Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter details the common analytical methods used to evaluate all types of biological fuel cells. These include in situ and ex situ techniques for studying the catalyst, the bioelectrodes, and the complete biological fuel cell. Spectroscopic methods include spectrophotometric kinetic assays, product analysis assays, and electrode characterization techniques. Electrochemical methods include methods for proving bioelectrocatalysis via voltammetry, studying biocatalyst kinetics via amperometry, and performing polarization and power curve measurements on complete biological fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATR:

attenuated total reflection

BCA:

bicinchoninic acid

BSA:

bovine serum albumin

DC:

direct current

DCIP:

dichlorophenolindophenol

EIS:

electrochemical impedance spectroscopy

emf:

electromotive force

FAD:

flavin adenine dinucleotide

FTIR:

Fourier-transform infrared

GC-MS:

gas chromatography-mass spectrometry

LC-MS:

liquid chromatography-mass spectrometry

MS:

mass spectrometry

NAD:

nicotinamide adenine dinucleotide

NMR:

nuclear magnetic resonance

PEM:

polymer electrolyte membrane

PMS:

phenazine methosulfate

PQQ:

pyrroloquinoline quinone

QCM:

quartz crystal microbalance

UV-Vis:

ultraviolet–visible

XPS:

x-ray photoelectron spectroscopy

References

  1. M.C. Potter: Electrical effects accompanying the decomposition of organic compounds, Proc. R. Soc. Lond. Ser. 84, 260–278 (1912)

    Article  Google Scholar 

  2. V.A. Pedrosa, J. Yan, A.L. Simonian, A. Revzin: Micropatterned nanocomposite hydrogels for biosensing applications, Electroanalysis 23, 1142–1149 (2011)

    Article  Google Scholar 

  3. A. Kausaite-Minkstimiene, V. Mazeiko, A. Ramanaviciene, A. Ramanavicius: Enzymatically synthesized polyaniline layer for extension of linear detection region of amperometric glucose biosensor, Biosens. Bioelectron. 26, 790–797 (2010)

    Article  Google Scholar 

  4. D. Ivnitski, P. Atanassov, C. Apblett: Direct bioelectrocatalysis of PQQ-dependent glucose dehydrogenase, Electroanalysis 19(15), 1562–1568 (2007)

    Article  Google Scholar 

  5. A. Pothukuchy, N. Mano, G. Georgiou, A. Heller: A potentially insect-implantable trehalose electrooxidizing anode, Biosens. Bioelectron. 22, 678–684 (2006)

    Article  Google Scholar 

  6. I.R. Wheeldon, J. Gallaway, S.C. Barton, S. Banta: Bioelectrocatalytic hydrogels from electron-conducting metallo-polypeptides co-assembled with bifunctional enzymatic building blocks, Proc. Nat. Acad. Sci. 105(40), 15275–15280 (2008)

    Article  Google Scholar 

  7. S.R. Higgins, D. Foerster, A. Cheung, C. Lau, O. Bretschger, S.D. Minteer, K. Nealson, P. Atanassov, M. Cooney: Fabrication of macroporous chitosan scaffolds doped with carbon nanotubes and their characterization in microbial fuel cell operation, Enzyme Microb. Technol. 48, 458–465 (2011)

    Article  Google Scholar 

  8. D. Ivnitski, K. Artyushkova, R.A. Rincon, P. Atanassov, H.R. Luckarift, G.R. Johnson: Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: Glucose oxidase-catalyzed direct electron transfer, Small 4(3), 357–364 (2008)

    Article  Google Scholar 

  9. K. Fujita, N. Nakamura, K. Murata, K. Igarashi, M. Samejima, H. Ohno: Electrochemical analysis of electrode-immobilized dehydrogenases in hydrated choline dihydrogen phosphate-type ionic liquid, Electrochim. Acta 56, 7224–7227 (2011)

    Article  Google Scholar 

  10. N. Mano, A. Heller: A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions, J. Electrochem. Soc. 150(8), A1136–A1138 (2003)

    Article  Google Scholar 

  11. S. Nikolic, L. Mojovic, M. Rakin, D. Pejin: Bioethanol production from corn meal by simultaneous enzymatic saccharification and fermentation with immobilized cells of Saccharomyces cerevisiae var. ellipsoideus, Fuel 88, 1602–1607 (2009)

    Article  Google Scholar 

  12. C.M. Moore, S.D. Minteer, R.S. Martin: Microchip-based ethanol/oxygen biofuel cell, Lab on a Chip 5(3), 218–225 (2004)

    Google Scholar 

  13. P. Santhosh, K.M. Manesh, S.-H. Lee, S. Uthayakumar, A.I. Gopalan, K.-P. Lee: Sensitive electrochemical detection of superoxide anion using gold nanoparticles distributed poly(methyl methacrylate)-polyaniline core-shell electrospun composite electrode, Analyst 136, 1557–1561 (2011)

    Article  Google Scholar 

  14. M. Abramson, O. Shoseyov, Z. Shani: Plant cell wall reconstruction toward improved lignocellulosic production and processability, Plant Sci. 178, 61–72 (2009)

    Article  Google Scholar 

  15. V. Svoboda, M. Cooney, B.Y. Liaw, S. Minteer, E. Piles, D. Lehnert, S. Calabrese-Barton, R. Rincon, P. Atanassov: Standardized characterization of electrocatalytic electrodes, Electroanalysis 20(10), 1099–1109 (2008)

    Article  Google Scholar 

  16. A.V. Lygin, J. Upton, F.G. Dohleman, J. Juvik, O.A. Zabotina, J.M. Widholm, V.V. Lozovaya: Composition of cell wall phenolics and polysaccharides of the potential bioenergy crop-Miscanthus, GCB Bioenergy 3, 333–345 (2011)

    Article  Google Scholar 

  17. M.J. Moehlenbrock, R.L. Arechederra, K. Sjoholm, S.D. Minteer: Analytical techniques for characterizing enzymatic biofuel cells, Anal. Chem. 81, 9538–9545 (2009)

    Article  Google Scholar 

  18. A.T. Yahiro, S.M. Lee, D.O. Kimble: Bioelectrochemistry. I. enzyme utilizing biofuel cell studies, Biochim. Biophys. Acta 88(2), 375–383 (1964)

    Google Scholar 

  19. G. Palmore, G.M. Whitesides: Microbial and enzymatic biofuel cells, ACS Symp. Ser. 566, 271–290 (1994)

    Article  Google Scholar 

  20. Z. He, L.T. Angenent: Application of bacterial biocathodes in microbial fuel cells, Electroanalysis 18(19–20), 2009–2015 (2006)

    Article  Google Scholar 

  21. Y. Li, R. Yuan, Y. Chai, Z. Song: Electrodeposition of gold-platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker, Electrochim. Acta 56, 6715–6721 (2011)

    Article  Google Scholar 

  22. S.C. Wang, A. Patlolla, Z. Iqbal: Carbon nanotube-based, membrane-less and mediator-free enzymatic biofuel cells, ECS Transactions 19, 55–60 (2009)

    Google Scholar 

  23. L. Deng, L. Shang, D. Wen, J.-F. Zhai, S.-J. Dong: A membraneless biofuel cell powered by ethanol and alcoholic beverage, Biosens. Bioelectron. 26, 70–73 (2010)

    Article  Google Scholar 

  24. R.L. Arechederra, K. Boehm, S.D. Minteer: Mitochondrial bioelectrocatalysis for biofuel cell applications, Electrochimica. Acta 54(28), 7268–7273 (2009)

    Article  Google Scholar 

  25. K. Mizutani, M. Toyoda, K. Sagara, N. Takahashi, A. Sato, Y. Kamitaka, S. Tsujimura, Y. Nakanishi, T. Sugiura, S. Yamaguchi, K. Kano, B. Mikami: X-ray analysis of bilirubin oxidase from myrothecium verrucaria at 2.3 Å resolution using a twinned crystal, Acta. Crystallogr. F 66, 765–770 (2010)

    Article  Google Scholar 

  26. C.M. Eggleston, J. Voeroes, L. Shi, B.H. Lower, T.C. Droubay, P.J.S. Colberg: Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacterium, with oxide electrodes: A candidate biofuel cell system, Inorg. Chim. Acta 361, 769–777 (2008)

    Article  Google Scholar 

  27. X. Wang, J. Wang, H. Cheng, P. Yu, J. Ye, L. Mao: Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices, Langmuir 27, 11180–11186 (2011)

    Article  Google Scholar 

  28. P. Addo, R. Arechederra, S.D. Minteer: Towards a rechargeable alcohol biobattery, J. Power Sources 196, 3448–3451 (2011)

    Article  Google Scholar 

  29. S.C. Barton, J. Gallaway, P. Atanassov: Enzymatic biofuel cells for implantable and microscal devices, Chem. Rev. 104, 4867–4886 (2004)

    Article  Google Scholar 

  30. Z. Du, H. Li, T. Gu: A State of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy, Biotechnol. Adv. 25, 464–482 (2007)

    Article  Google Scholar 

  31. M.J. Cooney, V. Svoboda, C. Lau, G.P. Martin, S.D. Minteer: Enzyme catalysed biofuel cells, Energy Environ. Sci. 1, 320–337 (2008)

    Article  Google Scholar 

  32. E.F. Ferapontova, L. Gorton: Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes, Bioelectrochem. 66, 55–63 (2005)

    Article  Google Scholar 

  33. L. Gorton, A. Lindgren, T. Larsson, F.D. Munteanu, T. Ruzgas, I. Gazaryan: Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors, Analyt. Chimica. Acta 400(1–3), 91–108 (1999)

    Article  Google Scholar 

  34. K. Karnicka, K. Miecznikowski, B. Kowalewska, M. Skunik, M. Opallo, J. Rogalski, W. Schuhmann, P.J. Kulesza: ABTS-modified multiwalled carbon nanotubes as an effective mediating system for bioelectrocatalytic reduction of oxygen, Anal. Chem. 80, 7643–7648 (2008)

    Article  Google Scholar 

  35. L. Stoica, T. Ruzgas, R. Ludwig, D. Haltrich, L. Gorton: Direct electron transfer-A favorite electron route for cellobiose dehydrogenase (CDH) from trametes villosa. Comparison with CDH from phanerochaete chrysosporium, Langmuir 22(25), 10801–10806 (2006)

    Article  Google Scholar 

  36. M. Zhou, X. Zheng, J. Wang, S. Dong: A self-powered and reusable biocomputing security keypad lock system based on biofuel cells, Chemistry 16, 7719–7724 (2010)

    Article  Google Scholar 

  37. G. Gupta, C. Lau, B. Branch, V. Rajendran, D. Ivnitski, P. Atanassov: Direct bio-electrocatalysis by multi-copper oxidases: Gas-diffusion laccase-catalyzed cathodes for biofuel cells, Electrochim. Acta 56, 10767–10771 (2011)

    Article  Google Scholar 

  38. S. Shleev, J. Tkac, A. Christenson, T. Ruzgas, A.I. Yaropolov, J.W. Whittaker, L. Gorton: Direct electron transfer between copper-containing proteins and electrodes, Biosens. Bioelectron. 20(12), 2517–2554 (2005)

    Article  Google Scholar 

  39. W. Zheng, Q. Li, L. Su, Y. Yan, J. Zhang, L. Mao: Direct electrochemistry of multi-copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives, Electroanalysis 18(6), 587–594 (2006)

    Article  Google Scholar 

  40. H. Zhou, T.-H. Lu, H.-X. Shi, Z.-H. Dai, X.-H. Huang: Direct electrochemistry and electrocatalysis of catalase immobilized on multi-wall carbon nanotubes modified glassy carbon electrode and its application, J. Electroanal. Chem. 612, 173–178 (2008)

    Article  Google Scholar 

  41. R.A. Rincón, K. Artyushkova, M. Mojica, M.N. Germain, S. Minteer, P. Atanassov: Structure and electrochemical properties of electrocatalysts for NADH oxidation, Electroanalysis 22(7–8), 799–806 (2010)

    Article  Google Scholar 

  42. A.A. Karyakin, E.E. Karyakina, W. Schuhmann, H.L. Schmidt: Electropolymerized azines: Part II. In a search of the best electrocatalyst of NADH oxidation, Electroanalysis 11(8), 553–557 (1999)

    Article  Google Scholar 

  43. D.-M. Zhou, H.-Q. Fang, H.-Y. Chen, H.-X. Ju, Y. Wang: The electrochemical polymerization of methylene green and its electrocatalysis for the oxidation of NADH, Analyt. Chim. Acta 329, 41–48 (1996)

    Article  Google Scholar 

  44. Y. Wang, C. You, S. Zhang, J. Kong, J.L. Marty, D. Zhao, B. Liu: Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes, Microchim. Acta 167, 75–79 (2009)

    Article  Google Scholar 

  45. C.-X. Cai, H.-X. Ju, H.-Y. Chen: Catalytic oxidation of reduced nicotinamide adenine dinucleotide at a microband gold electrode modified with nickel hexacyanoferrate, Analyt. Chim. Acta 310, 145–151 (1995)

    Article  Google Scholar 

  46. B.L. Treu, D.S. Minteer: Isolation and purification of PQQ-dependent lactate dehydrogenase from gluconobacter and use for direct electron transfer at carbon and gold electrodes, Bioelectrochemistry 74(1), 73–77 (2008)

    Article  Google Scholar 

  47. Y. Tan, W. Deng, Y. Li, Z. Huang, Y. Meng, Q. Xie, M. Ma, S. Yao: Polymeric bionanocomposite cast thin films with in-situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cella Applications, J. Phys. Chem. B 114, 5016–5024 (2010)

    Article  Google Scholar 

  48. F. Durand, C. Stines-Chaumeil, V. Flexer, I. Andre, N. Mano: Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells, Biochem. Biophys. Res. Commun. 402, 750–754 (2010)

    Article  Google Scholar 

  49. J.L. Kerr, S.D. Minteer: Soybean oil biofuel cell: Utilizing lipoxygenase immobilized by modified Nafion to catalyze the oxidation of fatty acids for biofuel cells, ACS Symp. Ser. 986, 334–353 (2008)

    Article  Google Scholar 

  50. O. Courjean, N. Mano: Recombinant glucose oxidase from penicillium amagasakiense for efficient bioelectrochemical applications in physiological conditions, J. Biotechnol. 151, 122–129 (2011)

    Article  Google Scholar 

  51. T.K. Tam, M. Ornatska, M. Pita, S. Minko, E. Katz: Polymer brush-modified electrode with switchable and tunable redox activity for bioelectronic applications, J. Phys. Chem. C 112, 8438–8445 (2008)

    Article  Google Scholar 

  52. J.Y. Lee, H.Y. Shin, S.W. Kang, C. Park, S.W. Kim: Use of bioelectrode containing DNA-wrapped single-walled carbon nanotubes for enzyme-based biofuel cell, J. Power Sources 195, 750–755 (2010)

    Article  Google Scholar 

  53. I.T. Bae: Detection of reaction products at DMFC cathodes by ATR-IR spectroscopy and mass spectrometry, J. Electrochem. Soc. 153(11), A2091–A2097 (2006)

    Article  Google Scholar 

  54. P. Gao, I.C. Chang, Z. Zhou, M.J. Weaver: Electrooxidation pathways of simple alcohols at platinum in pure nonaqueous and concentrated aqueous environments as studied by real-time FTIR spectroscopy, J. Electroanal. Chem. 272, 161–178 (1989)

    Article  Google Scholar 

  55. A. Zebda, C. Gondran, G.A. Le, M. Holzinger, P. Cinquin, S. Cosnier: Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes, Nat. Commun. 2, 370 (2011)

    Article  Google Scholar 

  56. S. Xu, S.D. Minteer: Enzymatic biofuel cell for oxidation of glucose to CO2, ACS Catalysis 2012(2), 91 (2012)

    Article  Google Scholar 

  57. F. Tasca, W. Harreither, R. Ludwig, J.J. Gooding, L. Gorton: Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: Enahnced direct electron transfer through a positively charged surface, Anal. Chem. 83(8), 3042–3049 (2011)

    Article  Google Scholar 

  58. F.A. Armstrong, G.S. Wilson: Recent developments in faradaic bioelectrochemistry, Electrochim. Acta 45(15–16), 2623–2645 (2000)

    Article  Google Scholar 

  59. R.L. Arechederra, S.D. Minteer: Kinetic and transport analysis of immobilized oxidoreductases that oxidize glycerol and its oxidation products, Electrochim. Acta 55, 7679–7682 (2010)

    Article  Google Scholar 

  60. N. Mano, H. Kim, Y. Zhang, A. Heller: An oxygen cathode operating in a physiological solution, J. Am. Chem. Soc. 124(22), 6480–6486 (2002)

    Article  Google Scholar 

  61. B. Su, J. Tang, H. Chen, J. Huang, G. Chen, D. Tang: Thionine/nanogold multilayer film for electrochemical immunoassay of alpha-fetoprotein in human serum using biofunctional double-codified gold nanoparticles, Anal. Methods 2, 1702–1709 (2010)

    Article  Google Scholar 

  62. C.P. Andrieux, J. Saveant: Kinetics of electrochemical reactions mediated by redox polymer films: Pre-activation mechanisms, J. Electroanal. Chem. 171, 65–93 (1984)

    Article  Google Scholar 

  63. C.P. Andrieux, O. Haas, J.M. Saveant: Catalysis of electrochemical reactions at redox-polymer-coated electrodes. Mediation of the iron(III)/iron(II) oxido-reduction by a polyvinylpyridine polymer containing coordinatively attached bisbipyridine chlororuthenium redox centers, J. Am. Chem. Soc. 108(26), 8175–8182 (1986)

    Article  Google Scholar 

  64. J. Leddy, A.J. Bard, J.T. Maloy, J. Saveant: Kinetics of film-coated electrodes, J. Electroanal. Chem. 187, 205–227 (1985)

    Article  Google Scholar 

  65. N.J. Forrow, S.J. Walters: Transition metal half-sandwich complexes as redox mediators to glucose oxidase, Biosens. Bioelectron. 19(7), 763–770 (2004)

    Article  Google Scholar 

  66. J.M. Ziegelbauer, T.S. Olson, S. Pylypenko, F. Alamgir, J. Jaye, P. Atanassov, S. Mukerjee: Direct spectroscopic observation of the structural origin of peroxide generation from co-based pyrolyzed porphyrins for ORR applications, J. Phys. Chem. 112, 8839–8849 (2008)

    Article  Google Scholar 

  67. M.J. Moehlenbrock, M.T. Meredith, S.D. Minteer: Bioelectrocatalytic oxidation of glucose in CNT impregnated hydrogels: Advantages of synthetic enzymatic metabolon formation, ACS Catalysis 2, 17–25 (2012)

    Article  Google Scholar 

  68. C. Tanne, G. Goebel, F. Lisdat: Development of a (PQQ)-GDH-anode based on MWCNT-modified gold and its application in a glucose/O2-biofuel cell, Biosens. Bioelectron. 26, 530–535 (2010)

    Article  Google Scholar 

  69. I.Z. Kiss, V. Gaspar, L. Nyikos: Stability analysis of the oscillatory electrodissolution of copper with impedance spectroscopy, J. Phys. Chem. A 102(6), 909–914 (1998)

    Article  Google Scholar 

  70. N.L. Akers, C.M. Moore, S.D. Minteer: Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenases enzymes, Electrochim. Acta 50(12), 2521–2525 (2005)

    Article  Google Scholar 

  71. K.G. Lim, G.T.R. Palmore: Microfluidic biofuel cells: The influence of electrode diffusion layer on performance, Biosens. Bioelectron. 22(6), 941–947 (2007)

    Article  Google Scholar 

  72. M. Vijay, R.M. Meyyappan: Electricity generation and effect of catholyte in a dual chambered microbial fuel cell using Klebsiella pneumoniae as biocatalyst, Indian J. Environ. Ecoplann. 15, 9–14 (2008)

    Google Scholar 

  73. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati: Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater. 8, 621–629 (2009)

    Article  Google Scholar 

  74. P. Du, P. Wu, C. Cai: A glucose biosensor based on electrocatalytic oxidation of NADPH at single-walled carbon nanotubes functionalized with poly (nile blue A), J. Electroanal. Chem. 624, 21–26 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Minteer, S.D. (2017). Methods in Biological Fuel Cells. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics