Skip to main content

Materials for Electrochemical Capacitors

  • Chapter
Springer Handbook of Electrochemical Energy

Abstract

The aim of this chapter is threefold. First of all, we will attempt to briefly highlight the differences between batteries and electrochemical capacitors (ECs), describe the general types of ECs (symmetric and asymmetric configurations), and present the electrochemical tools that are available to characterize these systems. Second, an EC is a complex device with many components (current collector, separator, active materials, external management electronics) and design features that ultimately determine the device characteristics. However, the advances in performance for future ECs that will be required for their broader implementation as an energy-storage technology will largely depend on new developments in electrode materials and electrolytes, which will be the focus of this chapter. Thus, this chapter will attempt to present a critical assessment of the materials that are currently being used and developed for hybrid ECs. Third, some current applications of ECs will be described in details and will clearly demonstrate that hybrid ECs are no longer a scientific curiosity and that they have found their place as energy-storage systems due to their unique characteristics. Finally, this chapter will be concluded by a section that presents the major role ECs will be playing in the field of energy storage and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1H-NMR:

proton nuclear magnetic resonance

AN:

acetonitrile

BET:

Brunauer–Emmett–Teller

CDC:

carbon-derived carbons

CMOS:

complementary metal-oxide-semiconductor

CNT:

carbon nanotube

DEME:

diethylmethyl(2-methoxyethyl) ammonium

DMC:

dimethyl carbonate

DMF:

dimethylformamide

DMS:

dimethylsulfone

EC:

electrochemical capacitor

EDLC:

electrochemical double-layer capacitor

EMC:

ethylmethyl carbonate

EMI,TFSI:

ethyl-methyl-immidazolium-trifluoro-methane-sulfonylimide

EMI:

ethylmethylimidazolium

EQCM:

electrochemical quartz crystal microbalance

ESR:

equivalent serial resistance

EV:

electric vehicle

HEV:

hybrid electric vehicle

HOPG:

highly ordered pyrolytic graphite

ITO:

indium tin oxide

KB:

Ketjen Black

NiMH:

nickel metal hydride

PC:

propylene carbonate

PDF:

pair-density function

PEGDE:

poly(ethylene glycol) dimethyl ether

PMMA:

poly(methyl methacrylate)

PTFE:

poly(tetrafluoroethylene)

PVdF:

poly(vinylidene difluoride)

SBP-BF4 :

spirobipyrrolydinium tetrafluoroborate

SCE:

standard calomel electrode

SL:

sulforane

SSA:

specific surface area

TEA:

tetraethylammonium

TEMA:

triethylmethyl ammonium

TMC:

template mesoporous carbon

UPS:

uninterruptible power supply

XANES:

x-ray absorption near-edge spectroscopy

XAS:

x-ray absorption spectroscopy

XPS:

x-ray photoelectron spectroscopy

XRD:

x-ray diffraction

References

  1. EIA: International Energy Outlook (Energy Information Admin. DOE, Washington 2009) www.eia.doe.gov/oiaf/ieo/index.html

  2. IEA: Transport, Energy and CO 2 – Moving Towards Sustainability (International Energy Agency, Paris 2009)

    Google Scholar 

  3. M. Winter, R.J. Brodd: What are batteries, fuel cells, and supercapacitors?, Chem. Rev. 104, 4245 (2004)

    Article  Google Scholar 

  4. B.E. Conway: Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications (Kluwer Academic, Dordrecht 1999)

    Google Scholar 

  5. B.E. Conway: Transition from ‘‘supercapacitor’’ to ‘‘battery’’ behavior in electrochemical energy storage, J. Electrochem. Soc. 138, 1539–1548 (1991)

    Article  Google Scholar 

  6. A. Burke: Ultracapacitors: Why, how, and where is the technology, J. Power Sources 91, 37 (2000)

    Article  Google Scholar 

  7. R. Kötz, M. Carlen: Principles and applications of electrochemical capacitors, Electrochim. Acta 45, 2483 (2000)

    Article  Google Scholar 

  8. E. Frackowiak: Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys. 9, 1774 (2007)

    Article  Google Scholar 

  9. J.W. Long (Ed.): Electrochemical Capacitors, Electrochem. Soc. Interf. 17, 31–57 (2008)

    Google Scholar 

  10. P. Simon, Y. Gogotsi: Materials for electrochemical capacitors, Nature Mater 7, 845 (2008)

    Article  Google Scholar 

  11. P.L. Taberna, P. Simon, J.F. Fauvarque: Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, J. Electrochem. Soc. 150, A292 (2003)

    Article  Google Scholar 

  12. R. De Levie: On porous electrodes in electrolyte solutions: I. Capacitance effects, Electrochim. Acta 8, 751 (1963)

    Article  Google Scholar 

  13. M.A.T. Keddam, F.M. Delnick, D. Ingerssol, X. Andrieu, K. Naoi (Eds.): Electrochemical Capacitors II, Electrochem. Soc., Vol. PV96-25 (ECS, Pennington 1996) p. 220

    Google Scholar 

  14. J.R. Miller: Pulse power performance of electrochemical capacitors: Technical status of present commercial devices, Proc. 8th Int. Semin. Double-Layer Capacitor Similar Energy Storage Devices, Deerfield Beach (1998)

    Google Scholar 

  15. J.R. Miller, A.F. Burke: Electrochemical capacitors: Challenges and opportunities for real-world applications, Electrochem. Soc. Interf. 17, 53 (2008)

    Google Scholar 

  16. D. Bélanger: Polythiophenes as active electrode materials for electrochemical capacitors. In: Handbook of Thiophene-Based Materials, ed. by I.F. Perepichka, D. Perepichka (Wiley, New York 2009) pp. 577–594

    Chapter  Google Scholar 

  17. T. Brousse, D. Bélanger: A hybrid Fe3O4MnO2 capacitor in mild aqueous electrolyte, Electrochem. Solid-State Lett. 6, A244 (2003)

    Article  Google Scholar 

  18. G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng: An asymmetric hybrid nonaqueous energy storage cell, J. Electrochem. Soc. 148, A930 (2001)

    Article  Google Scholar 

  19. A. Du Pasquier, A. Laforgue, P. Simon, G.G. Amatucci, J.-F. Fauvarque: A nonaqueous asymmetric hybrid Li4Ti5O12/poly(fluorophenylthiophene) energy storage device, J. Electrochem. Soc. 149, A302 (2002)

    Article  Google Scholar 

  20. H. Li, L. Cheng, Y. Xia: A hybrid electrochemical supercapacitor based on a 5V Li-ion battery cathode and active carbon, Electrochem. Solid-State Lett. 8, A433 (2005)

    Article  Google Scholar 

  21. T. Aida, K. Yamada, M. Morita: An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode, Electrochem. Solid-State Lett. 9, A534 (2006)

    Article  Google Scholar 

  22. E. Frackowiak, F. Béguin: Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39, 937 (2001)

    Article  Google Scholar 

  23. T. Brousse, P.-L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon: Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor, J. Power Sources 173, 633 (2007)

    Article  Google Scholar 

  24. T. Brousse, M. Toupin, D. Bélanger: A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte, J. Electrochem. Soc. 151, A614 (2004)

    Article  Google Scholar 

  25. D. Villers, D. Jobin, C. Soucy, D. Cossement, R. Chahine, L. Breau, D. Bélanger: The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor, J. Electrochem. Soc. 150, A747 (2003)

    Article  Google Scholar 

  26. W.H. Jin, G.T. Cao, J.Y. Sun: Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution, J. Power Sources 175, 686 (2008)

    Article  Google Scholar 

  27. J.Y. Luo, J.L. Liu, P. He, Y.Y. Xia: A novel LiTi2(PO4)3/MnO2 hybrid supercapacitor in lithium sulfate aqueous electrolyte, Electrochim. Acta 53, 8128 (2008)

    Article  Google Scholar 

  28. J. Li, X. Wang, Q. Huang, S. Gamboa, P.J. Sebastian: A new type of MnO2 · xH2O/CRF composite electrode for supercapacitors, J. Power Sources 160, 1501 (2006)

    Article  Google Scholar 

  29. Y. Wang, G. Cao: Developments in nanostructured cathode materials for high-performance lithium-ion batteries, Adv. Mater. 20, 2251 (2008)

    Article  Google Scholar 

  30. P.G. Bruce, B. Scrosati, J.-M. Tarascon: Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47, 2930 (2007)

    Article  Google Scholar 

  31. M.G. Kim, J. Cho: Reversible and high-capacity nanostructured electrode materials for Li-ion batteries, Adv. Funct. Mater. 19, 1497–1514 (2009)

    Article  Google Scholar 

  32. A.G. Pandolfo, A.F. Hollenkamp: Carbon properties and their role in supercapacitors, J. Power Sources 157, 11 (2006)

    Article  Google Scholar 

  33. B.T. Hsieh, H. Teng: Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon 40, 667 (2002)

    Article  Google Scholar 

  34. T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara: Electric double-layer capacitor using organic electrolyte, J. Power Sources 60, 239 (1996)

    Article  Google Scholar 

  35. A. Yoshida, I. Tanahashi, A. Nishino: Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon 28, 611 (1990)

    Article  Google Scholar 

  36. G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak: Effect of nitrogen in carbon electrode on the supercapacitor performance, Chem. Phys. Lett. 404, 53 (2005)

    Article  Google Scholar 

  37. D.W. Wang, F. Li, Z.G. Chen, G.Q. Lu, H.M. Cheng: Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor, Chem. Mater. 20, 7195 (2008)

    Article  Google Scholar 

  38. O. Barbieri, M. Hahn, A. Herzog, R. Kötz: Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon 43, 1303 (2005)

    Article  Google Scholar 

  39. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau: Studies and characterizations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources 101, 109 (2001)

    Article  Google Scholar 

  40. H. Shi: Activated carbons and double layer capacitance, Electrochim. Acta 41, 1633 (1995)

    Article  Google Scholar 

  41. R. Lin, P.L. Taberna, J. Chmiola, D. Guay, Y. Gogotsi, P. Simon: Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors, J. Electrochem. Soc. 156, A7 (2009)

    Article  Google Scholar 

  42. S.A. Al-Muhtaseb, J.A. Ritter: Preparation and properties of resorcinolâ formaldehyde organic and carbon gels, Adv. Mater. 15, 101 (2003)

    Article  Google Scholar 

  43. N. Job, A. Thery, R. Pirard, J. Marien, L. Kocon, J.N. Rouzaud, F. Béguin, J.P. Pirard: Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials, Carbon 43, 2481 (2005)

    Article  Google Scholar 

  44. R.W. Pekala, D.W. Schaefer: Structure of organic aerogels. 1. Morphology and scaling, Macromolecules 26, 5487 (1993)

    Article  Google Scholar 

  45. S.T. Mayer, R.W. Pekala, J.L. Kaschmitter: The aerocapacitor: An electrochemical double-layer energy-storage device, J. Electrochem. Soc. 140, 446 (1993)

    Article  Google Scholar 

  46. R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller, B. Dunn: Carbon aerogels for electrochemical applications, J. Non-Cryst. Solids 225, 74 (1998)

    Article  Google Scholar 

  47. R. Saliger, V. Bock, R. Petricevic, T. Tillotson, S. Geis, J. Fricke: Carbon aerogels from dilute catalysis of resorcinol with formaldehyde, J. Non-Cryst. Solids 221, 144 (1997)

    Article  Google Scholar 

  48. R. Saliger, U. Fischer, C. Herta, J. Fricke: High surface area carbon aerogels for supercapacitors, J. Non-Cryst. Solids 225, 81 (1998)

    Article  Google Scholar 

  49. J. Li, X.Y. Wang, Y. Wang, Q.H. Huang, C.L. Dai, S. Gamboa, P.J. Sebastian: Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors, J. Non-Cryst. Solids 354, 19 (2008)

    Article  Google Scholar 

  50. T.F. Baumann, M.A. Worsley, T.Y.J. Han, J.H. Satcher: High surface area carbon aerogel monoliths with hierarchical porosity, J. Non-Cryst. Solids 354, 3513 (2008)

    Article  Google Scholar 

  51. B.B. Garcia, A.M. Feaver, Q.F. Zhang, R.D. Champion, G.Z. Cao, T.T. Fister, K.P. Nagle, G.T. Seidler: Effect of pore morphology on the electrochemical properties of electric double layer carbon cryogel supercapacitors, J. Appl. Phys. 104, 014305 (2008)

    Article  Google Scholar 

  52. K.L. Yang, S. Yiacoumi, C. Tsouris: Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry, J. Electroanalyt. Chem. 540, 159 (2003)

    Article  Google Scholar 

  53. B.Z. Fang, L. Binder: A modified activated carbon aerogel for high-energy storage in electric double layer capacitors, J. Power Sources 163, 616 (2006)

    Article  Google Scholar 

  54. T. Bordjiba, M. Mohamedi, L.H. Dao: New class of carbon-nanotube aerogel electrodes for electrochemical power sources, Adv. Mater. 20, 815 (2008)

    Article  Google Scholar 

  55. H. Pröbstle, C. Schmitt, J. Fricke: Button cell supercapacitors with monolithic carbon aerogels, J. Power Sources 105, 189 (2002)

    Article  Google Scholar 

  56. H. Pröbstle, M. Wiener, J. Fricke: Carbon aerogels for electrochemical double layer capacitors, J. Porous Mater. 10, 213 (2003)

    Article  Google Scholar 

  57. C. Schmitt, H. Pröbstle, J. Fricke: Carbon cloth-reinforced and activated aerogel films for supercapacitors, J. Non-Cryst. Solids 285, 277 (2001)

    Article  Google Scholar 

  58. J.W. Long, D.R. Rolison: Architectural design, interior decoration, and three-dimensional plumbing en route to multifunctional nanoarchitectures, Acc. Chem. Res. 40, 854 (2007)

    Article  Google Scholar 

  59. D.R. Rolison, R.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourga, A.M. Lubers: Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev. 38, 226 (2009)

    Article  Google Scholar 

  60. J.W. Long, B.M. Dening, T.M. McEvoy, D.R. Rolison: Carbon aerogels with ultrathin, electroactive poly( o-methoxyaniline) coatings for high-performance electrochemical capacitors, J. Non-Cryst. Solids 350, 97 (2004)

    Article  Google Scholar 

  61. H. Talbi, P.E. Just, L.H. Dao: Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: Applications for supercapacitors, J. Appl. Electrochem. 33, 465 (2003)

    Article  Google Scholar 

  62. A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long: Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors, Nano Lett. 7, 281 (2007)

    Article  Google Scholar 

  63. A.E. Fischer, M.P. Saunders, K.A. Pettigrew, D.R. Rolison, J.W. Long: Electroless deposition of nanoscale MnO2 on ultraporous carbon nanoarchitectures: Correlation of evolving pore-solid structure and electrochemical performance, J. Electrochem. Soc. 155, A246 (2008)

    Article  Google Scholar 

  64. J.M. Miller, B. Dunn, T.D. Tran, R.W. Pekala: Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes, J. Electrochem. Soc. 144, L309 (1997)

    Article  Google Scholar 

  65. A.B. Fuertes, G. Lota, T.A. Centeno, E. Frackowiak: Templated mesoporous carbons for supercapacitor application, Electrochim. Acta 50, 2799 (2005)

    Article  Google Scholar 

  66. C. Vix-Guterl, S. Saadallah, K. Jurewicz, E. Frackowiak, M. Reda, J. Parmentier, J. Patarin, F. Béguin: Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure, Mater. Sci. Eng. B 108, 148 (2004)

    Article  Google Scholar 

  67. A.B. Fuertes: Template synthesis of mesoporous carbons with a controlled particle size, J. Mater. Chem. 13, 3085 (2003)

    Article  Google Scholar 

  68. T.A. Centeno, M. Sevilla, A.B. Fuertes, F. Stoeckli: On the electrical double-layer capacitance of mesoporous templated carbons, Carbon 43, 3012 (2005)

    Article  Google Scholar 

  69. K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, A. Reda, J. Parmentier, J. Patarin, F. Béguin: Capacitance properties of ordered porous carbon materials prepared by a templating procedure, J. Phys. Chem. Solids 65, 287 (2004)

    Article  Google Scholar 

  70. H. Zhou, S. Zhu, M. Hibino, I. Honma: Electrochemical capacitance of self-ordered mesoporous carbon, J. Power Sources 122, 219 (2003)

    Article  Google Scholar 

  71. M. Sevilla, S. Alvarez, T.A. Centeno, A.B. Fuertes, F. Stoeckli: Performance of templated mesoporous carbons in supercapacitors, Electrochim. Acta 52, 3207 (2007)

    Article  Google Scholar 

  72. J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi: Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources 158, 765 (2006)

    Article  Google Scholar 

  73. G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurback: Carbon electrodes for double-layer capacitors. I. relations between ion and pore dimensions, J. Electrochem. Soc. 147, 2486 (2000)

    Article  Google Scholar 

  74. C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Béguin: Electrochemical energy storage in ordered porous carbon materials, Carbon 43, 1293 (2005)

    Article  Google Scholar 

  75. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna: Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313, 1760 (2006)

    Article  Google Scholar 

  76. J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi: Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory, Angew. Chem. Int. Ed. 47, 3392 (2008)

    Article  Google Scholar 

  77. D. Aurbach, M.D. Levi, G. Salitra, N. Levy, E. Pollak, J. Muthu: Cation trapping in highly porous carbon electrodes for EDLC cells, J. Electrochem. Soc. 155, A745 (2008)

    Article  Google Scholar 

  78. R. Mysyk, E. Raymundo-Piñero, F. Béguin: Saturation of subnanometer pores in an electric double-layer capacitor, Electrochem. Commun. 11, 554 (2009)

    Article  Google Scholar 

  79. C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon: Relation between the ion size and pore size for an electric double-layer capacitor, J. Am. Chem. Soc. 130, 2730 (2008)

    Article  Google Scholar 

  80. G. Feng, J. Huang, B.G. Sumpter, V. Meunier, R. Qiao: Structure and dynamics of electrical double layers in organic electrolytes, Phys. Chem. Chem. Phys. 12, 5468 (2010)

    Article  Google Scholar 

  81. J.S. Huang, B.G. Sumpter, V. Meunier: Theoretical model for nanoporous carbon supercapacitors, Angew. Chem. Int. Ed. 47, 520 (2008)

    Article  Google Scholar 

  82. J.S. Huang, B.G. Sumpter, V. Meunier: A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes, Chemistry-A Eur. J. 14, 6614 (2008)

    Article  Google Scholar 

  83. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. Int. Ed. 47, 373 (2008)

    Article  Google Scholar 

  84. C. Liu, H.M. Cheng: Carbon nanotubes for clean energy applications, J, Phys. D 38, R231 (2005)

    Article  Google Scholar 

  85. T. Kim, S. Lim, K. Kwon, S.-H. Hong, W. Qiao, C.K. Rhee, S.-H. Yoon, I. Mochida: Electrochemical capacitances of well-defined carbon surfaces, Langmuir 22, 9086 (2006)

    Article  Google Scholar 

  86. V. Subramanian, H.W. Zhu, B.Q. Wei: High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers, J. Phys. Chem. B 110, 7178 (2006)

    Article  Google Scholar 

  87. E. Frackowiak, F. Béguin: Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon 40, 1775 (2002)

    Article  Google Scholar 

  88. D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater. 5, 987 (2006)

    Article  Google Scholar 

  89. S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, L. Ci, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, P.M. Ajayan: Direct growth of aligned carbon nanotubes on bulk metals, Nat. Nanotechnol. 1, 112 (2006)

    Article  Google Scholar 

  90. Y. Honda, T. Ono, M. Takeshige, N. Morihara, H. Shiozaki, T. Kitamura, K. Yoshikawa, M. Morita, M. Yamagata, M. Ishikawa: Effect of MWCNT bundle structure on electric double-layer capacitor performance, Electrochem. Solid-State Lett. 12, A45 (2009)

    Article  Google Scholar 

  91. Y. Honda, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa: Excellent frequency response of vertically aligned MWCNT electrode for EDLC, Electrochemistry 75, 586 (2007)

    Article  Google Scholar 

  92. Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, M. Ishikawa: Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance, Electrochem. Solid-State Lett. 10, A106 (2007)

    Article  Google Scholar 

  93. H. Zhang, G.P. Cao, Y.S. Yang: Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte, J. Power Sources 172, 476 (2007)

    Article  Google Scholar 

  94. A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan: Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett. 9, 1002 (2009)

    Article  Google Scholar 

  95. H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu: Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage, Nano Lett. 8, 2664 (2008)

    Article  Google Scholar 

  96. W.G. Pell, B.E. Conway: Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes, J. Power Sources 136, 334 (2004)

    Article  Google Scholar 

  97. J.P. Zheng: The limitations of energy density of battery/double-layer capacitor asymmetric cells, J. Electrochem. Soc. 150, A484 (2003)

    Article  Google Scholar 

  98. F. Béguin, K. Kierzek, M. Friebe, A. Jankowska, J. Machnikowski, K. Jurewicz, E. Frackowiak: Effect of various porous nanotextures on the reversible electrochemical sorption of hydrogen in activated carbons, Electrochim. Acta 51, 2161 (2006)

    Article  Google Scholar 

  99. B.E. Conway, H.A. Andreas, W. Pell: Specific ion effects on double layer capacitance of a C-Cloth electrode showing extended charge acceptance, Proc. 14th Double Layer Capacitor Semin., Deerfield Beach (2004)

    Google Scholar 

  100. X. Qin, X.P. Gao, H. Liu, H.T. Yuan, D.Y. Yan, W.L. Gong, D.Y. Song: Electrochemical hydrogen storage of multiwalled carbon nanotubes, Electrochem. Solid-State Lett. 3, 532–535 (2000), pp. 155–176

    Article  Google Scholar 

  101. K. Jurewicz, E. Frackowiak, F. Béguin: Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials, Appl. Phys. A 78, 981 (2004)

    Article  Google Scholar 

  102. F. Béguin, M. Friebe, K. Jurewicz, C. Vix-Guterl, J. Dentzer, E. Frackowiak: State of hydrogen electrochemically stored using nanoporous carbons as negative electrode materials in an aqueous medium, Carbon 44, 2392 (2006)

    Article  Google Scholar 

  103. F. Béguin, K. Jurewicz, M. Friebe, E. Frackowiak: Advantages of electrochemical hydrogen storage over gas adsorption in nanoporous carbons, Ann. Chim. Sci. Mater. 30, 531 (2005)

    Article  Google Scholar 

  104. E. Frackowiak, K. Jurewicz, K. Szostak, S. Delpeux, F. Béguin: Nanotubular materials as electrodes for supercapacitors, Fuel Process. Technol. 77, 213 (2002)

    Article  Google Scholar 

  105. K. Jurewicz, E. Frackowiak, F. Béguin: Enhancement of reversible hydrogen capacity into activated carbon through water electrolysis, Electrochem. Solid-State Lett. 4, A27 (2001)

    Article  Google Scholar 

  106. C. Nützenadel, A. Zuttel, D. Chartouni, L. Schlapbach: Electrochemical Storage of hydrogen in nanotube materials, Electrochem. Solid-State Lett. 2, 30 (1999)

    Article  Google Scholar 

  107. M.J. Bleda-Martínez, J.M. Pérez, A. Linares-Solana, E. Morallón, D. Cazorla-Amorós: Effect of surface chemistry on electrochemical storage of hydrogen in porous carbon materials, Carbon 46, 1053 (2008)

    Article  Google Scholar 

  108. D.Y. Qu: Mechanism for electrochemical hydrogen insertion in carbonaceous materials, J. Power Sources 179, 310 (2008)

    Article  Google Scholar 

  109. Y. Chabre, J. Pannetier: Structural and electrochemical properties of the proton/γ-MnO2 system, Prog. Solid State Chem. 23, 1 (1995)

    Article  Google Scholar 

  110. M. Thackeray: Manganese oxides for lithium batteries, Prog. Solid State Chem. 25, 1 (1997)

    Article  Google Scholar 

  111. J.P. Zheng, T.R. Jow: A new charge storage mechanism for electrochemical capacitors, J. Electrochem. Soc. 142, L6 (1995)

    Article  Google Scholar 

  112. D. Bélanger, T. Brousse, J.W. Long: Manganese oxides: Battery materials make the leap to electrochemical capacitors, Electrochem. Soc. Interf. 17, 49 (2008)

    Google Scholar 

  113. H.Y. Lee, V. Manivannan, J.B. Goodenough: Electrochemical capacitors with KCl electrolyte, C.R. Acad. Sci. Paris 2(IIc), 565 (1999)

    Google Scholar 

  114. H.Y. Lee, J.B. Goodenough: Supercapacitor behavior with KCl electrolyte, J. Solid-State Chem. 144, 220 (1999)

    Article  Google Scholar 

  115. Q. Feng, H. Kanoh, K. Ooi: Manganese oxide porous crystals, J. Mater. Chem. 9, 319 (1999)

    Article  Google Scholar 

  116. P. Strobel, C. Mouget: Electrochemical lithium insertion into layered manganates, Mater. Res. Bull. 28, 93 (1993)

    Article  Google Scholar 

  117. R.G. Burns, V.M. Burns: Manganese Dioxide Symposium, Vol. 2 (Electrochem. Society, Pennington 1981) p. 97

    Google Scholar 

  118. Q. Feng, K. Yanagizawa, N. Yamasaki: Hydrothermal soft chemical process for synthesis of manganese oxides with tunnel structures, J. Porous Mater. 5, 153 (1998)

    Article  Google Scholar 

  119. T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, D. Bélanger: Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, J. Electrochem. Soc. 153, A2171 (2006)

    Article  Google Scholar 

  120. S. Devaraj, N. Munichandraiah: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112, 4406 (2008)

    Article  Google Scholar 

  121. E. Machefaux, T. Brousse, D. Bélanger, D. Guyomard: Supercapacitor behavior of new substituted manganese dioxides, J. Power Sources 165, 651 (2007)

    Article  Google Scholar 

  122. A. Zolfaghari, F. Ataherian, M. Ghaemi, A. Gholami: Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method, Electrochim. Acta 52, 2806 (2007)

    Article  Google Scholar 

  123. P. Staiti, F. Lufrano: Study and optimisation of manganese oxide-based electrodes for electrochemical supercapacitors, J. Power Sources 187, 284 (2009)

    Article  Google Scholar 

  124. M.W. Xu, D.D. Zhao, S.J. Bao, H.L. Li: Mesoporous amorphous MnO2 as electrode material for supercapacitor, J. Solid State Electrochem. 11, 1101 (2007)

    Article  Google Scholar 

  125. P. Ragupathy, H.N. Vasan, N. Munichandraiah: Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies, J. Electrochem. Soc. 155, A34 (2008)

    Article  Google Scholar 

  126. L. Athouël, F. Moser, R. Dugas, O. Crosnier, D. Bélanger, T. Brousse: Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte, J. Phys. Chem. C 112, 7270 (2008)

    Article  Google Scholar 

  127. M. Toupin, T. Brousse, D. Bélanger: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem. Mater. 16, 3184 (2004)

    Article  Google Scholar 

  128. M. Toupin, T. Brousse, D. Bélanger: Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide, Chem. Mater. 14, 3946 (2002)

    Article  Google Scholar 

  129. Y.U. Jeong, A. Manthiram: Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes, J. Electrochem. Soc. 149, A1419 (2002)

    Article  Google Scholar 

  130. R.N. Reddy, R.G. Reddy: Sol–gel MnO2 as an electrode material for electrochemical capacitors, J. Power Sources 124, 330 (2003)

    Article  Google Scholar 

  131. R.N. Reddy, R.G. Reddy: Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material, J. Power Sources 132, 315 (2004)

    Article  Google Scholar 

  132. C. Xu, B. Li, H. Du, F. Kang, Y. Zeng: Supercapacitive studies on amorphous MnO2 in mild solutions, J. Power Sources 184, 691 (2008)

    Article  Google Scholar 

  133. R. Jiang, T. Huang, J. Liu, J. Zhuang, A. Yu: A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode, Electrochim. Acta 54, 3047 (2009)

    Article  Google Scholar 

  134. H.Y. Lee, S.W. Kim, H.Y. Lee: Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode, Electrochem. Solid-State Lett. 4, A19 (2001)

    Article  Google Scholar 

  135. M.S. Hong, S.H. Lee, S.W. Kim: Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor, Electrochem. Solid-State Lett. 5, A227 (2002)

    Article  Google Scholar 

  136. H. Kim, B.N. Popov: Synthesis and characterization of MnO2-based mixed oxides as supercapacitors, J. Electrochem. Soc. 150, D56 (2003)

    Article  Google Scholar 

  137. E. Raymundo-Piñero, V. Khomenko, E. Frackowiak, F. Béguin: Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors, J. Electrochem. Soc. 152, A229 (2005)

    Article  Google Scholar 

  138. V. Khomenko, E. Raymundo-Piñero, F. Béguin: Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium, J. Power Sources 153, 183 (2006)

    Article  Google Scholar 

  139. V. Khomenko, E. Raymundo-Piñero, E. Frackowiak, F. Béguin: High-voltage asymmetric supercapacitors operating in aqueous electrolyte, Appl. Phys. A 82, 567 (2006)

    Article  Google Scholar 

  140. R.K. Sharma, H.S. Oh, Y.G. Shul, H. Kim: Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor, J. Power Sources 173, 1024 (2007)

    Article  Google Scholar 

  141. J.Y. Luo, J.L. Liu, P. He, Y.Y. Xia: A novel LiTi2(PO4)3/MnO2 hybrid supercapacitor in lithium sulfate aqueous electrolyte, Electrochim. Acta 53, 8128 (2008)

    Article  Google Scholar 

  142. S.L. Kuo, N.L. Wu: Investigation of pseudocapacitive charge-storage reaction of MnO2 · nH2O supercapacitors in aqueous electrolytes, J. Electrochem. Soc. 153, A1317 (2006)

    Article  Google Scholar 

  143. Y.K. Zhou, B.L. He, F.B. Zhang, H.L. Li: Hydrous manganese oxide/carbon nanotube composite electrodes for electrochemical capacitors, J. Solid State Electrochem. 8, 482 (2004)

    Article  Google Scholar 

  144. T. Brousse, P.L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon: Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor, J. Power Sources 173, 633 (2007)

    Article  Google Scholar 

  145. Y.C. Hsieh, K.T. Lee, Y.P. Lin, N.L. Wu, S.W. Donne: Investigation on capacity fading of aqueous MnO2 · nH2O electrochemical capacitor, J. Power Sources 177, 660 (2008)

    Article  Google Scholar 

  146. K.T. Lee, N.L. Wu: Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte, J. Power Sources 179, 430 (2008)

    Article  Google Scholar 

  147. T. Brousse, D. Bélanger: A Hybrid Fe3O4MnO2 capacitor in mild aqueous electrolyte, Electrochem. Solid-State Lett. 6, A244 (2003)

    Article  Google Scholar 

  148. J.W. Long, A.L. Young, D.R. Rolison: Spectroelectrochemical characterization of nanostructured, mesoporous manganese oxide in aqueous electrolytes, J. Electrochem. Soc. 150, A1161 (2003)

    Article  Google Scholar 

  149. T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Bélanger: Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Appl. Phys. A 82, 599 (2006)

    Article  Google Scholar 

  150. G.X. Wang, B.L. Zhang, Z.L. Yu, M.Z. Qu: Manganese oxide/MWNTs composite electrodes for supercapacitors, Solid State Ionics 176, 1169 (2005)

    Article  Google Scholar 

  151. V. Subramanian, H. Zhu, B. Wei: Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials, Electrochem. Commun. 8, 827 (2006)

    Article  Google Scholar 

  152. V. Subramanian, H. Zhu, B. Wei: Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte, Chem. Phys. Lett. 453, 242 (2008)

    Article  Google Scholar 

  153. X.H. Yang, Y.G. Wang, H.M. Xiong, Y.Y. Xia: Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor, Electrochim. Acta 53, 752 (2007)

    Article  Google Scholar 

  154. P. Ruetschi: Cation-vacancy model for MnO2, J. Electrochem. Soc. 131, 2737 (1984)

    Article  Google Scholar 

  155. P. Ruetschi, R. Giovanoli: Cation vacancies in MnO2 and their influence on electrochemical reactivity, J. Electrochem. Soc. 135, 2663 (1988)

    Article  Google Scholar 

  156. P. Ruetschi: Influence of cation vacancies on the electrode potential of MnO2, J. Electrochem. Soc. 135, 2657 (1988)

    Article  Google Scholar 

  157. K.W. Nam, M.G. Kim, K.B. Kim: In situ Mn K-edge X-ray absorption spectroscopy studies of electrodeposited manganese oxide films for electrochemical capacitors, J. Phys. Chem. C 111, 749 (2007)

    Article  Google Scholar 

  158. J.K. Chang, M.T. Lee, W.T. Tsai: In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications, J. Power Sources 166, 590 (2007)

    Article  Google Scholar 

  159. M. Nakayama, A. Tanaka, Y. Sato, T. Tonosaki, K. Ogura: Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties, Langmuir 21, 5907 (2005)

    Article  Google Scholar 

  160. M. Chigane, M. Ishikawa: Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism, J. Electrochem. Soc. 147, 2246 (2000)

    Article  Google Scholar 

  161. S.-E. Chun, S.-I. Pyun, G.-J. Lee: A study on mechanism of charging/discharging at amorphous manganese oxide electrode in 0.1 M Na2SO4 solution, Electrochim. Acta 51, 6479 (2006)

    Article  Google Scholar 

  162. S. Ardizzone, G. Fregonara, S. Trasatti: ‘‘Inner’’ and ‘‘outer’’ active surface of RuO2 electrodes, Electrochim. Acta 35, 263 (1990)

    Article  Google Scholar 

  163. S.C. Pang, M.A. Anderson, T.W. Chapman: Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide, J. Electrochem. Soc. 147, 444 (2000)

    Article  Google Scholar 

  164. S.F. Chin, S.C. Pang, M.A. Anderson: Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors, J. Electrochem. Soc. 149, A379 (2002)

    Article  Google Scholar 

  165. N.J. Dudney: Solid-state thin-film rechargeable batteries, Mater. Sci. Eng. B 116, 245 (2005)

    Article  Google Scholar 

  166. J.K. Chang, Y.L. Chen, W.T. Tsai: Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition, J. Power Sources 135, 344 (2004)

    Article  Google Scholar 

  167. C.C. Hu, T.W. Tsou: Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition, Electrochim. Acta 47, 3523 (2002)

    Article  Google Scholar 

  168. M.S. Wu, P.C.J. Chiang: Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors, Electrochem. Solid-State Lett. 7, A123 (2004)

    Article  Google Scholar 

  169. C.C. Hu, C.C. Wang: Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition, J. Electrochem. Soc. 150, A1079 (2003)

    Article  Google Scholar 

  170. J.N. Broughton, M.J. Brett: Variations in MnO2 electrodeposition for electrochemical capacitors, Electrochim. Acta 50, 4814 (2005)

    Article  Google Scholar 

  171. Y.K. Zhou, M. Toupin, D. Bélanger, T. Brousse, F. Favier: Electrochemical preparation and characterization of Birnessite-type layered manganese oxide films, J. Phys. Chem. Solids 67, 1351 (2006)

    Article  Google Scholar 

  172. J. Chang, S. Lee, T. Ganesh, R.S. Mane, S. Min, W. Lee, S.H. Han: Viologen-assisted manganese oxide electrode for improved electrochemical supercapacitors, J. Electroanal. Chem. 624, 167 (2008)

    Article  Google Scholar 

  173. C.C. Hu, T.W. Tsou: Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition, Electrochem. Comm. 4, 105 (2002)

    Article  Google Scholar 

  174. J.K. Chang, W.T. Tsai: Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors, J. Electrochem. Soc. 150, A1333 (2003)

    Article  Google Scholar 

  175. J.K. Chang, W.T. Tsai: Effects of temperature and concentration on the structure and specific capacitance of manganese oxide deposited in manganese acetate solution, J. Appl. Electrochem. 34, 953 (2004)

    Article  Google Scholar 

  176. C.H. Liang, C.L. Nien, H.C. Hu, C.S. Hwang: Charging/discharging behavior of manganese oxide electrodes in aqueous electrolyte prepared by galvanostatic electrodeposition, J. Ceram. Soc. Japan 115, 319 (2007)

    Article  Google Scholar 

  177. S. Chou, F. Cheng, J. Chen: Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films, J. Power Sources 162, 727 (2006)

    Article  Google Scholar 

  178. M. Nakayama, S. Konishi, H. Tagashira, K. Ogura: Electrochemical synthesis of layered manganese oxides intercalated with tetraalkylammonium ions, Langmuir 21, 354 (2005)

    Article  Google Scholar 

  179. M. Nakayama, H. Tagashira: Electrodeposition of layered manganese oxide nanocomposites intercalated with strong and weak polyelectrolytes, Langmuir 22, 3864 (2006)

    Article  Google Scholar 

  180. W. Wei, X. Cui, W. Chen, D.G. Ivey: Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors, J. Power Sources 186, 543 (2009)

    Article  Google Scholar 

  181. K.R. Prasad, N. Miura: Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors, Electrochem. Commun. 6, 1004 (2004)

    Article  Google Scholar 

  182. K.R. Prasad, N. Miura: Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors, J. Power Sources 135, 354 (2004)

    Article  Google Scholar 

  183. S. Devaraj, N. Munichandraiah: High capacitance of electrodeposited MnO2 by the effect of a surface-active agent, Electrochem. Solid-State Lett. 8, A373 (2005)

    Article  Google Scholar 

  184. T. Shinomiya, V. Gupta, N. Miura: Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide, Electrochim. Acta 51, 4412 (2006)

    Article  Google Scholar 

  185. N. Nagarajan, H. Humadi, I. Zhitomirsky: Cathodic electrodeposition of MnO x films for electrochemical supercapacitors, Electrochim. Acta 51, 3039 (2006)

    Article  Google Scholar 

  186. N. Nagarajan, M. Cheong, I. Zhitomirsky: Electrochemical capacitance of MnO x films, Mater. Chem. Phys. 103, 47 (2007)

    Article  Google Scholar 

  187. M.S. Wu, R.H. Lee: Nanostructured manganese oxide electrodes for lithium-ion storage in aqueous lithium sulfate electrolyte, J. Power Sources 176, 363 (2008)

    Article  Google Scholar 

  188. J. Wei, N. Nagarajan, I. Zhitomirsky: Manganese oxide films for electrochemical supercapacitors, J. Mater. Process. Technol. 186, 356 (2007)

    Article  Google Scholar 

  189. S.C. Wang, C.Y. Chen, T.C. Chien, P.Y. Lee, C.K. Lin: Supercapacitive properties of spray pyrolyzed iron-added manganese oxide powders deposited by electrophoretic deposition technique, Thin Solid Films 517, 1234 (2008)

    Article  Google Scholar 

  190. J. Li, I. Zhitomirsky: Electrophoretic deposition of manganese oxide nanofibers, Mater. Chem. Phys. 112, 525 (2008)

    Article  Google Scholar 

  191. J.N. Broughton, M.J. Brett: Investigation of thin sputtered Mn films for electrochemical capacitors, Electrochim. Acta 49, 4439 (2004)

    Article  Google Scholar 

  192. B. Djurfors, J.N. Broughton, M.J. Brett, D.J. Ivey: Electrochemical oxidation of Mn/MnO films: Formation of an electrochemical capacitor, Acta Mater. 53, 957 (2005)

    Article  Google Scholar 

  193. B. Djurfors, J.N. Broughton, M.J. Brett, D.J. Ivey: Production of capacitive films from Mn thin films: Effects of current density and film thickness, J. Power Sources 156, 741 (2006)

    Article  Google Scholar 

  194. B. Djurfors, J.N. Broughton, M.J. Brett, D.J. Ivey: Electrochemical oxidation of Mn/MnO films: Mechanism of porous film growth, J. Electrochem. Soc. 153, A64 (2006)

    Article  Google Scholar 

  195. J.N. Broughton, M.J. Brett: Electrochemical capacitance in manganese thin films with chevron microstructure, Electrochem. Solid-State Lett. 5, A279 (2002)

    Article  Google Scholar 

  196. J.K. Chang, C.H. Huang, W.T. Tsai, M.J. Deng, I.W. Sun, P.Y. Chen: Manganese films electrodeposited at different potentials and temperatures in ionic liquid and their application as electrode materials for supercapacitors, Electrochim. Acta 53, 4447 (2008)

    Article  Google Scholar 

  197. J.K. Chang, C.H. Huang, W.T. Tsai, M.J. Deng, I.W. Sun: Ideal pseudocapacitive performance of the Mn oxide anodized from the nanostructured and amorphous Mn thin film electrodeposited in BMP-NTf2 ionic liquid, J. Power Sources 179, 435 (2008)

    Article  Google Scholar 

  198. J.K. Chang, C.H. Huang, M.T. Lee, W.T. Tsai, M.J. Deng, I.W. Sun: Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes, Electrochim. Acta 54, 3278 (2009)

    Article  Google Scholar 

  199. Y.S. Chen, C.C. Hu, Y.T. Wu: Capacitive and textural characteristics of manganese oxide prepared by anodic deposition: Effects of manganese precursors and oxide thickness, J. Solid State Electrochem. 8, 467 (2004)

    Article  Google Scholar 

  200. M. Nakayama, T. Kanaya, R. Inoue: Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor, Electrochem. Commun. 9, 1154 (2007)

    Article  Google Scholar 

  201. J.K. Tchang, S.H. Hsu, W.T. Tsai, I.W. Sun: A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance, J. Power Sources 177, 676 (2008)

    Article  Google Scholar 

  202. T. Xue, C.L. Xu, D.D. Zhao, X.H. Li, H.L. Li: Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates, J. Power Sources 164, 953 (2007)

    Article  Google Scholar 

  203. B. Dong, T. Xue, C.L. Xu, H.L. Li: Electrodeposition of mesoporous manganese dioxide films from lyotropic liquid crystalline phases, Microporous Mesoporous Mater. 112, 627 (2008)

    Article  Google Scholar 

  204. S.J. Pan, Y.J. Shih, J.R. Chen, J.K. Chang, W.T. Tsai: Selective micro-etching of duplex stainless steel for preparing manganese oxide supercapacitor electrode, J. Power Sources 187, 261 (2009)

    Article  Google Scholar 

  205. X. Zhang, W. Yang, D.G. Evans: Layer-by-layer self-assembly of manganese oxide nanosheets/polyethylenimine multilayer films as electrodes for supercapacitors, J. Power Sources 184, 695 (2008)

    Article  Google Scholar 

  206. P.Y. Chuang, C.C. Hu: The electrochemical characteristics of binary manganese–cobalt oxides prepared by anodic deposition, Mater. Chem. Phys. 92, 138 (2005)

    Article  Google Scholar 

  207. J.K. Chang, M.T. Lee, C.H. Huang, W.T. Tsai: Physicochemical properties and electrochemical behavior of binary manganese–cobalt oxide electrodes for supercapacitor applications, Mater. Chem. Phys. 108, 124 (2008)

    Article  Google Scholar 

  208. F. Moser, L. Athouël, O. Crosnier, F. Favier, D. Bélanger, T. Brousse: Transparent electrochemical capacitor based on electrodeposited MnO2 thin film electrodes and gel-type electrolyte, Electrochem. Commun. 11, 1259 (2009)

    Article  Google Scholar 

  209. E. Takeuchi: Size does matter: Autonomous micro-power sources, Electrochem. Soc. Interf. 17, 43 (2008)

    Google Scholar 

  210. M. Deng, B. Yang, Z. Zhang, Y. Hu: Studies on CNTs–MnO2 nanocomposite for supercapacitors, J. Mater. Sci. 40, 1017 (2005)

    Article  Google Scholar 

  211. D. Jones, E. Wortham, J. Rozière, F. Favier, J.L. Pascal, L. Monconduit: Manganese oxide nanocomposites: Preparation and some electrochemical properties, J. Phys. Chem. Sol. 65, 235 (2004)

    Article  Google Scholar 

  212. V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B. Wei: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures, J. Phys. Chem. B 109, 20207 (2005)

    Article  Google Scholar 

  213. Q. Zhou, X. Li, Y.G. Li, B.Z. Tian, D.Y. Zhao, Z.Y. Jiang: Synthesis and electrochemical properties of semicrystalline gyroidal mesoporous MnO2, Chin. J. Chem. 24, 835 (2006)

    Article  Google Scholar 

  214. M. Xu, L. Kong, W. Zhou, H. Li: Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins, J. Phys. Chem. C 111, 19141 (2007)

    Article  Google Scholar 

  215. M. Ghaemi, F. Ataherian, A. Zolfaghari, S.M. Jafari: Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction, Electrochim. Acta 53, 4607 (2008)

    Article  Google Scholar 

  216. S. Komaba, A. Ogata, T. Tsuchikawa: Enhanced supercapacitive behaviors of Birnessite, Electrochem. Commun. 10, 1435 (2008)

    Article  Google Scholar 

  217. S. Devaraj, N. Munichandraiah: Surfactant stabilized nanopetals morphology of α-MnO2 prepared by microemulsion method, J. Solid State Electrochem. 12, 207 (2008)

    Article  Google Scholar 

  218. J. Zhao, H. Chen, J. Shi, J. Gu, X. Dong, J. Gao, M. Ruan, L. Yu: Electrochemical and oxygen desorption properties of nanostructured ternary compound Na x MnO2 directly templated from mesoporous SBA-15, Microporous Mesoporous Mater. 116, 432 (2008)

    Article  Google Scholar 

  219. E. Beaudrouet, A. Le Gal La Salle, D. Guyomard: Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials, Electrochim. Acta 54, 1240 (2009)

    Article  Google Scholar 

  220. X. Wang, X. Wang, W. Huang, P.J. Sebastian, S. Gamboa: Sol–gel template synthesis of highly ordered MnO2 nanowire arrays, J. Power Sources 140, 211 (2005)

    Article  Google Scholar 

  221. G. González, J.I. Gutiérrez, J.R. González-Velasco, A. Cid, A. Arnanz, J. Arnanz: Transformations of manganese oxides under different thermal conditions, J. Thermal Anal. Calorim. 47, 93 (1995)

    Article  Google Scholar 

  222. S. Li, S. Wang, B. Xu: Dry modification of electrode materials by roller vibration milling at room temperature, Particuology 6, 383 (2008)

    Article  Google Scholar 

  223. C. Ye, Z.M. Lin, S.Z. Hui: Electrochemical and capacitance properties of rod-shaped MnO2 for supercapacitor, J. Electrochem. Soc. 152, A1272 (2005)

    Article  Google Scholar 

  224. S.R. Sivakkumar, J.M. Ko, D.Y. Kim, B.C. Kim, G.G. Wallace: Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors, Electrochim. Acta 52, 7377 (2007)

    Article  Google Scholar 

  225. L. Athouël, F. Moser, R. Duga, O. Crosnier, D. Bélanger, T. Brousse: Birnessite as possible candidate for hybrid carbon/MnO2 electrochemical capacitor, ECS Trans. 16, 119 (2008)

    Article  Google Scholar 

  226. J. Jiang, A. Kucernak: Electrochemical supercapacitor material based on manganese oxide: Preparation and characterization, Electrochim. Acta 47, 2381 (2002)

    Article  Google Scholar 

  227. C.Y. Lee, H.M. Tsai, H.J. Chuang, S.Y. Li, P. Lin, T.Y. Tseng: Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes, J. Electrochem. Soc. 152, A716 (2005)

    Article  Google Scholar 

  228. Z. Fan, Z. Qie, T. Wei, J. Yan, S. Wang: Preparation and characteristics of nanostructured MnO2/MWCNTs using microwave irradiation method, Mater. Lett. 62, 3345 (2008)

    Article  Google Scholar 

  229. C. Xu, B. Li, H. Du, F. Kang, Y. Zeng: Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method, J. Power Sources 180, 664 (2008)

    Article  Google Scholar 

  230. A.B. Yuan, M. Zhou, X.L. Wang, Z.H. Sun, Y.Q. Wang: Synthesis and characterization of nanostructured manganese dioxide used as positive electrode material for electrochemical capacitor with lithium hydroxide electrolyte, Chin. J. Chem. 26, 65 (2008)

    Article  Google Scholar 

  231. C.Y. Lee, H.M. Tsai, H.J. Chuang, S.Y. Li, P. Lin, Y.T. Tseng: Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes, J. Electrochem. Soc. 152, A716 (2005)

    Article  Google Scholar 

  232. Z. Fan, J. Chen, M. Wang, K. Cui, H. Zhou, Y. Kuang: Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials, Diam. Rel. Mater. 15, 1478 (2006)

    Article  Google Scholar 

  233. X. Xie, L. Gao: Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method, Carbon 45, 2365 (2007)

    Article  Google Scholar 

  234. S.-B. Ma, K.-Y. Ahn, E.-S. Lee, K.-H. Oh, K.B. Kim: Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes, Carbon 45, 375 (2007)

    Article  Google Scholar 

  235. S.-L. Chou, J.-Z. Wang, S.-Y. Chew, H.K. Liu, S.-X. Dou: Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors, Electrochem. Commun. 10, 1724 (2008)

    Article  Google Scholar 

  236. Z. Fan, J. Chen, B. Zhang, F. Sun, B. Liu, Y. Kuang: Electrochemically induced deposition method to prepare γ-MnO2/multi-walled carbon nanotube composites as electrode material in supercapacitors, Mater. Res. Bull. 43, 2085 (2008)

    Article  Google Scholar 

  237. S.-B. Ma, K.-W. Nam, W.-S. Yoon, X.-Q. Yang, K.-Y. Ahn, K.-H. Oh, K.-B. Kim: Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications, J. Power Sources 178, 483 (2008)

    Article  Google Scholar 

  238. Z. Fan, Z. Qje, T. Wei, J. Yan, S. Wang: Preparation and characteristics of nanostructured MnO2/MWCNTs using microwave irradiation method, Mater. Lett. 62, 3345 (2008)

    Article  Google Scholar 

  239. Z. Fan, J. Chen, B. Zhang, B. Liu, X. Zhong, Y. Kuang: High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors, Diam. Rel. Mater. 17, 1943 (2008)

    Article  Google Scholar 

  240. K.-W. Nam, C.-W. Lee, X.-Q. Yang, B.W. Cho, W.-S. Yoon, K.B. Kim: Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes, J. Power Sources 188, 323 (2009)

    Article  Google Scholar 

  241. J.M. Ko, K.M. Kim: Electrochemical properties of MnO2/activated carbon nanotube composite as an electrode material for supercapacitor, Mater. Chem. Phys. 114, 837 (2009)

    Article  Google Scholar 

  242. T. Bordjiba, D. Bélanger: Direct redox deposition of manganese oxide on multiscaled carbon nanotube/microfiber carbon electrode for electrochemical capacitor, J. Electrochem. Soc 156, A378 (2009)

    Article  Google Scholar 

  243. X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi: MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors, J. Phys. Chem. B 110, 6015 (2006)

    Article  Google Scholar 

  244. S. Zhu, H. Zhou, M. Hibino, I. Honma, M. Ichihara: Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method, Adv. Funct. Mater. 15, 381 (2005)

    Article  Google Scholar 

  245. H. Kawaoka, M. Hibino, H. Zhou, I. Honma: Enhancement of specific capacity of manganese oxide/carbon composite synthesized by sonochemical method, Electrochem. Solid-State Lett. 8, A253 (2005)

    Article  Google Scholar 

  246. S.-B. Ma, Y.-H. Lee, K.-Y. Ahn, Ch.-M. Kim, K.-H. Oh, K.-B. Kim: Spontaneously deposited manganese oxide on acetylene black in an aqueous potassium permanganate solution, J. Electrochem. Soc. 153, C27 (2006)

    Article  Google Scholar 

  247. X. Huang, H. Yue, A. Attia, Y. Yang: Preparation and properties of manganese oxide/carbon composites by reduction of potassium permanganate with acetylene black, J. Electrochem. Soc. 154, A26 (2007)

    Article  Google Scholar 

  248. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang: Graphene oxide-MnO2 nanocomposites for supercapacitors, ACS Nano 4, 2822 (2010)

    Article  Google Scholar 

  249. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei: Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes, Carbon 48, 3825 (2010)

    Article  Google Scholar 

  250. S.-W. Lee, S.-M. Bak, C.-W. Lee, C. Jaye, D.A. Fischer, B.-K. Kim, X.-Q. Yang, K.-W. Nam, K.-B. Kim: Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions, J. Phys. Chem. C 118, 2834 (2014)

    Article  Google Scholar 

  251. J.W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M.B. Sassin, O. Crosnier: Asymmetric electrochemical capacitors – Stretching the limits of aqueous electrolytes, MRS Bull. 36, 513 (2011)

    Article  Google Scholar 

  252. Y.G. Wang, Y.Y. Xia: Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds: I. The C/Li Mn2O4 system, J. Electrochem. Soc. 153, A450 (2006)

    Article  Google Scholar 

  253. Y. Xue, Y. Chen, M.L. Zhang, Y.D. Yan: A new asymmetric supercapacitor based on λ-MnO2 and activated carbon electrodes, Mater. Lett. 62, 3884 (2008)

    Article  Google Scholar 

  254. A. Yuan, Q. Zhang: A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte, Electrochem. Commun. 8, 1173 (2006)

    Article  Google Scholar 

  255. J.R. Miller, P. Simon: Electrochemical capacitors for energy management, Science 321, 651 (2008)

    Article  Google Scholar 

  256. P. Guillemet, Y. Scudeller, T. Brousse: Multi-level reduced-order thermal modeling of electrochemical capacitors, J. Power Sources 157, 630 (2006)

    Article  Google Scholar 

  257. P. Guillemet, Y. Scudeller, T. Brousse, J.M. Depond: Modèle thermique d’ordre réduit pour la conception de supercondensateur électrique. Détermination de la température de fonctionnement en régime stationnaire, Rev. Int. Génie Electr. 10, 695 (2007), in French

    Google Scholar 

  258. K.R. Prasad, N. Miura: Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor, Electrochem. Solid-State Lett. 7, A425 (2004)

    Article  Google Scholar 

  259. J.P. Zheng, P.J. Cyang, T.R. Jow: Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc. 142, 2699 (1995)

    Article  Google Scholar 

  260. J.P. Zheng, T.R. Jow: High energy and high power density electrochemical capacitors, J. Power Sources 62, 155 (1996)

    Article  Google Scholar 

  261. T.R. Jow, J.P. Zheng: Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide, J. Electrochem. Soc. 145, 49 (1998)

    Article  Google Scholar 

  262. J.P. Zheng: Ruthenium oxide-carbon composite electrodes for electrochemical capacitors, Electrochem. Solid-State Lett. 2, 359 (1999)

    Article  Google Scholar 

  263. D.A. McKeown, P.L. Hagans, L.P.P. Carette, A.E. Russell, K.E. Swinder, D.R. Rolison: Structure of hydrous ruthenium oxides: Implications for charge storage, J. Phys. Chem. B 103, 4825 (1999)

    Article  Google Scholar 

  264. M. Vuković, D.J. Čukman: Electrochemical quartz crystal microbalance study of electrodeposited ruthenium, Electroanal. Chem. 474, 167 (1999)

    Article  Google Scholar 

  265. C.-C. Hu, Y.-H. Huang: Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors, J. Electrochem. Soc. 146, 2465 (1999)

    Article  Google Scholar 

  266. J.W. Long, K.E. Swinder, C.I. Merzbacher, D.R. Rolison: Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials, Langmuir 15, 780 (1999)

    Article  Google Scholar 

  267. Q.L. Fang, D.A. Evans, S.L. Roberson, J.P. Zheng: Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors, J. Electrochem. Soc. 148, A833 (2001)

    Article  Google Scholar 

  268. I.-H. Kim, K.-B. Kim: Ruthenium oxide thin film electrodes for supercapacitors, Electrochem. Solid-State Lett. 4, A62 (2001)

    Article  Google Scholar 

  269. J.P. Zheng, C.K. Huang: Electrochemical behavior of amorphous and crystalline ruthenium oxide electrodes, J. New Mater. Electrochem. Syst. 5, 41 (2002)

    Google Scholar 

  270. R. Fu, Z. Ma, J.P. Zheng: Proton NMR and dynamic studies of hydrous ruthenium oxide, J. Phys. Chem. B 106, 3592 (2002)

    Article  Google Scholar 

  271. J.P. Zheng, Y. Xin: Characterization of RuO2 · xH2O with various water contents, J. Power Sources 110, 86 (2002)

    Article  Google Scholar 

  272. J.W. Long, K.E. Ayers, D.R. Rolison: Electrochemical characterization of high-surface-area catalysts and other nanoscale electroactive materials at sticky-carbon electrodes, J. Electroanal. Chem. 522, 58 (2002)

    Article  Google Scholar 

  273. W. Dmowski, T. Egami, K.E. Swinder-Lyons, C.T. Love, D.R. Rolison: Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering, J. Phys. Chem. B 106, 12677 (2002)

    Article  Google Scholar 

  274. J.W. Long, K.E. Swider, C.I. Merzbacher, D.R. Rolison: Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials, Langmuir 19, 2532 (2003)

    Article  Google Scholar 

  275. W. Sugimoto, H. Iwata, Y. Murakami, Y. Takasu: Electrochemical capacitor behavior of layered ruthenic acid hydrate, J. Electrochem. Soc. 151, A1181 (2004)

    Article  Google Scholar 

  276. W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu: Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: The origin of large capacitance, J. Phys. Chem. B 109, 7330 (2005)

    Article  Google Scholar 

  277. S. Trasatti, G. Buzzanca: Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour, J. Electroanal. Chem. 29, A1–A5 (1971)

    Article  Google Scholar 

  278. K. Naoi, P. Simon: New materials and new configurations for advanced electrochemical capacitors, ECS Interf. 17, 34 (2008)

    Google Scholar 

  279. J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, H. Fang: Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor, J. Electrochem. Soc. 148, A1362 (2001)

    Article  Google Scholar 

  280. M. Ramani, B.S. Haran, R.E. White, B.N. Popov, L. Arsov: Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide, J. Power Sources 93, 209 (2001)

    Article  Google Scholar 

  281. C.C. Hu, W.C. Chen, K.H. Chang: How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J. Electrochem. Soc. 151, A281 (2004)

    Article  Google Scholar 

  282. H. Kim, B.N. Popov: Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method, J. Power Sources 104, 52 (2002)

    Article  Google Scholar 

  283. J.H. Park, J.M. Ko, O.O. Park: Carbon nanotubeRuO2 nanocomposite electrodes for supercapacitors, J. Electrochem. Soc. 150, A864 (2003)

    Article  Google Scholar 

  284. M. Min, K. Machida, J.H. Jang, K. Naoi: Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors, J. Electrochem. Soc. 153, A334 (2006)

    Article  Google Scholar 

  285. C. Lin, J.A. Ritter, B.N. Popov: Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels, J. Electrochem. Soc. 146, 3155 (1999)

    Article  Google Scholar 

  286. C.-C. Hu, W.-C. Chen: Effects of substrates on the capacitive performance of RuO x  · nH2O and activated carbon–RuO x electrodes for supercapacitors, Electrochim. Acta 49, 3469 (2004)

    Article  Google Scholar 

  287. W. Sugimoto, T. Kizaki, K. Yokoshima, Y. Murakami, Y. Takasu: Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode, Electrochim. Acta 49, 313 (2004)

    Article  Google Scholar 

  288. P. Siviglia, A. Daghetti, S. Trasatti: Influence of the preparation temperature of ruthenium dioxide on its point of zero charge, Colloids Surf. 7, 15 (1983)

    Article  Google Scholar 

  289. S. Lavine, A.L. Smith: Theory of the differential capacity of the oxide/aqueous electrolyte interface, Discuss. Faraday Soc. 52, 290 (1971)

    Article  Google Scholar 

  290. L.D. Burke, O.J. Murphy: Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes, J. Electroanal. Chem. 96, 19 (1979)

    Article  Google Scholar 

  291. L.D. Burke, O.J. Murphy: Surface area – Voltammetric charge correlation for RuO2/TiO2-based anodes, J. Electroanal. Chem. 112, 39 (1980)

    Article  Google Scholar 

  292. M.L. Green, M.E. Gross, L.E. Papa, K.J. Schnoes, D. Brasen: Chemical vapor deposition of ruthenium and ruthenium dioxide films, J. Electrochem. Soc. 132, 2681 (1985)

    Google Scholar 

  293. S.H. Kim, J.G. Hong, S.K. Streiffer, A.I. Kingon: The effect of RuO2/Pt hybrid bottom electrode structure on the leakage and fatigue properties of chemical solution derived Pb(Zr x Ti1−x )O3 thin films, J. Mater. Res. 14, 1018 (1999)

    Article  Google Scholar 

  294. K.E. Swider-Lyons, C.T. Love, D.R. Rolison: Selective vapor deposition of hydrous RuO2 thin films, J. Electrochem. Soc. 152, C158 (2005)

    Article  Google Scholar 

  295. K.-H. Chang, C.-C. Hu: Oxidative synthesis of RuO x  · nH2O with ideal capacitive characteristics for supercapacitors, J. Electrochem. Soc. 151, A958 (2004)

    Article  Google Scholar 

  296. Y. Murakami, S. Tsuchiya, K. Yahikozawa, Y. Takasu: Preparations of ultrafine RuO2 and IrO2 particles by a sol-gel process, J. Mater. Sci. Lett. 13, 1773 (1994)

    Article  Google Scholar 

  297. S. Hadži-Jordanov, H. Angerstein-Kozlowska, B.E. Conway: Surface oxidation and H deposition at ruthenium electrodes: Resolution of component processes in potential-sweep experiments, J. Electroanal. Chem. 60, 359 (1975)

    Article  Google Scholar 

  298. S. Hadži-Jordanov, H. Angerstein-Kozlowska, M. Vuković, B.E. Conway: The state of electrodeposited hydrogen at ruthenium electrodes, J. Phys. Chem. 81, 2271 (1977)

    Article  Google Scholar 

  299. S. Hadži-Jordanov, H. Angerstein-Kozlowska, M. Vuković, B.E. Conway: Reversibility and growth behavior of surface oxide films at ruthenium electrodes, J. Electrochem. Soc. 125, 1471 (1978)

    Article  Google Scholar 

  300. M. Vuković, H. Angerstein-Kozlowska, B.E. Conway: Electrocatalytic activation of ruthenium electrodes for the Cl2 and O2 evolution reactions by anodic/cathodic cycling, J. Appl. Electrochem. 12, 193 (1982)

    Article  Google Scholar 

  301. V. Birss, R. Myers, H. Angerstein-Kozlowska, B.E. Conway: Electron microscopy study of formation of thick oxide films on Ir and Ru electrodes, J. Electrochem. Soc. 131, 1502 (1984)

    Article  Google Scholar 

  302. M. Vuković: Rotating ring–disc electrode study of the enhanced oxygen evolution on an activated ruthenium electrode, J. Chem. Soc. Faraday Trans. 86, 3743 (1990)

    Article  Google Scholar 

  303. M. Vuković, T. Valla, M. Milun: Electron spectroscopy characterization of an activated ruthenium electrode, J. Electroanal. Chem. 356, 81 (1993)

    Article  Google Scholar 

  304. D. Marijan, D. Čukman, M. Vuković, M. Milun: Anodic stability of electrodeposited ruthenium: Galvanostatic, thermogravimetric and X-ray photoelectron spectroscopy studies, J. Mater. Sci. 30, 3045 (1995)

    Article  Google Scholar 

  305. T. Liu, W.G. Pell, B.E. Conway: Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes, Electrochim. Acta 42, 3541 (1997)

    Article  Google Scholar 

  306. M. Blouiin, D. Guay: Activation of ruthenium oxide, iridium oxide, and mixed Ru x Ir1−x oxide electrodes during cathodic polarization and hydrogen evolution, J. Electrochem. Soc. 144, 573 (1997)

    Article  Google Scholar 

  307. Y. Mo, M.R. Antonio, D.A. Scherson: In situ Ru K-edge X-ray absorption fine structure studies of electroprecipitated ruthenium dioxide films with relevance to supercapacitor applications, J. Phys. Chem. B 104, 9777 (2000)

    Article  Google Scholar 

  308. V. Horvat-Radošević, K. Kvastek, M. Vuković, D. Čukman: Electrochemical properties of ruthenised electrodes in the oxide layer region, J. Electroanal. Chem. 482, 188 (2000)

    Article  Google Scholar 

  309. C.C. Hu, C.C. Wang: Improving the utilization of ruthenium oxide within thick carbon–ruthenium oxide composites by annealing and anodizing for electrochemical supercapacitors, Electrochem. Commun. 4, 554 (2002)

    Article  Google Scholar 

  310. H.-M. Wu, P.-F. Hsu, W.-T. Hung: Investigation of redox reaction of Ru on carbon nanotubes by pulse potential electrochemical deposition, Diamond Related Mater. 18, 337 (2009)

    Article  Google Scholar 

  311. V.D. Patake, C.D. Lokhande, O.S. Joo: Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments, Appl. Surf. Sci. 255, 4192 (2009)

    Article  Google Scholar 

  312. Y.Z. Zheng, H.Y. Ding, M.L. Zhang: Hydrous–ruthenium–oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors, Thin Solid Films 516, 7381 (2008)

    Article  Google Scholar 

  313. T.P. Gujar, W.Y. Kim, I. Puspitasari, K.D. Jung, O.S. Joo: Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode, Int. J. Electrochem. Sci. 2, 666 (2007)

    Google Scholar 

  314. Y.R. Ahn, M.Y. Song, S.M. Jo, C.R. Park, D.Y. Kim: Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates, Nanotechnology 17, 2865 (2006)

    Article  Google Scholar 

  315. B.O. Park, C.D. Lokhande, H.S. Park, K.D. Jung, O.S. Joo: Cathodic electrodeposition of RuO2 thin films from Ru(III)Cl3 solution, Mater. Chem. Phys. 87, 59 (2004)

    Article  Google Scholar 

  316. I. Zhitomirsky, L. Gal-Or: Ruthenium oxide deposits prepared by cathodic electrosynthesis, Mater. Lett. 31, 155 (1997)

    Article  Google Scholar 

  317. C.C. Hu, M.J. Liu, K.H. Chang: Anodic deposition of hydrous ruthenium oxide for supercapaciors: Effects of the AcO- concentration, plating temperature, and oxide loading, Electrochim. Acta 53, 2679 (2008)

    Article  Google Scholar 

  318. C.C. Hu, M.J. Liu, K.H. Chang: Anodic deposition of hydrous ruthenium oxide for supercapacitors, J. Power Sources 163, 1126 (2007)

    Article  Google Scholar 

  319. C.C. Hu, H.R. Chiang, C.C. Wang: Electrochemical and structural investigations of oxide films anodically formed on ruthenium-plated titanium electrodes in sulfuric acid, J. Solid State Electrochem. 7, 477 (2003)

    Article  Google Scholar 

  320. Y. Takasu, Y. Murakami: Electrochemical supercapacitor behavior of nanoparticulate rutile-type Ru1−x V x O2, Electrochim. Acta 45, 4135 (2000)

    Article  Google Scholar 

  321. W. Sugimoto, T. Shibutani, Y. Murakami, Y. Takasu: Design of oxide electrodes with large surface area, Electrochem. Solid-State Lett. 5, A170 (2002)

    Article  Google Scholar 

  322. K. Yokoshima, T. Shibutani, M. Hirota, W. Sugimoto, Y. Murakami, Y. Takasu: Charge storage capabilities of rutile-type RuO2VO2 solid solution for electrochemical supercapacitors, J. Power Sources 160, 1480 (2006)

    Article  Google Scholar 

  323. Y.U. Jeong, A. Manthiram: Amorphous ruthenium-chromium oxides for electrochemical capacitors, Electrochem. Solid-State Lett. 3, 205 (2000)

    Article  Google Scholar 

  324. Y.U. Jeong, A. Manthiram: Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors, J. Electrochem. Soc. 148, A189 (2001)

    Article  Google Scholar 

  325. C.-C. Wang, C.-C. Hu: Electrochemical and textural characteristics of (Ru-Sn)O x  · nH2O for supercapacitors effects of composition and annealing, J. Electrochem. Soc. 152, A370 (2005)

    Article  Google Scholar 

  326. F. Cao, J. Prakash: Performance investigations of Pb2Ru2O6.5 oxide based pseudocapacitors, J. Power Sources 92, 40 (2001)

    Article  Google Scholar 

  327. M. Wohlfahrt-Mehrens, J. Schenk, P.M. Wilde, E. Abdelmula, P. Axmann, J. Garche: New materials for supercapacitors, J. Power Sources 105, 182 (2002)

    Article  Google Scholar 

  328. B.-O. Park, C.D. Lokhande, H.-S. Park, K.-D. Jung, O.-S. Joo: Preparation of lead ruthenium oxide and its use in electrochemical capacitor, Mater. Chem. Phys. 86, 239 (2004)

    Article  Google Scholar 

  329. T. Nanaumi, Y. Ohsawa, K. Kobayakawa, Y. Sato: High energy electrochemical capacitor materials prepared by loading ruthenium oxide on activated carbon, Electrochemistry 70, 681 (2002)

    Google Scholar 

  330. Y.H. Lee, J.G. Oh, H.S. Oh, H. Kim: Novel method for the preparation of carbon supported nano-sized amorphous ruthenium oxides for supercapacitors, Electrochem. Commun. 10, 1035 (2008)

    Article  Google Scholar 

  331. K. Naoi, S. Ishimoto, N. Ogihara, Y. Nakagawa, S. Hatta: Encapsulation of nanodot ruthenium oxide into KB for electrochemical capacitors, J. Electrochem. Soc. 156, A52 (2009)

    Article  Google Scholar 

  332. W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu: Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage, Angew. Chem. Int. Ed. 42, 4092 (2003)

    Article  Google Scholar 

  333. W. Sugimoto, M. Yonezawa, Y. Takasu: Pseudocapacitance of ruthenium oxide nanosheets derived from layered NaRuO2 with α-NaFe O2-type structure, Abstr. 214th Electrochem. Soc. Meet. (2008)

    Google Scholar 

  334. S. Aridizzone, G. Fregonara, S. Trasatti: ‘‘Inner’’ and ‘‘outer’’ active surface of RuO2 electrodes, Electrochim. Acta 35, 263 (1990)

    Article  Google Scholar 

  335. J. Rishpon, S. Gottesfeld: Resolution of fast and slow charging processes in ruthenium oxide films: An AC impedance and optical investigation, J. Electrochem. Soc. 131, 1960 (1984)

    Article  Google Scholar 

  336. I.-H. Kim, K.-B. Kim: Ruthenium oxide thin film electrodes prepared by electrostatic spray deposition and their charge storage mechanism, J. Electrochem. Soc. 151, E7 (2004)

    Article  Google Scholar 

  337. A. Foelske, O. Barbieri, M. Hahn, R. Kötz: An X-ray photoelectron spectroscopy study of hydrous ruthenium oxide powders with various water contents for supercapacitors, Electrochem. Solid-State Lett. 9, A268 (2006)

    Article  Google Scholar 

  338. D. Rochefort, P. Dabo, D. Guay, P.M.A. Sherwood: XPS investigations of thermally prepared RuO2 electrodes in reductive conditions, Electrochim. Acta 48, 4245 (2003)

    Article  Google Scholar 

  339. C. Chabanier, E. Irissou, D. Guay, J.F. Pelletier, M. Sutton, L.B. Lurio: Hydrogen absorption in thermally prepared RuO2 electrode, Electrochem. Solid-State Lett. 5, E40 (2002)

    Article  Google Scholar 

  340. C. Chabanier, D. Guay: Activation and hydrogen absorption in thermally prepared RuO2 and IrO2, J. Electroanal. Chem. 570, 13 (2004)

    Article  Google Scholar 

  341. O. Barbieri, M. Hahn, A. Foelske, R. Kötz: Effect of electronic resistance and water content on the performance of RuO2 for supercapacitors, J. Electrochem. Soc. 153, A2049 (2006)

    Article  Google Scholar 

  342. I.C. Stefan, Y. Mo, M.R. Antonio, D.A. Scherson: In situ Ru LII and LIII edge X-ray absorption near edge structure of electrodeposited ruthenium dioxide films, J. Phys. Chem. B 106, 12373 (2002)

    Article  Google Scholar 

  343. Y. Mo, W.-B. Cai, J. Dong, P.R. Carey, D.A. Scherson: In situ surface enhanced raman scattering of ruthenium dioxide films in acid electrolytes, Electrochem. Solid-State Lett. 4, E37 (2001)

    Article  Google Scholar 

  344. H. Chol Jo, K.M. Kim, H. Cheong, S.-H. Lee, S.K. Deb: In situ Raman spectroscopy of RuO2 · xH2O, Electrochem. Solid-State Lett. 8, E39 (2005)

    Article  Google Scholar 

  345. S.-H. Lee, P. Liu, M.J. Seong, H.M. Cheong, C.E. Tracy, S.K. Deb: Electrochemical supercapacitors for optical modulation, Electrochem. Solid-State Lett. 6, A40 (2003)

    Article  Google Scholar 

  346. S.-H. Lee, P. Liu, H.M. Cheong, C.E. Tracy, S.K. Deb: Electrochromism of amorphous ruthenium oxide thin films, Solid State Ionics 165, 217 (2003)

    Article  Google Scholar 

  347. H.Y. Lee, J.B. Goodenough: Ideal supercapacitor behavior of amorphous V2O5 · nH2O in potassium chloride (KCl) aqueous solution, J. Solid State Chem. 148, 81 (1999)

    Article  Google Scholar 

  348. N.L. Wu: Nanocrystalline oxide supercapacitors, Mater. Chem. Phys. 75, 6 (2002)

    Article  Google Scholar 

  349. Q. Zhou, X. Wang, Y. Liu, Y. He, Y. Gao, J. Liu: High rate capabilities of NiCo2O4-based hierarchical superstructures for rechargeable charge storage, J. Electrochem. Soc. 161, A1922 (2014)

    Article  Google Scholar 

  350. T. Brousse, J.W. Long, D. Bélanger: To be or not to be pseudocapacitive?, J. Electrochem. Soc. 162, A5185 (2015)

    Article  Google Scholar 

  351. H. Wang, H. Yi, X. Chen, X. Wang: Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties, Electrochim. Acta 105, 353 (2013)

    Article  Google Scholar 

  352. B.E. Conway, W.G. Pell, T.C. Liu: Behavior of molybdenum nitrides as materials for electrochemical capacitors: Comparison with ruthenium oxide, J. Electrochem. Soc. 145, 1882 (1998)

    Article  Google Scholar 

  353. H. Gao, Y.-J. Ting, N.P. Kherani, K. Lian: Ultra-high-rate all-solid pseudocapacitive electrochemical capacitors, J. Power Sources 222, 301 (2013)

    Article  Google Scholar 

  354. R. Lucio Porto, R. Frappier, J.B. Ducros, C. Aucher, H. Mosqueda, S. Shenu, B. Chavillon, F. Tessier, F. Cheviré, T. Brousse: Titanium and vanadium oxynitride powders as pseudo-capacitive materials for electrochemical capacitors, Electrochim. Acta 82, 257 (2012)

    Article  Google Scholar 

  355. D. Choi, E. George, E. Blomgren, N. Kumta: Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors, Adv. Mater. 18, 1178 (2006)

    Article  Google Scholar 

  356. O. Kartachova, A.M. Glushenkov, Y. Chen, H. Zhang, X.J. Dai, Y. Chen: Electrochemical capacitance of mesoporous tungsten oxynitride in aqueous electrolytes, J. Power Sources 220, 298 (2012)

    Article  Google Scholar 

  357. S. Bouhtiyya, R. Lucio Porto, B. Laïk, P. Boulet, F. Capon, J.P. Pereira-Ramos, T. Brousse, J.F. Pierson: Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices, Scr. Mater. 68, 659 (2013)

    Article  Google Scholar 

  358. J.H. Park, O.O. Park: Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes, J. Power Sources 111, 185 (2002)

    Article  Google Scholar 

  359. Y.-G. Wang, L. Cheng, Y.-Y. Xia: Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution, J. Power Sources 153, 191 (2006)

    Article  Google Scholar 

  360. C.-Z. Yuan, B. Gao, X.-G. Zhang: Electrochemical capacitance of NiO/Ru0.35V0.65O2 asymmetric electrochemical capacitor, J. Power Sources 173, 606 (2007)

    Article  Google Scholar 

  361. A. Du Pasquier, I. Plitz, S. Menocal, G. Amatucci: A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications, J. Power Sources 115, 171 (2003)

    Article  Google Scholar 

  362. A. Yoshino, T. Tsubata, M. Shimoyamada, H. Satake, Y. Okano, S. Mori, S. Yata: Development of a lithium-type advanced energy storage device, J. Electrochem. Soc. 151, A2180 (2004)

    Article  Google Scholar 

  363. T. Brousse, R. Marchand, P.-L. Taberna, P. Simon: TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage, J. Power Sources 158, 571 (2006)

    Article  Google Scholar 

  364. T. Aida, I. Murayama, K. Yamada, M. Morita: An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode, Electrochem. Solid-State Lett. 9, A534 (2006)

    Article  Google Scholar 

  365. T. Aida, I. Murayama, K. Yamada, M. Morita: High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode, J. Power Sources 166, 462 (2007)

    Article  Google Scholar 

  366. S.-H. Woo, K. Dokko, H. Nakano, K. Kanamura: Bimodal porous carbon as a negative electrode material for lithium-ion capacitors, Electrochemistry 75, 635 (2007)

    Article  Google Scholar 

  367. V. Khomenko, E. Raymundo-Piñero, F. Béguin: High-energy density graphite/AC capacitor in organic electrolyte, J. Power Sources 177, 643 (2008)

    Article  Google Scholar 

  368. S. Stewart, P. Albertus, V. Srinivasan, I. Plitz, N. Pereira, G. Amatucci, J. Newman: Optimizing the performance of lithium titanate spinel paired with activated carbon or iron phosphate, J. Electrochem. Soc. 155, A253 (2008)

    Article  Google Scholar 

  369. H. Laforgue, P. Simon, J.F. Fauvarque, M. Mastragostino, F. Soavi, J.F. Sarrau, P. Lailler, M. Conte, E. Rossi, S. Saguatti: Activated carbon/conducting polymer hybrid supercapacitors, J. Electrochem. Soc. 150, A645 (2003)

    Article  Google Scholar 

  370. H. Wang, M. Yoshio: Graphite, a suitable positive electrode material for high-energy electrochemical capacitors, Electrochem. Commun. 8, 1481 (2006)

    Article  Google Scholar 

  371. L.J. Hardwick, M. Hahn, P. Ruch, M. Holzapfel, W. Scheifele, H. Buqa, F. Krumeich, P. Novák, R. Kötz: An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite, Electrochim. Acta 52, 675 (2006)

    Article  Google Scholar 

  372. P.W. Ruch, M. Hahn, F. Rosciano, M. Holzapfel, H. Kaiser, W. Scheifele, B. Schmitt, P. Novák, R. Kötz, A. Wokaun: In situ X-ray diffraction of the intercalation of (CC2H5)4N+ and BF4− into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes, Electrochim. Acta 53, 1074 (2007)

    Article  Google Scholar 

  373. H. Wang, M. Yoshio: Performance of AC/graphite capacitors at high weight ratios of AC/graphite, J. Power Sources 177, 681 (2008)

    Article  Google Scholar 

  374. Y. Yokoyama, N. Shimosaka, H. Matsumoto, M. Yoshio, T. Ishihara: Effects of supporting electrolyte on the storage capacity of hybrid capacitors using graphitic and activated carbon, Electrochem. Solid-State Lett. 11, A72 (2008)

    Article  Google Scholar 

  375. K. Naoi: Nanohybrid capacitor: The next generation electrochemical capacitors, Fuel Cells 10, 825–833 (2010)

    Article  Google Scholar 

  376. T. Kawasato, K. Hiratsuka, T. Morimoto: Development of the coin-type double layer capacitor for back-up power sources of IC memories, AGC Res. Rep. 52, 39–46 (2002)

    Google Scholar 

  377. K. Chiba, T. Ueda, H. Yamamoto: Performance of electrolytic solution composed of linear-structure sulfones and electric double-layer capacitor using it, Electrochem. 48th Batter. Symp. Jpn (2007) p. 2C16

    Google Scholar 

  378. K. Naoi, K. Chiba: High-voltage electrodeelectrolyte interface in ECs and hybrid capacitor. In: Nanotechnology in Advanced Electrochemical Power Sources, ed. by S.R.S. Prabaharan, M.S. Michael (Pan Stanford Publ., Singapore 2014)

    Google Scholar 

  379. C. Nunjundiah, S.F. McDevitt, V.R. Koch: Differential capacitance measurements in solvent-free ionic liquids at hg and c interfaces, J. Electrochem. Soc. 144, 3392 (1997)

    Article  Google Scholar 

  380. M. Ue, M. Takeda, T. Takahashi, M. Takehara: Ionic liquids with low melting points and their application to double-layer capacitor electrolytes, Electrochem. Solid-State Lett. 5, A119 (2002)

    Article  Google Scholar 

  381. M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, Y. Ito: Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors, J. Electrochem. Soc. 150, A499 (2003)

    Article  Google Scholar 

  382. T. Sato, G. Masuda, K. Takagi: Electrochemical properties of novel ionic liquids for electric double layer capacitor applications, Electrochim. Acta 49, 3603 (2004)

    Article  Google Scholar 

  383. I. Murayama, N. Yoshimoto, M. Egashira, M. Morita, Y. Kobayashi, M. Ishikawa: Characteristics of electric double layer capacitors with an ionic liquid electrolyte containing Li ion, Electrochemistry 73, 600 (2005)

    Google Scholar 

  384. S. Shiraishi, N. Nishina, A. Oya, R. Hagiwara: Electric double layer capacitance of activated carbon fibers in ionic liquid : EMImBF4, Electrochemistry 73, 593 (2005)

    Google Scholar 

  385. Y. Nagao, Y. Nakayama, H. Oda, M. Ishikawa: Activation of an ionic liquid electrolyte for electric double layer capacitors by addition of BaTiO3 to carbon electrodes, J. Power Sources 166, 595 (2007)

    Article  Google Scholar 

  386. A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plée, M. Mastragostino, S. Passerini: High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte, J. Power Sources 165, 922 (2007)

    Article  Google Scholar 

  387. A. Lewandowski, A. Olejniczak: N-Methyl-N-propylpiperidinium bis(trifluoromethanesulphonyl)imide as an electrolyte for carbon-based double-layer capacitors, J. Power Sources 172, 487 (2007)

    Article  Google Scholar 

  388. H. Zhang, G. Cao, Y. Yang, Z. Gu: Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes, J. Electrochem. Soc. 155, K19 (2008)

    Article  Google Scholar 

  389. N. Handa, T. Sugimoto, M. Yamagata, M. Kikuta, M. Kono, M. Ishikawa: A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor, J. Power Sources 185, 1585 (2008)

    Article  Google Scholar 

  390. T. Devarajan, S. Higashiya, C. Dangler, M. Rane-Fondacaro, J. Snyder, P. Haldar: Novel ionic liquid electrolyte for electrochemical double layer capacitors, Electrochem. Commun. 11, 680 (2009)

    Article  Google Scholar 

  391. A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, F. Soavi: Ionic liquids for hybrid supercapacitors, Electrochem. Commun. 6, 566 (2004)

    Article  Google Scholar 

  392. A. Balducci, W.A. Henderson, M. Mastragostino, S. Passerini, P. Simon, F. Soavi: Cycling stability of a hybrid activated carbon/poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte, Electrochim. Acta 50, 2233 (2005)

    Article  Google Scholar 

  393. C. Arbizzani, M. Biso, D. Cericola, M. Lazzari, F. Soavi, M. Mastragostino: Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes, J. Power Sources 185, 1575 (2008)

    Article  Google Scholar 

  394. M. Ishikawa, M. Ihara, M. Morita, Y. Matsuda: Electric double layer capacitors with new gel electrolytes, Electrochim. Acta 40, 2217 (1995)

    Article  Google Scholar 

  395. X. Liu, T. Osaka: Properties of electric double-layer capacitors with various polymer gel electrolytes, J. Electrochem. Soc. 144, 3066 (1997)

    Article  Google Scholar 

  396. S.A. Hashmi, R.J. Latham, R.G. Linford, W.S. Schlindwein: Studies on all solid state electric double layer capacitors using proton and lithium ion conducting polymer electrolytes, J. Chem. Soc. Faraday Trans. 93, 4177 (1997)

    Article  Google Scholar 

  397. T. Osaka, X. Liu, M. Mojima: Acetylene black/poly(vinylidene fluoride) gel electrolyte composite electrode for an electric double-layer capacitor, J. Power Sources 74, 122 (1998)

    Article  Google Scholar 

  398. Y. Matsuda, K. Inoue, H. Takeuchi, Y. Okuhama: Gel polymer electrolytes for electric double layer capacitors, Solid State Ionics 113–115, 103 (1998)

    Article  Google Scholar 

  399. T. Osaka, X. Liu, M. Nojima, T. Momma: An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder, J. Electrochem. Soc. 146, 1724 (1999)

    Article  Google Scholar 

  400. M. Ishikawa, L. Yamamoto, M. Morita, Y. Ando: Performance of electric double layer capacitors with gel electrolytes containing an asymmetric ammonium salt, Electrochemistry 69, 437 (2001)

    Google Scholar 

  401. X. Liu, T. Osaka: New insights into the carbon/polymer electrolyte interface in the electric double layer capacitor, Electrochemistry 69, 422 (2001)

    Google Scholar 

  402. S. Mitra, A.K. Shukla, S. Sampath: Electrochemical capacitors with plasticized gel-polymer electrolytes, J. Power Sources 101, 213 (2001)

    Article  Google Scholar 

  403. C.-M. Yang, W.I. Cho, J.K. Lee, H.-W. Rhee, B.W. Cho: EDLC with UV-cured composite polymer electrolyte based on poly[(ethylene glycol) diacrylate]/poly(vinylidene fluoride)/poly(methyl methacrylate) blends, Electrochem. Solid-State Lett. 8, A91 (2005)

    Article  Google Scholar 

  404. A. Lewandowski, A. Šwiderska: Electrochemical capacitors with polymer electrolytes based on ionic liquids, Electrochim. Acta 161, 243 (2003)

    Google Scholar 

  405. S. Yamazaki, A. Takegawa, Y. Kaneko, J. Kadokawa, M. Yamagata, M. Ishikawa: An acidic cellulose–chitin hybrid gel as novel electrolyte for an electric double layer capacitor, Electrochem. Commun. 11, 68 (2009)

    Article  Google Scholar 

  406. P. Staiti, M. Minutoli, F. Lufrano: All solid electric double layer capacitors based on Nafion ionomer, Electrochim. Acta 47, 2795 (2002)

    Article  Google Scholar 

  407. W. Sugimoto, K. Yokoshima, K. Ohuchi, Y. Murakami, Y. Takasu: Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors, J. Electrochem. Soc. 153, A255 (2006)

    Article  Google Scholar 

  408. A. Lewandowski, M. Zajder, E. Frackowiak, F. Béguin: Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte, Electrochim. Acta 46, 2777 (2001)

    Article  Google Scholar 

  409. Y.-G. Wang, X.-G. Zhang: Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites, Electrochim. Acta 49, 1957 (2004)

    Article  Google Scholar 

  410. C.-C. Yang, S.-T. Hsu, W.-C. Chien: All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes, J. Power Sources 152, 303 (2005)

    Article  Google Scholar 

  411. C. Yuan, X. Zhang, Q. Wu, B. Gao: Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte, Solid State Ionics 177, 1237 (2006)

    Article  Google Scholar 

  412. N.A. Choudary, S. Sampath, A.K. Shukla: Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors, J. Electrochem. Soc. 155, A74 (2007)

    Article  Google Scholar 

  413. C. Iwakura, H. Wada, S. Nohara, N. Furukawa, H. Inoue, M. Morita: New electric double layer capacitor with polymer hydrogel electrolyte, Electrochem. Solid-State Lett. 6, A37 (2003)

    Article  Google Scholar 

  414. H. Wada, S. Nohara, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, M. Morita, C. Iwakura: Electrochemical characteristics of electric double layer capacitor using sulfonated polypropylene separator impregnated with polymer hydrogel electrolyte, Electrochim. Acta 49, 4871 (2004)

    Article  Google Scholar 

  415. H. Wada, K. Yoshikawa, S. Nohara, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, C. Iwakura: Electrochemical characteristics of new electric double layer capacitor with acidic polymer hydrogel electrolyte, J. Power Sources 159, 1464 (2006)

    Article  Google Scholar 

  416. S. Nohara, T. Asahina, H. Wada, N. Furukawa, H. Inoue, N. Sugoh, H. Iwasaki, C. Iwakura: Hybrid capacitor with activated carbon electrode, Ni(OH)2 electrode and polymer hydrogel electrolyte, J. Power Sources 157, 605 (2006)

    Article  Google Scholar 

  417. S. Nohara, T. Miura, C. Iwakura, H. Inoue: Electric double layer capacitor using polymer hydrogel electrolyte with 4M H2SO4 aqueous solution, Electrochemistry 75, 579 (2007)

    Article  Google Scholar 

  418. H. Inoue, T. Morimoto, S. Nohara: Electrochemical characterization of a hybrid capacitor with Zn and activated carbon electrodes, Electrochem. Solid-State Lett. 10, A261 (2007)

    Article  Google Scholar 

  419. J. Qiao, N. Yoshimoto, M. Ishikawa, M. Morita: Acetic acid-doped poly(ethylene oxide)-modified poly(methacrylate): A new proton conducting polymeric gel electrolyte, Electrochim. Acta 47, 3441 (2002)

    Article  Google Scholar 

  420. F. Lufrano, P. Staiti: Conductivity and capacitance properties of a supercapacitor based on Nafion electrolyte in a nonaqueous system, Electrochem. Solid-State Lett. 7, A447 (2004)

    Article  Google Scholar 

  421. M. Morita, N. Ohsumi, N. Yoshimoto, M. Egashira: Proton-conducting non-aqueous gel electrolyte for a redox capacitor system, Electrochemistry 75, 641 (2007)

    Article  Google Scholar 

  422. B. Mattsson, H. Ericson, L.M. Torell, F. Sundholm: Micro-Raman investigations of PVDF-based proton-conducting membranes, J. Polym. Sci. A 37, 3317 (1999)

    Article  Google Scholar 

  423. H. Ericson, C. Svanberg, A. Brodin, A.M. Grillone, S. Panero, B. Scrosati, P. Jacobsson: Poly(methyl methacrylate)-based protonic gel electrolytes: A spectroscopic study, Electrochim. Acta 45, 1409 (2000)

    Article  Google Scholar 

  424. G. Żukowska, N. Chojnacka, W. Wieczorek: Effect of gel composition on the conductivity of proton-conducting gel polymeric electrolytes doped with H3PO4, Chem. Matter 12, 3578 (2000)

    Article  Google Scholar 

  425. W. Wieczorek, G. Żukowska, R. Borkowska, S.H. Chung, S. Greenbaum: A basic investigation of anhydrous proton conducting gel electrolytes, Electrochim. Acta 46, 1427 (2001)

    Article  Google Scholar 

  426. B.-K. Choi, S.-H. Park, S.-W. Joo, M.-S. Gong: Electrical and thermal properties of poly(vinylidene fluoride-hexafluoropropylene)-based proton conducting gel-electrolytes, Electrochim. Acta 50, 649 (2004)

    Article  Google Scholar 

  427. H.P. Singh, S.S. Sekhon: Non-aqueous proton conducting polymer gel electrolytes, Electrochim. Acta 50, 621 (2004)

    Article  Google Scholar 

  428. J. Qiao, N. Yoshimoto, M. Morita: Proton conducting behavior of a novel polymeric gel membrane based on poly(ethylene oxide)-grafted-poly(methacrylate), J. Power Sources 105, 45 (2002)

    Article  Google Scholar 

  429. J. Qiao, N. Yoshimoto, M. Ishikawa, M. Morita: Proton conductance and spectroscopic characteristics of acid-doped polymer gels based on poly(ethylene oxide)-modified polymethacrylate, Solid State Ionics 156, 415 (2003)

    Article  Google Scholar 

  430. M. Morita, J. Qiao, N. Yoshimoto, M. Ishikawa: Application of proton conducting polymeric electrolytes to electrochemical capacitors, Electrochim. Acta 50, 837 (2004)

    Article  Google Scholar 

  431. M. Ue, K. Ida, S. Mori: Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors, J. Elecrochem. Soc. 141, 2989 (1994)

    Article  Google Scholar 

  432. A. Chu, P. Braatz: Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. Initial characterization, J. Power Sources 112, 236 (2006)

    Article  Google Scholar 

  433. T. Morimoto: Development and industrialization of electric double-layer capacitors, TANSO 214, 202 (2004), in Japanese

    Article  Google Scholar 

  434. O. Bohlen, J. Kowal, D.U. Sauer: Ageing behaviour of electrochemical double layer capacitors: Part I. Experimental study and ageing model, J. Power Sources 172, 468 (2007)

    Article  Google Scholar 

  435. M. Hahn, A. Würsig, R. Gallay, P. Novak, R. Kötz: Gas evolution in activated carbon/propylene carbonate based double-layer capacitors, Electrochem. Commun. 7, 925 (2005)

    Article  Google Scholar 

  436. F.P. Campana, M. Hahn, A. Foelske, P. Ruch, R. Kötz, H. Siegenthaler: Intercalation into and film formation on pyrolytic graphite in a supercapacitor-type electrolyte (C2H5)4NBF4/propylene carbonate, Electrochem. Commun. 8, 1363 (2006)

    Article  Google Scholar 

  437. L.F. Xiao, Q.F. Yue, C.G. Xia, L.W. Xu: Supported basic ionic liquid: Highly effective catalyst for the synthesis of 1,2-propylene glycol from hydrolysis of propylene carbonate, J. Molec. Catal. A 279, 230 (2008)

    Article  Google Scholar 

  438. P. Kurzweil, M. Chwistek: Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products, J. Power Sources 176, 555 (2008)

    Article  Google Scholar 

  439. S. Ishimoto, Y. Asakawa, M. Shinya, K. Naoi: Degradation responses of activated-carbon-based edlcs for higher voltage operation and their factors, J. Electrochem. Soc. 156, A563 (2009)

    Article  Google Scholar 

  440. J.R. Miller: A brief history of supercapacitors, Battery Energy Storage Technol. 18, 61–78 (2007)

    Google Scholar 

  441. S. Razoumov, A. Klementov, S. Litvinenko, A. Beliakov: Asymmetric Electrochemical Capacitor and Method Of Making, US Patent 6222723 (2001)

    Google Scholar 

  442. H. Uchi: Performance and application – DLCAP, Proc. Adv. Capacitor World Summit, San Diego (2005)

    Google Scholar 

  443. Superior Tool Company: UltraCut 35278 cordless tubing cutter, www.superiortool.com

  444. J.R. Miller: Capacitor Tech Talk 18, 121–128 (2007)

    Google Scholar 

  445. J. Groot: Energy storage systems for heavy-duty HEVs, Proc. Adv. Capacitor World Summit, La Jolla (2009)

    Google Scholar 

  446. L.A. Viterna: Hybrid electric transit bus, Proc. SAE Int. Truck Bus Meet., Cleveland (1997), paper 973202

    Google Scholar 

  447. T. Bartley: Ultracapacitors no longer just a technology: Real, safe, efficient, available, Proc. Adv. Capacitor World Summit, Washington (2004)

    Google Scholar 

  448. G. Willms: Hybrid-electric drive systems for heavy duty vehicles, Proc. Adv. Capacitor World Summit, San Diego (2008)

    Google Scholar 

  449. T. Apalenek: Advanced energy storage – Field experience, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)

    Google Scholar 

  450. M. Bolton: Energy storage systems for severe duty truck applications, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)

    Google Scholar 

  451. J. Gonder, A. Pesaran, J. Lustbader, H. Tataria: Fuel economy and performance of mild hybrids with ultracapacitors, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)

    Google Scholar 

  452. J. Schneeberger, H. Hakvoort: Requirements and design considerations of automotive double-layer capacitor modules, Proc. 8th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Tampa (2008)

    Google Scholar 

  453. I.N. Varakin, A.D. Klementov, S.V. Litvienko, S.V. Starodubtsev, A.B. Stepanov: Application of ultracapacitors as traction energy sources, Proc. 7th Int. Semin. Double Layer Capacitor Similar Energy Storage Dev., Deerfield Beach (1997)

    Google Scholar 

  454. T. Geist: A 2000 V ultracapacitor for transmission stability, Adv. Capacitor World Summit, Washington (2004)

    Google Scholar 

  455. K. Rechenberg, M. Meinert: Requirements on DLC energy storage units for rolling stock, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)

    Google Scholar 

  456. M. Steiner, M. Klohr, S. Pagiela: Energy storage system with ultracaps on board of railway vehicles, Eur. Conf. Power Electronics Appl. (2007), doi:10.1109/EPE.2007.4417400

    Google Scholar 

  457. M. Meinert: Experiences of the hybrid energy storage system Sitras HES based on a NiMH-Battery and double layer capacitors in tram operation, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)

    Google Scholar 

  458. A. Schneuwly: Efficient energy storage by ultracapacitors to address new demands for electrical power within vehicles, Proc. 8th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Tampa (2008)

    Google Scholar 

  459. J.R. Miller: Boom boom time for ultracaps, Battery Energy Storage Technol. 16, 61–71 (2007)

    Google Scholar 

  460. Maxwell Technologies, Inc., San Diego, USA: www.maxwell.com/news-events/release.asp?PRID=162

  461. A.I. Beliakov: Russian supercapacitors to start engines, Battery Int. 102, 102 (1993)

    Google Scholar 

  462. A.I. Beliakov: Investigation and developing of double layer capacitors for start of internal combustion engines and of accelerating systems of hybrid electric drive, Proc. 6th Int. Semin. Double Layer Capacitor Similar Energy, Storage Dev., Deerfield Beach (1996)

    Google Scholar 

  463. J.R. Miller, J. Burgel, H. Catherino, F. Krestik, J. Monroe, J.R. Stafford: Truck starting using electrochemical capacitors, Int. Truck Bus Meet., Indianapolis (1998), SAE Tech. Paper 982794

    Google Scholar 

  464. J.R. Miller: Engineering battery-capacitor combinations in high power applications: Diesel engine starting, Proc. 9th Int. Semin. Double Layer Capacitor Similar Energy Storage Dev., Deerfield Beach (1999)

    Google Scholar 

  465. W. Ong, R. Johnston: Electrochemical capacitors and their potential application to heavy duty vehicles, Int. Truck Bus Meet. Portland (2000), SAE Tech. Paper 200-01-3495

    Google Scholar 

  466. J.R. Miller: Standards for engine-starting capacitors, Proc. 15th Int. Semin. Double Layer Capacitor Hybrid Energy Storage Dev., Deerfield Beach (2005)

    Google Scholar 

  467. T. Furukawa: Engine cranking with green technology, Proc. Adv. Capacitor World Summit, San Diego (2008)

    Google Scholar 

  468. SAFT: www.saftbatteries.com

  469. J. Furukawa, T. Takada, H. Sakamoto, L.T. Lam, T. Sugimura, E. Sato, M. Tsuyuki: Development of the flooded-type ultrabattery and battery sensor for micro-HEV applications, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)

    Google Scholar 

  470. T. Furukawa: DLCAP energy storage system multiple application, Proc. Adv. Capacitor World Summit, San Diego (2006)

    Google Scholar 

  471. Komatsu: Komatsu Introduces the World’s First Hydraulic Excavator, Press Release, www.komatsu.com/CompanyInfo/press/2008051315113604588.html

  472. C. Greenhill: Capacitors in fuel cell forklifts, Proc. Adv. Capacitor World Summit, San Diego (2006)

    Google Scholar 

  473. T. Yamamoto: The characteristics of MEIDENSHA’s bipolar laminate type electric double layer capacitor and its applications, Proc. 9th Int. Adv. Automot. Battery Ultracapacitor Conf. Symp., Long Beach (2009)

    Google Scholar 

  474. I. Gyuk: Supercapacitors for electricity storage, scope and projects, Proc. Adv. Capacitor World Summit, Washington (2004)

    Google Scholar 

  475. S. Kazaryan: Characteristics of the PbO2|H2SO4|C ECs, Proc. Adv. Capacitor World Summit, San Diego (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brousse, T. et al. (2017). Materials for Electrochemical Capacitors. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics