. Bao, L.B. Kong, H. Li, H.L. Li: Highly ordered MnO2 nanowire array thin films on Ti/Si substrate as an electrode for electrochemical capacitor, J. Solid State Chem. 179, 1351–1355 (2006)

    Article  Google Scholar 

  340. C. Xu, Y. Zhao, G. Yang, F. Li, H. Li: Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications, Chem. Commun. 8, 7575–7577 (2009)

    Article  Google Scholar 

  341. K.R. Prasad, N. Miura: Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors, J. Power Sources 135, 354–360 (2004)

    Article  Google Scholar 

  342. M.S. Wu: Electrochemical capacitance from manganese oxide nanowire structure synthesized by cyclic voltammetric electrodeposition, Appl. Phys. Lett. 87, 153102 (2005)

    Article  Google Scholar 

  343. M.S. Wu, P.C.J. Chiang: Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors, Electrochem. Solid State Lett. 7, A123–A126 (2004)

    Article  Google Scholar 

  344. T. Shinomiya, V. Gupta, N. Miura: Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide, Electrochim. Acta 51, 4412–4419 (2006)

    Article  Google Scholar 

  345. J.-K. Chang, C.-H. Huang, W.-T. Tsai, M.-J. Deng, I.W. Sun: Ideal pseudocapacitive performance of the Mn oxide anodized from the nanostructured and amorphous Mn thin film electrodeposited in BMP-NTf2 ionic liquid, J. Power Sources 179, 435–440 (2008)

    Article  Google Scholar 

  346. R. Liu, S.B. Lee: MnO2/Poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage, J. Am. Chem. Soc. 130, 2942–2943 (2008)

    Article  Google Scholar 

  347. R. Liu, J. Duay, S.B. Lee: Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/Poly(3,4-ethylenedioxythiophene) nanowires, ACS Nano 5, 5608–5619 (2011)

    Article  Google Scholar 

  348. Z. Fan, J. Chen, B. Zhang, F. Sun, B. Liu, Y. Kuang: Electrochemically induced deposition method to prepare gamma-MnO2/multi-walled carbon nanotube composites as electrode material in supercapacitors, Mater. Res. Bull. 43, 2085–2091 (2008)

    Article  Google Scholar 

  349. H. Xia, J. Feng, H. Wang, M.O. Lai, L. Lu: MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors, J. Power Sources 195, 4410–4413 (2010)

    Article  Google Scholar 

  350. Y. Wang, H. Liu, X. Sun, I. Zhitomirsky: Manganese dioxide-carbon nanotube nanocomposites for electrodes of electrochemical supercapacitors, Scr. Mater. 61, 1079–1082 (2009)

    Article  Google Scholar 

  351. Y.T. Wu, C.C. Hu: Effects of electrochemical activation and multiwall carbon nanotubes on the capacitive characteristics of thick MnO2 deposits, J. Electrochem. Soc. 151, A2060–A2066 (2004)

    Article  Google Scholar 

  352. H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu: Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage, Nano Lett. 8, 2664–2668 (2008)

    Article  Google Scholar 

  353. C.Y. Lee, H.M. Tsai, H.J. Chuang, S.Y. Li, P. Lin, T.Y. Tseng: Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes, J. Electrochem. Soc. 152, A716–A720 (2005)

    Article  Google Scholar 

  354. S.-L. Chou, J.-Z. Wang, S.-Y. Chew, H.-K. Liu, S.-X. Dou: Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors, Electrochem. Commun. 10, 1724–1727 (2008)

    Article  Google Scholar 

  355. Z. Fan, J. Chen, B. Zhang, B. Liu, X. Zhong, Y. Kuang: High dispersion of gamma-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors, Diam. Relat. Mater. 17, 1943–1948 (2008)

    Article  Google Scholar 

  356. G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z. Bao: Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors, Nano Lett. 11, 2905–2911 (2011)

    Article  Google Scholar 

  357. Y.-Q. Zhao, D.-D. Zhao, P.-Y. Tang, Y.-M. Wang, C.-L. Xu, H.-L. Li: MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy, Mater. Lett. 76, 127–130 (2012)

    Article  Google Scholar 

  358. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin: Graphene and nanostructured MnO2 composite electrodes for supercapacitors, Carbon 49, 2917–2925 (2011)

    Article  Google Scholar 

  359. Y. Lei, B. Daffos, P.L. Taberna, P. Simon, F. Favier: MnO2-coated Ni nanorods: Enhanced high rate behavior in pseudo-capacitive supercapacitor, Electrochim. Acta 55, 7454–7459 (2010)

    Article  Google Scholar 

  360. S.-J. Pan, Y.-J. Shih, J.-R. Chen, J.-K. Chang, W.-T. Tsai: Selective micro-etching of duplex stainless steel for preparing manganese oxide supercapacitor electrode, J. Power Sources 187, 261–267 (2009)

    Article  Google Scholar 

  361. J.-K. Chang, S.-H. Hsu, W.-T. Tsai, I.W. Sun: A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance, J. Power Sources 177, 676–680 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, IW., Chang, JK. (2017). Electrodeposition of Nanomaterials. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics