Skip to main content

Advanced Extractive Electrometallurgy

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter starts with a brief introduction of current technologies for metal extraction via chemical and electrochemical means. A focus is given to recent research and development of new methods for titanium extraction. The chapter is then devoted to describing the principle and methodology of the more recently proposed Fray–Farthing–Chen (GlossaryTerm

FFC

) Cambridge process, which is a molten salt-assisted solid-state electrochemical reduction process. Typical examples are highlighted for application of the FFC Cambridge process for extraction of titanium, silicon and other metals, and also the production of various metal alloys, and the related development of fundamental understanding of the proposed in situ reduction routes from physical, chemical, and electrochemical points of view. The unique ability of the FFC Cambridge process for near-net-shape production of metallic components directly from their metal oxide precursors is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3PI:

three-phase interline

BHP:

Broken Hill proprietary

BSE:

back-scattered electron

CO:

carbon monoxide

Cr2O3 :

chromium oxide

CV:

cyclic voltammetry

EDX:

energy-dispersive x-ray spectroscopy

EMR:

electronically mediated reaction

FE:

field emission

FFC:

Fray–Farthing–Chen

GTT:

Ginatta Technologie Titanio

MCE:

metallic cavity electrode

MER:

materials and electrochemical research

MG-Si:

metallurgical-grade-silicon

MSE:

molten salt electrolysis

PRS:

porosity ratio shrinkage

QIT:

Quebec iron and titanium

SEM:

scanning electron microscopy

SoG:

solar-cell-grade

SOM:

solid oxide membrane

TiC:

titanium carbide

XRD:

x-ray diffraction

References

  1. F. Habashi: Handbook of Extractive Metallurgy (Wiley-VCH, Weinheism 1997)

    Google Scholar 

  2. G.Z. Chen, D.J. Fray: Electro-deoxidation of metal oxides, Proc. 130th TMS Annu. Meet. New Orleans (2000) pp. 1147–1151

    Google Scholar 

  3. A. Maitre, P. Lefort: Carbon oxidation at high temperature during carbothermal reduction of titanium dioxide, Phys. Chem. Chem. Phys. 1, 2311–2318 (1999)

    Article  Google Scholar 

  4. O. Kubaschewski, C.B. Alcock: Metallurgical Thermo-Chemistry, 5th edn. (Pergamon, New York 1979)

    Google Scholar 

  5. J.L. Murray (Ed.): Phase Diagrams of Binary Titanium Alloys (ASM, Materials Park 1987) p. 345

    Google Scholar 

  6. V. Dosaj, M. Kroupa, R. Bittar: Silicon and silicon alloys, chemical and metallurgical. In: Kirk-Othmer Encyclopedia of Chemical Technology, ed. by K. Othmer (Wiley, New York 2000)

    Google Scholar 

  7. D. Elwell, G.M. Rao: Electrolytic production of silicon, J. App. Electrochem. 18, 15–22 (1988)

    Article  Google Scholar 

  8. B.G. Gribov, K.V. Zinov’ev: Preparation of high-purity silicon for solar cells, Inorg. Mater. 39, 653–662 (2003)

    Article  Google Scholar 

  9. A. Schei, J.K. Tuset, H. Tveit: Production of High Silicon Alloys (Tapir, Trondheim 1998)

    Google Scholar 

  10. L.A. Corathers: Silicon. In: Mineral Commodity Summaries, ed. by E.K. Schnebele (US Geological Survey, Washington 2010) pp. 144–145

    Google Scholar 

  11. B. Ceccaroli, O. Lohne: Solar grade silicon feedstock. In: Handbook of Photovoltaic Science and Engineering, ed. by A. Luque, S. Hegedus (Wiley, New York 2011) pp. 169–217

    Chapter  Google Scholar 

  12. C. Leyens, M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH, Weinheim 2003)

    Book  Google Scholar 

  13. G. Lütjering, J.C. Williams: Titanium, 2nd edn. (Springer, Berlin, Heidelberg 2007)

    Google Scholar 

  14. M.J. Donachie: Titanium: A Technical Guide (ASM International, Materials Park 2000)

    Google Scholar 

  15. M.A. Hunter: Metallic titanium, J. Am. Chem. Soc. 32, 330–336 (1910)

    Article  Google Scholar 

  16. Toho Titanium Ltd: The Kroll process, http://www.toho-titanium.co.jp/en/products/sponge_en.html (2011)

  17. P.C. Turner, A. Hartman, J.S. Hansen, S.J. Gerdemann: Low Cost Titanium – Myth or Reality SciTech Connect (DOE, Washington 2001), http://www.osti.gov/bridge/servlets/purl/899609-PMSrtc/899609

    Google Scholar 

  18. W. Kroll: Einige Eigenschaften des reinen Titans, Metallwirtschaft 18, 77–80 (1938)

    Google Scholar 

  19. W. Kroll: The production of ductile titanium, J. Electrochem. Soc. 78(1), 35–47 (1940)

    Article  Google Scholar 

  20. A.D. Hartman, S.J. Gerdemann, J.S. Hansen: Producing lower-cost titanium for automotive applications, J. Min. Met. Min. Soc. 50, 16–19 (1998)

    Article  Google Scholar 

  21. A.D. Mcquillan, M.K. Mcquillan: Titanium (Butterworths, London 1956)

    Google Scholar 

  22. M.E. Sibert, Q.H. Mckenna, M. Steinberg, E. Wainer: Electrolytic reduction of titanium monoxide, J. Electrochem. Soc. 102, 252–262 (1955)

    Article  Google Scholar 

  23. M. Steinberg, S.S. Carlton, M.E. Sibert, E. Wainer: Preparation of titanium by fluoride electrolysis, J. Electrochem. Soc. 102, 332–340 (1955)

    Article  Google Scholar 

  24. Toho Titanium Ltd: Titanium sponge produced from the Kroll process, http://www.toho-titanium.co.jp/en/products/sponge_en.html (2011)

  25. J. Thonstad: Some recent trends in molten salt electrolysis of titanium, magnesium, and aluminum, High Temp. Mater. Process. 9, 135–146 (1990)

    Article  Google Scholar 

  26. K. Grjotheim, M. Krohn: Aluminum Electrolysis: Fundamentals of the Hall–Heroult Process, 3rd edn. (Aluminum, Düsseldorf 2002)

    Google Scholar 

  27. J.M. Allwood, J.M. Cullen, R.L. Milford: Options for achieving a 50% cut in industrial carbon emissions by 2050, Environ. Sci. Technol. 44, 1888–1894 (2010)

    Article  Google Scholar 

  28. E.H.K. Technologies: Summary of Emerging Titanium Cost Reduction Technologies (EHK Technologies, Vancouver 2004) p. 59

    Google Scholar 

  29. M.V. Ginatt: Process for the electrolytic production of metals, U.S. Patent 6074543 (2000)

    Google Scholar 

  30. M.V. Ginatta: Why produce titanium by EW?, J. Min. Met. Miner. Soc. 52, 18–20 (2000)

    Article  Google Scholar 

  31. M.V. Ginatta: Economics and Production of Primary Titanium by Electrolytic Winning (EPD Congr., New Orleans 2001) pp. 1–17

    Google Scholar 

  32. J.C. Withers, J. Laughlin, R.O. Loufty: The production of titanium from a composite anode, Proc. Light Met. ‘07, Orlando (2007) pp. 117–125

    Google Scholar 

  33. J.C. Withers, J. Laughlin, R.O. Loufty: Processing routes to produce titanium from TiO2, Proc. Light Met. ‘07, Orlando (2007) pp. 109–115

    Google Scholar 

  34. J.C. Withers, F. Cardarelli, J. Laughlin, R.O. Loufty: Recent Improvements for Electrowinning Titanium Metal from Composite Anodes, Int. Round Table Titanium Prod. Molten Salts (DLR German Aerospace Center, Cologne 2008)

    Google Scholar 

  35. I. Park, T. Abiko, T.H. Okabe: Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR), J. Phys. Chem. Solids 66, 410–413 (2005)

    Article  Google Scholar 

  36. T. Okabe, Y. Waseda: Producing titanium through an electronically mediated reaction, J. Min. Met. Miner. Soc. 49, 28–32 (1997)

    Article  Google Scholar 

  37. T. Abiko, I. Park, T.H. Okabe: Reduction of titanium oxide in molten salt medium, Proc. 10th World Conf. Titanium, Hamburg (2003)

    Google Scholar 

  38. D.J. Fray: Novel methods for the production of titanium, Int. Mater. Rev. 53, 317–325 (2008)

    Article  Google Scholar 

  39. D.R. Sadoway: Electrochemical Pathways Towards Carbon-Free Metals Production (GCEP Carbon Management in Manufacturing Industries, Stanford 2008), Available from:http://gcep.stanford.edu/pdfs/2RK4ZjKBF2f71uM4uriP9g/SadowayGCEP_reduced.pdf

    Google Scholar 

  40. US Department of Energy: Technical Feasibility Study of Steelmaking by Molten Salt Electrolysis (US Department of Energy, Washington 2007) Available from: http://www1.eere.energy.gov/industry/steel/pdfs/moe_steelmaking.pdf

  41. R. Suzuki, K. Ono, K. Teranuma: Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2, Met. Mater. Trans. B 34, 287–295 (2003)

    Article  Google Scholar 

  42. R.O. Suzuki: Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2, J. Phys. Chem. Solids 66, 461–465 (2005)

    Article  Google Scholar 

  43. K. Ono, R.O. Suzuki: A new concept for producing Ti sponge: Calciothermic reduction, J. Min. Met. Miner. Soc. 54, 59–61 (2002)

    Article  Google Scholar 

  44. R.O. Suzuki, Y. Matsuoka: Preparation of Ti-V-Cr hydrogen absorption alloy powder, Jt. Int. Conf. Sustain. Enegry Environ. (SEE), Hua Hin (2004) pp. 167–170

    Google Scholar 

  45. R.O. Suzuki, K. Tatemoto, H. Kitagawa: Direct synthesis of the hydrogen storage V-Ti alloy powder from the oxides by calcium co-reduction, J. Alloy. Compd. 385, 173–180 (2004)

    Article  Google Scholar 

  46. R. Suzuki, S. Inoue: Calciothermic reduction of titanium oxide in molten CaCl2, Met. Mater. Trans. B 34, 277–285 (2003)

    Article  Google Scholar 

  47. G.D. Rigby, I.P. Ratchev, R.I. Olivares, K. Mukunthan, S.A. Bliznyukov, A.A. Shook: Polar titanium – Development of the BHP billiton titanium metal production process, Proc. 21st Annu. ITA Conf. Titanium, Scottsdale (2005)

    Google Scholar 

  48. G.Z. Chen, D.J. Fray, T.W. Farthing: Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature 407, 361–364 (2000)

    Article  Google Scholar 

  49. D.R. Sadoway: New opportunities for metals extraction and waste treatment by electrochemical processing in molten salts, J. Mater. Res. 10, 487–492 (1995)

    Article  Google Scholar 

  50. T.H. Okabe, M. Nakamura, T. Oishi, K. Ono: Electrochemical deoxidation of titanium, Met. Mater. Trans. B 24B, 449–455 (1993)

    Article  Google Scholar 

  51. F. Cardarelli: Method for electrowinning of titanium metal or alloy from titanium oxide containing compound in the liquid state, Canadia Patent 02363647 (2004), pp. 18

    Google Scholar 

  52. F. Cardarelli: A method for the continuous electrowinning of pure titanium metal from molten titanium slag, ilmenite and other semiconductive titanium oxide compounds, Canadia Patent 2363648 (2001), pp. 27

    Google Scholar 

  53. J. Peng, H. Chen, X. Jin, T. Wang, D. Wang, G.Z. Chen: Phase-tunable fabrication of consolidated (α + β)-TiZr alloys for biomedical applications through molten salt electrolysis of solid oxides, Chem. Mater. 21, 5187–5195 (2009)

    Article  Google Scholar 

  54. D.J. Fray, G.Z. Chen: Reduction of titanium and other metal oxides using electrodeoxidation, Mater. Sci. Technol. 20, 295–300 (2004)

    Article  Google Scholar 

  55. K. Dring, C. Rosenkilde: Production of titanium and titanium alloys by electrochemical reduction of oxide precursors, Mater. Technol. 22, 4 (2007)

    Google Scholar 

  56. K. Dring, R. Bhagat, M. Jackson, R. Dashwood, D. Inman: Direct electrochemical production of Ti-10W alloys from mixed oxide preform precursors, J. Alloy. Compd. 419, 103–109 (2006)

    Article  Google Scholar 

  57. R. Bhagat, M. Jackson, D. Inman, R. Dashwood: The production of Ti–Mo alloys from mixed oxide precursors via the FFC Cambridge process, J. Electrochem. Soc. 155, E63–E69 (2008)

    Article  Google Scholar 

  58. J. Ben, J. Martin, D. David, I. Douglas, D. Richard: Production of NiTi via the FFC Cambridge Process, J. Electrochem. Soc. 155, E171–E177 (2008)

    Article  Google Scholar 

  59. M. Ma, D. Wang, W. Wang, X. Hu, X. Jin, G.Z. Chen: Extraction of titanium from different titania precursors by the FFC Cambridge process, J. Alloy. Compd. 420, 37–45 (2006)

    Article  Google Scholar 

  60. A.M. Abdelkader, D.J. Fray: Direct electrochemical preparation of Nb-10Hf-1Ti alloy, Electrochim. Acta 55, 2924–2931 (2010)

    Article  Google Scholar 

  61. M. Ma, D. Wang, X. Hu, X. Jin, G.Z. Chen: A direct electrochemical route from ilmenite to hydrogen-storage ferrotitanium alloys, Chemistry 12, 5075–5081 (2006)

    Article  Google Scholar 

  62. D.J. Fray: Electrochemical method and apparatus, US Patent WO 2004/018735 A1 (2004), pp. 15

    Google Scholar 

  63. D.J. Fray, G.Z. Chen: Metal and alloy powders and powder fabrication, US Patent WO 02/40725 A2 (2002)

    Google Scholar 

  64. D.J. Fray, G.Z. Chen: Metal and alloy powders and powder fabrication, US Patent US 2004/0052672 A1 (2004)

    Google Scholar 

  65. D.J. Fray, R.C. Copcutt, G.Z. Chen: Intermetallic compounds, US Patent US 2004/0104125 A1 (2004)

    Google Scholar 

  66. D.J. Fray, T.W. Farthing, G.Z. Chen: Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt, US Patent WO 99/64638 (1999)

    Google Scholar 

  67. D.J. Fray, T.W. Farthing, G.Z. Chen: Removal of substances from metal and semi-metal compounds, US Patent US 6,712,952 (2004)

    Google Scholar 

  68. G. Chen, E. Gordo, D. Fray: Direct electrolytic preparation of chromium powder, Met. Mater. Trans. B 35, 223–233 (2004)

    Article  Google Scholar 

  69. G. Qiu, K. Jiang, M. Ma, D. Wang, X. Jin, G.Z. Chen: Roles of cationic and elemental calcium in electro-reduction of solid metal oxides in molten calcium chloride, Z. Naturforsch. A 62a, 292–302 (2007)

    Google Scholar 

  70. D. Wang, G. Qiu, X. Jin, X. Hu, G.Z. Chen: Electrochemical metallization of solid terbium oxide, Angew. Chem. Int. Ed. 45, 2384–2388 (2006)

    Article  Google Scholar 

  71. C. Schwandt, D.J. Fray: The electrochemical reduction of chromium sesquioxide in molten calcium chloride under cathodic potential control, Z. Naturforsch. A 62, 655–670 (2007)

    Article  Google Scholar 

  72. K.C.T. Kilby, L. Centeno, G. Doughty, S. Mucklejohn, D.J. Fray: The Electrochemical Production of Oxygen and Metal via the FFC-Cambridge Process (Space Resources Roundtable, Colorado School of Mines, Golden, 2006)

    Google Scholar 

  73. R. Barnett, K. Kilby, D. Fray: Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-cambridge process, Met. Mater. Trans. B 40, 150–157 (2009)

    Article  Google Scholar 

  74. W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, G.Z. Chen: Electrochemically driven three-phase interlines into insulator compounds: Electroreduction of solid SiO2 in molten CaCl2, Chem. Phys. Chem. 7, 1750–1758 (2006)

    Google Scholar 

  75. K. Dring, R. Dashwood, D. Inman: Voltammetry of titanium dioxide in molten calcium chloride at 900 °C, J. Electrochem. Soc. 152, E104–E113 (2005)

    Article  Google Scholar 

  76. C. Schwandt, G.R. Doughty, D.J. Fray: The FFC-cambridge process for titanium metal winning, Key Eng. Mater. 436, 13–25 (2010)

    Article  Google Scholar 

  77. J.O.M. Bockris, G.J. Hills, D. Inman, L. Young: An all-glass reference electrode for molten salt systems, J. Sci. Instrum. 33, 438 (1956)

    Article  Google Scholar 

  78. K. Yasuda, T. Nohira, Y.H. Ogata, Y. Ito: Electrochemical window of molten LiCl-KCl-CaCl2 and the Ag+/Ag reference electrode, Electrochim. Acta 51, 561–565 (2005)

    Article  Google Scholar 

  79. P. Gao, X. Jin, D. Wang, X. Hu, G.Z. Chen: A quartz sealed Ag/AgCl reference electrode for CaCl2 based molten salts, J. Electroanal. Chem. 579, 321–328 (2005)

    Article  Google Scholar 

  80. H. Wang, N.J. Siambun, L. Yu, G.Z. Chen: A Robust alumina membrane reference electrode for high temperature molten salts, J. Electrochem. Soc. 159, H740–H746 (2012)

    Article  Google Scholar 

  81. G. Qiu, M. Ma, D. Wang, X. Jin, X. Hu, G.Z. Chen: Metallic cavity electrodes for investigation of powders, J. Electrochem. Soc. 152, E328–E336 (2005)

    Article  Google Scholar 

  82. J. Peng, G. Li, H. Chen, D. Wang, X. Jin, G.Z. Chen: Cyclic voltammetry of ZrO2 powder in the metallic cavity electrode in molten CaCl2, J. Electrochem. Soc. 157, F1–F9 (2010)

    Article  Google Scholar 

  83. K. Jiang, X.H. Hu, H.J. Sun, D.H. Wang, X.B. Jin, Y.Y. Ren, G.Z. Chen: Electrochemical synthesis of LiTiO2 and LiTi2O4 in molten LiCl, Chem. Mater. 16, 4324–4329 (2004)

    Article  Google Scholar 

  84. X. Jin, P. Gao, D. Wang, X. Hu, G.Z. Chen: Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride, Angew. Chem. Int. Ed. 43, 733–736 (2004)

    Article  Google Scholar 

  85. T. Nohira, K. Yasuda, Y. Ito: Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon, Nat. Mater. 2, 397–401 (2003)

    Article  Google Scholar 

  86. K. Yasuda, T. Nohira, R. Hagiwara, Y.H. Ogata: Direct electrolytic reduction of solid SiO2 in Molten CaCl2 for the production of solar grade silicon, Electrochim. Acta 53, 106–110 (2007)

    Article  Google Scholar 

  87. K. Yasuda, T. Nohira, Y.H. Ogata, Y. Ito: Direct electrolytic reduction of solid silicon dioxide in molten LiCl-KCl-CaCl2 at 773K, J. Electrochem. Soc. 152, D208–D212 (2005)

    Article  Google Scholar 

  88. K. Yasuda, T. Nohira, R. Hagiwara, Y.H. Ogata: Diagrammatic representation of direct electrolytic reduction of SiO2 in molten CaCl2, J. Electrochem. Soc. 154, E95–E101 (2007)

    Article  Google Scholar 

  89. W. Xiao, X. Jin, Y. Deng, D. Wang, G.Z. Chen: Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry, J. Electroanal. Chem. 639, 130–140 (2010)

    Article  Google Scholar 

  90. K. Yasuda, T. Nohira, R. Hagiwara, Y.H. Ogata: Direct electrolytic reduction of solid SiO2 in molten CaCl2, Proc. Light Met. ‘07, Orlando (2007) pp. 5–11

    Google Scholar 

  91. K. Yasuda, T. Nohira, K. Amezawa, Y.H. Ogata, Y. Ito: Mechanism of direct electrolytic reduction of solid SiO2 to Si in molten CaCl2, J. Electrochem. Soc. 152, D69–D74 (2005)

    Article  Google Scholar 

  92. K. Dring: Direct electrochemical reduction of titanium dioxide in molten salts, Key Eng. Mater. 436, 27–34 (2010)

    Article  Google Scholar 

  93. K. Jiang, X. Hu, M. Ma, D. Wang, G. Qiu, X. Jin, G.Z. Chen: ‘‘Perovskitization’’ – Assisted electrochemical reduction of solid TiO2 in molten CaCl2, Angew. Chem. Int. Ed. 45, 428–432 (2006)

    Article  Google Scholar 

  94. C. Schwandt, D.T.L. Alexander, D.J. Fray: The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control, Electrochim. Acta 54, 3819–3829 (2009)

    Article  Google Scholar 

  95. C. Schwandt, D.J. Fray: Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride, Electrochim. Acta 51, 66–76 (2005)

    Article  Google Scholar 

  96. R. Centeno-Sánchez, D. Fray, G. Chen: Study on the reduction of highly porous TiO2 precursors and thin TiO2 layers by the FFC-Cambridge process, J. Mater. Sci. 42, 7494–7501 (2007)

    Article  Google Scholar 

  97. G.Z. Chen, D.J. Fray: Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride, J. Electrochem. Soc. 149, E455–E467 (2002)

    Article  Google Scholar 

  98. D.T.L. Alexander, C. Schwandt, D.J. Fray: The electro-deoxidation of dense titanium dioxide precursors in molten calcium chloride giving a new reaction pathway, Electrochim. Acta 56, 3286–3295 (2011)

    Article  Google Scholar 

  99. W. Li, X. Jin, F. Huang, G.Z. Chen: Metal-to-oxide molar volume ratio: The overlooked barrier to solid-state electroreduction and a green bypass through recyclable NH4HCO3, Angew. Chem. Int. Ed. 49, 3203–3206 (2010)

    Article  Google Scholar 

  100. H. Chen, Y. Zeng, W. Li, J. Peng, X. Jin, G.Z. Chen: A PRS model for accurate prediction of the optimal solid oxide cathode structure for the preparation of metals in molten chlorides, Electrochem. Commun. 26, 33–36 (2013)

    Article  Google Scholar 

  101. A.J. Fenn, G. Cooley, D. Fray, L. Smith: Exploiting the FFC Cambridge process, Adv. Mater. Process. 162, 51 (2004)

    Google Scholar 

  102. D. Wang, X. Jin, G.Z. Chen: Solid state reactions: An electrochemical approach in molten salts, Phys. Chem. 104, 189–234 (2008)

    Google Scholar 

  103. S. Jiao, D. Fray: Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts, Met. Mater. Trans. B 41, 74–79 (2010)

    Article  Google Scholar 

  104. S. Jiao, L. Zhang, H. Zhu, D.J. Fray: Production of NiTi shape memory alloys via electro-deoxidation utilizing an inert anode, Electrochim. Acta 55, 7016–7020 (2010)

    Article  Google Scholar 

  105. H. Yin, L. Gao, H. Zhu, X. Mao, F. Gan, D. Wang: On the development of metallic inert anode for molten CaCl2-CaO System, Electrochim. Acta 56, 3296–3302 (2011)

    Article  Google Scholar 

  106. B. Zhao, X. Lu, Q. Zhong, C. Li, S. Chen: Direct electrochemical preparation of CeNi5 and LaxCe1-xNi5 alloys from mixed oxides by SOM process, Electrochim. Acta 55, 2996–3001 (2010)

    Article  Google Scholar 

  107. X.J. Liao, H.W. Xie, Y.C. Zhai, Y. Zhang: Preparation of Al3Sc intermetallic compound by FFC method, J. Mater. Sci. Technol. 25, 717–720 (2009)

    Google Scholar 

  108. M. Jackson, K. Dring: A review of advances in processing and metallurgy of titanium alloys, Mater. Sci. Technol. 22, 881–887 (2006)

    Article  Google Scholar 

  109. G. Qiu, D. Wang, X. Jin, G.Z. Chen: A direct electrochemical route from oxide precursors to the terbium-nickel intermetallic compound TbNi5, Electrochim. Acta 51, 5785–5793 (2006)

    Article  Google Scholar 

  110. G. Qiu, D. Wang, M. Ma, X. Jin, G.Z. Chen: Electrolytic synthesis of TbFe2 from Tb4O7 and Fe2O3 powders in molten CaCl2, J. Electroanal. Chem. 589, 139–147 (2006)

    Article  Google Scholar 

  111. Y. Zhu, D. Wang, M. Ma, X. Hu, X. Jin, G.Z. Chen: More affordable electrolytic LaNi5-type hydrogen storage powders, Chem. Commun., 2515–2517 (2007)

    Google Scholar 

  112. J. Peng, Y. Zhu, D. Wang, X. Jin, G.Z. Chen: Direct and low energy electrolytic co-reduction of mixed oxides to zirconium-based multi-phase hydrogen storage alloys in molten salts, J. Mater. Chem. 19, 2803–2809 (2009)

    Article  Google Scholar 

  113. B.J. Zhao, L. Wang, L. Dai, G.G. Cui, H.Z. Zhou, R.V. Kumar: Direct electrolytic preparation of cerium/nickel hydrogen storage alloy powder in molten salt, J. Alloy. Compd. 468, 379–385 (2009)

    Article  Google Scholar 

  114. J. Peng, K. Jiang, W. Xiao, D. Wang, X. Jin, G.Z. Chen: Electrochemical conversion of oxide precursors to consolidated Zr and Zr-2.5Nb Tubes, Chem. Mater. 20, 7274–7280 (2008)

    Article  Google Scholar 

  115. Y. Zhu, M. Ma, D. Wang, K. Jiang, X. Hu, X. Jin, G. Chen: Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy, Chin. Sci. Bull. 51, 2535–2540 (2006)

    Article  Google Scholar 

  116. R. Bhagat, M. Jackson, D. Inman, R. Dashwood: Production of Ti–W alloys from mixed oxide precursors via the FFC Cambridge process, J. Electrochem. Soc. 156, E1–E7 (2009)

    Article  Google Scholar 

  117. M. Jolly: Castings. In: Comprehensive Structural Integrity, ed. by I. Milne, R.O. Ritchie, B. Karihaloo (Elsevier, Oxford 2003) pp. 377–466

    Chapter  Google Scholar 

  118. V. Moxson, O. Senkov, F. Froes: Innovations in titanium powder processing, J. Min. Met. Mater. Soc. 52, 24–26 (2000)

    Article  Google Scholar 

  119. P.J. Bridges, B. Magnus: Manufacture of titanium alloy components for aerospace and military applications, Proc. RTO Appl. Veh. Technol. Panel (AVT) Specialists’ Meet. (NATO Research and Technology Organisation, Oslo 2001)

    Google Scholar 

  120. E.O. Ezugwu, Z.M. Wang: Titanium alloys and their machinability – A review, J. Mater. Process. Technol. 68, 262–274 (1997)

    Article  Google Scholar 

  121. D. Hu, W. Xiao, G.Z. Chen: Near-net-shape production of hollow titanium alloy components via electrochemical reduction of metal oxide precursors in molten salts, Met. Mater. Trans. B 44, 272–282 (2013)

    Article  Google Scholar 

  122. F.H. Froes, M. Gungor, M. Ashraf Imam: Cost-affordable titanium: The component fabrication perspective, J. Min. Met. Mater. Soc. 59, 28–31 (2007)

    Article  Google Scholar 

  123. D.J. Fray, Z. Chen, T.W. Farthing, Fabrication of metal articles by electrolysis of preshaped metal compounds in a fused salt, EHR Patent EP1333110B1 (2010)

    Google Scholar 

  124. F.H. Froes, M.A. Iman, D.J. Fray (Eds.): Cost affordable titanium, Proc. Light Metals, Charlotte 2004)

    Google Scholar 

  125. F.H. Froes, M. Ashraf Imam: Cost affordable developments in titanium technology and applications, Key Eng. Mater. 436, 1–11 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hu, D., Chen, G.Z. (2017). Advanced Extractive Electrometallurgy. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics