Skip to main content

Energy Conversion Based on Bio(electro)catalysts

  • Chapter
Springer Handbook of Electrochemical Energy

Part of the book series: Springer Handbooks ((SHB))

Abstract

Redox enzymes can be efficiently coupled with an electrode surface giving prospect of highly efficient and selective bio(electrochemical) transformations for energy conversion and/or production of commodities or fine chemicals. One example is glucose oxidase that immobilized on the electrode surface and in the presence of glucose and oxygen reduction cathode generates electricity and D-glucono-1,5-lactone with applications in different industries. Other examples might comprise whole enzymatic cascades performing complex sequences of biochemical reactions, turning, for example, such inert and environmentally polluting substances (like CO2) into useful commodities (e. g., methanol). These processes have a significant potential for development of new enzyme-based production systems, with electrochemistry playing an important role, especially regarding electrochemical regeneration of redox enzymes (redox cofactors). Although the electrochemical regeneration is feasible, its efficiency is still too low to be considered competitive for industrial applications. In this contribution we consider some important aspects of electrochemical regeneration of enzymes and common co-factors. At first, working principles of two typical representatives of bioelectrochemical systems will be described, followed by a short discussion of so-called cell free systems and their relationship to bioelectrochemical systems. For practical development of bioelectrochemical systems, the thermodynamics of related processes as well as kinetics are important. We give some examples of enzymes showing reversible electrode behavior, as an inspiration. Mathematical modeling will play a significant role in the design and optimization of bioelectrochemical systems. For this reason, we show how nonlinear mathematical models for studying the kinetics ofenzymatic processes can be developed. Finally, we discuss some practical aspects of biotransformation with redox enzymes, including examples of electron transfer mechanisms, enzyme adaptation on process conditions, development of electrodes etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADH:

alcohol dehydrogenase

ATP:

adenosine triphosphate

BV:

Butler–Volmer

CNT:

carbon nanotube

CTC:

charge transfer complex

DET:

direct electron transfer

Df:

desulfovibrio fructosovorans

DNA:

deoxyribonucleic acid

EIS:

electrochemical impedance spectroscopy

ES:

enzyme substrate

FAD:

flavin adenine dinucleotide

FMN:

flavin mononucleotide

GC:

glassy carbon

GDH:

glucose dehydrogenase

GOx:

glucose oxidase

HRP:

horseradish peroxidase

MET:

mediated electron transfer

MWCNT:

multiwall carbon nanotube

NADH:

reduced nicotinamide adenine dinucleotide

NAD:

nicotinamide adenine dinucleotide

OCP:

open circuit potential

PQQ:

pyrroloquinoline quinone

RDE:

rotating-disk electrode

SHE:

standard hydrogen electrode

SWCNT:

single wall carbon nanotube

TCNQ:

tetracyanoquinodimethan

TTF:

tetrathiafulvalane

References

  • C.E. Hodgman, M.C. Jewett: Cell-free synthetic biology: Thinking outside the cell, Meta. Eng. 14(3), 261–269 (2012)

    Article  Google Scholar 

  • A. Bar-Even, E. Noor, N.E. Lewis, R. Miloa: Design and analysis of synthetic carbon fixation pathways, Proc. Natl. Acad. Sci. U.S.A 107(19), 8889–8894 (2010)

    Article  Google Scholar 

  • C.A. Raines: The Calvin cycle revisited, Photosynth. Res. 75(1), 1–10 (2003)

    Article  Google Scholar 

  • M.J. Lukey, A. Parkin, M.M. Roessler, B.J. Murphy, J. Harmer, T. Palmer, F. Sargent, F.A. Armstrong: How Escherichia coli is equipped to oxidize hydrogen under different redox conditions, J. Biol. Chem. 285(6), 3928–3938 (2010)

    Article  Google Scholar 

  • A. Abou Hamdan, S. Dementin, P.-P. Liebgott, O. Gutierrez-Sanz, P. Richaud, A.L. De Lacey, M. Rousset, P. Bertrand, L. Cournac, C. Léger: Understanding and tuning the catalytic bias of hydrogenase, J. Am. Chem. Soc. 134(20), 8368–8371 (2012)

    Article  Google Scholar 

  • C. Léger, S.J. Elliott, K.R. Hoke, L.J.C. Jeuken, A.K. Jones, F.A. Armstrong: Enzyme electrokinetics: Using protein film voltammetry to investigate redox enzymes and their mechanisms, Biochemistry 42(29), 8653–8662 (2003)

    Article  Google Scholar 

  • F.A. Armstrong, J. Hirst: Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes, Proc. Natl. Acad. Sci. U.S.A. 108(34), 14049–14054 (2011)

    Article  Google Scholar 

  • A.A. Karyakin, Y.N. Ivanova, E.E. Karyakina: Equilibrium (NAD(+)/NADH) potential on poly (Neutral Red) modified electrode, Electrochem. Commun. 5(8), 677–680 (2003)

    Article  Google Scholar 

  • G.E. Briggs, J.B.S. Haldane: A note on the kinetics of enzyme action, Biochem. J. 19(2), 338–339 (1925)

    Article  Google Scholar 

  • S. Fletcher: Tafel slopes from first principles, J. Solid State Electrochem. 13(4), 537–549 (2009)

    Article  Google Scholar 

  • R. Andreu, E.E. Ferapontova, L. Gorton, J.J. Calvente: Direct electron transfer kinetics in horseradish peroxidase electrocatalysis, J. Phys. Chem. B 111(2), 469–477 (2007)

    Article  Google Scholar 

  • C. Léger, A.K. Jones, S.P.J. Albracht, F.A. Armstrong: Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in NiFe-hydrogenase and other enzymes, J. Phys. Chem. B 106(50), 13058–13063 (2002)

    Article  Google Scholar 

  • T.R. Vidaković-Koch, V.V. Panić, M. Andrić, M. Petkovska, K. Sundmacher: Nonlinear frequency response nalysis of the ferrocyanide oxidation kinetics. Part I. A theoretical analysis, J. Phys. Chem. C 115(35), 17341–17351 (2011)

    Article  Google Scholar 

  • T.L.G. Ruzgas, J.G.M.-V. Emnéus: Kinetic-models of horseradish-peroxidase action on a graphite electrode, J. Electroanal. Chem. 391(1/2), 41–49 (1995)

    Article  Google Scholar 

  • E.E. Ferapontova, L. Gorton: Effect of proton donors on direct electron transfer in the system gold electrode-horseradish peroxidase, Electrochem. Commun. 3(12), 767–774 (2001)

    Article  Google Scholar 

  • M.S. Mondal, H.A. Fuller, F.A. Armstrong: Direct measurement of the reduction potential of catalytically active cytochrome c peroxidase compound I: Voltammetric detection of a reversible, cooperative two-electron transfer reaction, J. Am. Chem. Soc. 118(1), 263–264 (1996)

    Article  Google Scholar 

  • M.S. Mondal, D.B. Goodin, F.A. Armstrong: Simultaneous voltammetric comparisons of reduction potentials, reactivities, and stabilities of the high-potential catalytic states of wild-type and distal-pocket mutant (W51F) yeast cytochrome c peroxidase, J. Am. Chem. Soc. 120(25), 6270–6276 (1998)

    Article  Google Scholar 

  • T. Vidaković-Koch, V.K. Mittal, M. Varničić, Q.N. Do Thi, K. Sundmacher: Application of electrochemical impedance spectroscopy for studying of enzyme kinetics, Electrochim. Acta 110, 94–104 (2013)

    Article  Google Scholar 

  • V.V. Panić, T.R. Vidaković-Koch, M. Andrić, M. Petkovska, K. Sundmacher: Nonlinear frequency response analysis of the ferrocyanide oxidation kinetics. Part II. Measurement routine and experimental validation, J. Phys. Chem. C 115(35), 17352–17358 (2011)

    Article  Google Scholar 

  • B. Bensmann, M. Petkovska, T. Vidaković-Koch, R. Hanke-Rauschenbach, K. Sundmacher: Nonlinear frequency response of electrochemical methanol oxidation kinetics: A theoretical analysis, J. Electrochem. Soc. 157(9), B1279–B1289 (2010)

    Article  Google Scholar 

  • F.A. Armstrong, N.A. Belsey, J.A. Cracknell, G. Goldet, A. Parkin, E. Reisner, K.A. Vincent, A.F. Wait: Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology, Chem. Soc. Rev. 38(1), 36–51 (2009)

    Article  Google Scholar 

  • E. Lojou: Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces, Electrochim. Acta 56(28), 10385–10397 (2011)

    Article  Google Scholar 

  • K.A. Vincent, A. Parkin, O. Lenz, S.P.J. Albracht, J.C. Fontecilla-Camps, R. Cammack, B. Friedrich, F.A. Armstrong: Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases, J. Am. Chem. Soc. 127(51), 18179–18189 (2005)

    Article  Google Scholar 

  • O. Rüdiger, J.M. Abad, E.C. Hatchikian, V.M. Fernandez, A.L. De Lacey: Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2, J. Am. Chem. Soc. 127(46), 16008–16009 (2005)

    Article  Google Scholar 

  • A. Ciaccafava, P. Infossi, M. Ilbert, M. Guiral, S. Lecomte, M.T. Giudici-Orticoni, E. Lojou: Electrochemistry, AFM, and PM-IRRA spectroscopy of immobilized hydrogenase: Role of a hydrophobic helix in enzyme orientation for efficient H2 oxidation, Angew. Chem. Int. Ed. 51(4), 953–956 (2012)

    Article  Google Scholar 

  • M.A. Alonso-Lomillo, O. Rüdiger, A. Maroto-Valiente, M. Velez, I. Rodríguez-Ramos, F. Javier Muñoz, V.M. Fernández, A.L. De Lacey: Hydrogenase-coated carbon nanotubes for efficient H2 oxidation, Nano Lett. 7(6), 1603–1608 (2007)

    Article  Google Scholar 

  • E.X.L. Lojou, M.N.C. Brugna, S.M.T.G.-O. Dementin: Biocatalysts for fuel cells: Efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes, J. Biol. Inorg. Chem. 13(7), 1157–1167 (2008)

    Article  Google Scholar 

  • X. Luo, M. Brugna, P. Tron-Infossi, M.T. Giudici-Orticoni, E. Lojou: Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation, J. Biol. Inorg. Chem. 14(8), 1275–1288 (2009)

    Article  Google Scholar 

  • A.J. Healy, H.A. Reeve, A. Parkin, K.A. Vincent: Electrically conducting particle networks in polymer electrolyte as three-dimensional electrodes for hydrogenase electrocatalysis, Electrochim. Acta 56(28), 10786–10790 (2011)

    Article  Google Scholar 

  • R.A. Alberty: Calculation of standard transformed formation properties of biochemical reactants and standard apparent reduction potentials of half reactions, Arc. Biochem. Biophys. 358(1), 25–39 (1998)

    Article  Google Scholar 

  • T.M. Iverson, C. Luna-Chavez, G. Cecchini, D.C. Rees: Structure of the Escherichia coli fumarate reductase respiratory complex, Science 284(5422), 1961–1966 (1999)

    Article  Google Scholar 

  • F.L.G. Tasca, W.D.H. Harreither, R.N.G. Ludwig: Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from phanerochaete soridida, Analytical Chem. 81(7), 2791–2798 (2009)

    Article  Google Scholar 

  • J. Okuda, T. Yamazaki, M. Fukasawa, N. Kakehi, K. Sode: The application of engineered glucose dehydrogenase to a direct electron-transfer-type continuous glucose monitoring system and a compartmentless biofuel cell, Anal. Lett. 40(3), 431–440 (2007)

    Article  Google Scholar 

  • O. Courjean, F. Gao, N. Mano: Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode, Ange. Chem. Int, Ed. 48(32), 5897–5899 (2009)

    Google Scholar 

  • C. Léger, K. Heffron, H.R. Pershad, E. Maklashina, C. Luna-Chavez, G. Cecchini, B.A.C. Ackrell, F.A. Armstrong: Enzyme electrokinetics: Energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase, Biochemistry 40(37), 11234–11245 (2001)

    Article  Google Scholar 

  • I. Ivanov, T. Vidakovic-Koch, K. Sundmacher: Recent advances in enzymatic fuel cells: Experiments and modeling, Energies 3(4), 803–846 (2010)

    Article  Google Scholar 

  • S. Kochius, A.O. Magnusson, F. Hollmann, J. Schrader, D. Holtmann: Immobilized redox mediators for electrochemical NAD(P)(+) regeneration, Appl. Microbiol. Biotechnol. 93(6), 2251–2264 (2012)

    Article  Google Scholar 

  • N. Mano, F. Mao, W. Shin, T. Chen, A. Heller: A miniature biofuel cell operating at 0.78 V, Chem. Commun. 4, 518–519 (2003)

    Article  Google Scholar 

  • M.N.X.W. Zafar, C.R.L. Sygmund, D.L.G. Leech: Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials, Anal. Chem. 84(1), 334–341 (2012)

    Article  Google Scholar 

  • N.A.H. Mano: A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions, J. Electrochem. Soc. 150(8), A1136–A1138 (2003)

    Article  Google Scholar 

  • N. Mano, F. Mao, A. Heller: A miniature membrane-less biofuel cell operating at +0.60 V under physiological conditions, ChemBioChem 5(12), 1703–1705 (2004)

    Article  Google Scholar 

  • N. Mano, F. Mao, A. Heller: Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant, J. Am. Chem. Soc. 125(21), 6588–6594 (2003)

    Article  Google Scholar 

  • F. Mao, N. Mano, A. Heller: Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme wiring hydrogels, J. Am. Chem. Soc. 125(16), 4951–4957 (2003)

    Article  Google Scholar 

  • V. Soukharev, N. Mano, A. Heller: A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V, J. Am. Chem. Soc. 126(27), 8368–8369 (2004)

    Article  Google Scholar 

  • F.Y.F. Barrière, D.D.L. Rochefort: Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell, Electrochem. Commun. 6(3), 237–241 (2004)

    Article  Google Scholar 

  • M.N. Zafar, F. Tasca, L. Gorton, E.V. Patridge, J.G. Ferry, N. Gilbert: Tryptophan repressor-binding proteins from Escherichia coli and archaeoglobus fulgidus as new catalysts for 1,4-dihydronicotinamide adenine dinucleotide-dependent amperometric biosensors and biofuel cells, Anal. Chem. 81(10), 4082–4088 (2009)

    Article  Google Scholar 

  • I. Ivanov, T. Vidakovic-Koch, K. Sundmacher: Direct hybrid glucose-oxygen enzymatic fuel cell based on tetrathiafulvalene-tetracyanoquinodimethane charge transfer complex as anodic mediator, J. Power Sources 196(22), 9260–9269 (2011)

    Article  Google Scholar 

  • L. Brunel, J. Denele, K. Servat, K.B. Kokoh, C. Jolivalt, C. Innocent, M. Cretin, M. Rolland, S. Tingry: Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell, Electrochem. Commun. 9(2), 331–336 (2007)

    Article  Google Scholar 

  • A. Habrioux, G. Merle, K. Servat, K.B. Kokoh, C. Innocent, M. Cretin, S. Tingry: Concentric glucose/O2 biofuel cell, J. Electroanal. Chem. 622(1), 97–102 (2008)

    Article  Google Scholar 

  • G. Merle, A. Habrioux, K. Servat, M. Rolland, C. Innocent, K.B. Kokoh, S. Tingry: Long-term activity of covalent grafted biocatalysts during intermittent use of a glucose/O2 biofuel cell, Electrochim. Acta 54(11), 2998–3003 (2009)

    Article  Google Scholar 

  • I. Ivanov, T. Vidaković-Koch, K. Sundmacher: Alternating electron transfer mechanism in the case of high-performance tetrathiafulvalene–tetracyanoquinodimethane enzymatic electrodes, J. Electroanal. Chem. 690, 68–73 (2013)

    Article  Google Scholar 

  • R. Devaux-Basseguy, A. Bergel, M. Comtat: Potential applications of NAD(P)-dependent oxidoreductases in synthesis: A survey, Enzyme Microb. Technol. 20(4), 248–258 (1997)

    Article  Google Scholar 

  • P. Schenkels, S. De Vries, A.J.J. Straathof: Scope and limitations of the use of nicotinoprotein alcohol dehydrogenase for the coenzyme-free production of enantiopure fine-chemicals, Biocatal. Biotransform. 19(3), 191–212 (2001)

    Article  Google Scholar 

  • W.A. van der Donk, H.M. Zhao: Recent developments in pyridine nucleotide regeneration, Curr. Opin. Biotechnol. 14(4), 421–426 (2003)

    Article  Google Scholar 

  • F.A.S. Hollmann: Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions, Biocatal. Biotransform. 22(2), 63–88 (2004)

    Article  Google Scholar 

  • Y.B. Zu, R.J. Shannon, J. Hirst: Reversible, electrochemical interconversion of NADH and NAD(+) by the catalytic (I lambda) subcomplex of mitochondrial NADH: Ubiquinone oxidoreductase (complex I), J. Am. Chem. Soc. 125(20), 6020–6021 (2003)

    Article  Google Scholar 

  • M.N. Arechederra, P.K. Addo, S.D. Minteer: Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: Towards the development of a rechargeable biobattery, Electrochim. Acta 56(3), 1585–1590 (2011)

    Article  Google Scholar 

  • Y.H. Kim, Y.J. Yoo: Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode, Enzyme Microb. Technol. 44(3), 129–134 (2009)

    Article  Google Scholar 

  • A.A. Karyakin, E.E. Karyakina, W. Schuhmann, H.L. Schmidt: Electropolymerized azines: Part II. In a search of the best electrocatalyst of NADH oxidation, Electroanalysis 11(8), 553–557 (1999)

    Article  Google Scholar 

  • H. Li, H. Wen, S.C. Barton: NADH oxidation catalyzed by electropolymerized azines on carbon nanotube modified electrodes, Electroanalysis 24(2), 398–406 (2012)

    Article  Google Scholar 

  • C.W. Narváez Villarrubia, R.A. Rincón, V.K. Radhakrishnan, V. Davis, P. Atanassov: Methylene green electrodeposited on SWNTs-based bucky papers for NADH and l-Malate oxidation, ACS Appl. Mater. Interfaces 3(7), 2402–2409 (2011)

    Article  Google Scholar 

  • A. Salimi, M. Izadi, R. Hallaj, S. Soltanian, H. Hadadzadeh: Electrocatalytic reduction of NAD(+) at glassy carbon electrode modified with single-walled carbon nanotubes and Ru(III) complexes, J. Solid State Electrochem. 13(3), 485–496 (2009)

    Article  Google Scholar 

  • I. Ali, B. Soomro, S. Omanovic: Electrochemical regeneration of NADH on a glassy carbon electrode surface: The influence of electrolysis potential, Electrochem. Commun. 13(6), 562–565 (2011)

    Article  Google Scholar 

  • I. Ali, A. Gill, S. Omanovic: Direct electrochemical regeneration of the enzymatic cofactor 1,4-NADH employing nano-patterned glassy carbon/Pt and glassy carbon/Ni electrodes, Chem. Eng. J. 188(0), 173–180 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vidaković-Koch, T. (2017). Energy Conversion Based on Bio(electro)catalysts. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics