Skip to main content

Electrochemical Energy Generation and Storage as Seen by In-Situ NMR

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter will provide a concise review/snap-shots of the development of in situ electrochemical nuclear magnetic resonance spectroscopy (including magnetic resonance imaging), in both solution and solid state, and its current state of applications to understanding chemical processes for electrochemical energy generation and storage. This will include pedagogical descriptions of involved principles and techniques and discussions of representative case studies that showcase the technical prowess of the methodologies, particularly in investigating nanomaterials used in electrocatalysis for fuel cells and energy storage devices (batteries) and associated water distribution in the former and Li metal deposits in the latter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BMS:

bulk magnetic susceptibility

COHP:

crystal orbital hamiltonian population

CSI:

chemical shift imaging

DFT:

density functional theory

DNP:

dynamic nuclear polarization

EC:

electrochemical

EOS:

electronic-orbital-specific

FAOR:

formic acid oxidation reaction

FC:

fuel cell

FWHM:

full width at half maximum

GDL:

gas diffusion layer

LDOS:

local density of state

MAS:

magic angle spinning

MEA:

membrane–electrode assembly

MO:

molecular orbital

MOR:

methanol oxidation reaction

MRI:

magnetic resonance imaging

NMR:

nuclear magnetic resonance

NP:

nanoparticle

OCV:

open circuit voltage

ORR:

oxygen reduction reaction

PD:

packing density

PEMFC:

proton-exchange membrane fuel cell

PEM:

proton-exchange membrane

QSE:

quantum size effect

RF:

radio frequency

RH:

relative humidity

ROI:

regions of interest

SD:

smoothly deposited

SEI:

solid electrolyte interphase

SEM:

scanning electron microscopy

TEM:

transmission electron microscopy

References

  1. A. Trabesinger: Nuclear magnetic resonance: Long live the spin, Nat. Phys. 8, 781 (2012)

    Article  Google Scholar 

  2. O.H. Han: Nuclear magnetic resonance investigations on electrochemical reactions of low temperature fuel cells operating in acidic conditions, Prog. NMR Spectrosc. 72, 1–41 (2013)

    Article  Google Scholar 

  3. F. Blanc, M. Leskes, C.P. Grey: In situ solid-state NMR spectroscopy of electrochemical cells: Batteries, supercapacitors and fuel cells, Acc. Chem. Res. 46(9), 1952–1963 (2013)

    Article  Google Scholar 

  4. Y.Y. Tong: Coupling interfacial electrochemistry with nuclear magnetic resonance spectroscopy. In: In-Situ Spectroscopic Studies of Adsorption at Electrode and Electrocatalysis, Vol. 14, ed. by S.G. Sun, P.A. Christensen, A. Wieckowski (Elsevier, Amsterdam 2007) pp. 441–469

    Chapter  Google Scholar 

  5. P. Prenzler, R. Bramley, S.R. Downing, G.A. Heath: High-field NMR spectroelectrochemistry of spinning solutions: Simultaneous in situ detection of electrogenerated species in a standard probe under potentiostatic control, Electrochem. Commun. 2, 516 (2000)

    Article  Google Scholar 

  6. J.A. Richards, D.H. Evans: Flow cell for electrolysis within the probe of a nuclear magnetic resonance spectrometer, Anal. Chem. 47, 964 (1975)

    Article  Google Scholar 

  7. C.P. Slichter: The discovery and demonstration of dynamic nuclear polarization, Phys. Chem. Chem. Phys. 12, 5741 (2010)

    Article  Google Scholar 

  8. A.W. Overhauser: Polarization of nuclei in metals, Phys. Rev. 92, 441 (1953)

    Article  MATH  Google Scholar 

  9. A.W. Overhauser: Paramagnetic relaxation in metals, Phys. Rev. 89, 689 (1953)

    Article  MATH  Google Scholar 

  10. T.R. Carver, C.P. Slichter: Polarization of nuclear spins in metals, Phys. Rev. 92, 212 (1953)

    Article  Google Scholar 

  11. R.G. Griffin, T.F. Prisner: High field dynamic nuclear polarization-the renaissance, Phys. Chem. Chem. Phys. 12, 5737 (2010)

    Article  Google Scholar 

  12. R.D. Webster: In situ electrochemical-NMR spectroscopy. Reduction of aromatic halides, Anal. Chem. 76, 1603 (2004)

    Article  Google Scholar 

  13. M.E. Sandifer, M. Zhao, S. Kim, D.A. Scherson: In situ nuclear magnetic resonance determination of paramagnetic susceptibilities of electrogenerated species, Anal. Chem. 65, 2093 (1993)

    Article  Google Scholar 

  14. D.W. Mincey, M.J. Popovich, P.J. Faustino, M.M. Hurst, J.A. Caruso: Monitoring of electrochemical reactions by nuclear magnetic resonance spectrometry, Anal. Chem. 62, 1197 (1990)

    Article  Google Scholar 

  15. V.G. Mairanovsky, L.Y. Yusefovich, T.M. Filippova: NMR electrolysis combined method (NMREL): Basic principles and some applications, J. Magn. Reson. 54, 19 (1983)

    Google Scholar 

  16. M.S. Morales-Ríos, P. Joseph-Nathan: NMR studies of indoles and their N-carboalkoxy derivatives, Magn. Reson. Chem. 25, 911 (1987)

    Article  Google Scholar 

  17. S. Klod, F. Ziegs, L. Dunsch: In situ NMR spectroelectrochemistry of higher sensitivity by large scale electrodes, Anal. Chem. 81, 10262 (2009)

    Article  Google Scholar 

  18. S. Klod, L. Dunsch: A combination of in situ ESR and in situ NMR spectroelectrochemistry for mechanistic studies of electrode reactions: The case of p-benzoquinone, Magn. Reson. Chem. 49, 725 (2011)

    Article  Google Scholar 

  19. S. Klod, K. Haubner, E. Jähne, L. Dunsch: Charge stabilization by dimer formation of an endcapped thiophene tetramer – An in situ NMR spectroelectrochemical study, Chem. Sci. 1, 743 (2010)

    Article  Google Scholar 

  20. X. Zhang, J.W. Zwanziger: Design and applications of an in situ electrochemical NMR cell, J. Magn. Reson. 208, 136–147 (2011)

    Article  Google Scholar 

  21. Z.-R. Ni, X.-H. Cui, S.-G. Sun, Z. Chen: Coupling liquid phase electrochemistry with nuclear magnetic resonance spectroscopy and its applications, Spectrosc. Spect. Anal. 31, 1 (2011)

    Google Scholar 

  22. L.L. Williams, R.D. Webster: Electrochemically controlled chemically reversible transformation of α-tocopherol (vitamin E) into its phenoxonium cation, J. Am. Chem. Soc. 126, 12441 (2004)

    Article  Google Scholar 

  23. Y.Y. Tong, A. Wieckowski, E. Oldfield: NMR of electrocatalysts, J. Phys. Chem. B 106, 2434 (2002)

    Article  Google Scholar 

  24. Y.Y. Tong, E. Oldfield, A. Wieckowski: Exploring electrochemical interfaces with solid-state NMR, Anal. Chem. 70, 518A (1998)

    Article  Google Scholar 

  25. C.P. Grey, N. Dupré: NMR studies of cathode materials for lithium-ion rechargeable batteries, Chem. Rev. 104, 4493 (2004)

    Article  Google Scholar 

  26. S. Tsushima, S. Hirai: Magnetic resonance imaging of water in operating polymer electrolyte membrane fuel cells, Fuel Cells 9, 506 (2009)

    Article  Google Scholar 

  27. W.P. Halperin: Quantum size effects in metal particles, Rev. Mod. Phys. 58, 533 (1986)

    Article  Google Scholar 

  28. C.P. Slichter: Probing phenomena at metal surfaces by NMR, Annu. Rev. Phys. Chem. 37, 25 (1986)

    Article  Google Scholar 

  29. J.J. van der Klink, H.B. Brom: NMR in metals, metal particles and metal cluster compounds, Prog. NMR Spectrosc. 36, 89 (2000)

    Article  Google Scholar 

  30. Y.Y. Tong, J.J. van der Klink: NMR investigations of heterogeneous and electrochemical catalysts. In: Catalysis and Electrocatalysis at Nanoparticle Surface, ed. by A. Wieckowski, E.R. Savinova, C.G. Vayenas (Marcel Dekker, New York 2003) p. 455

    Google Scholar 

  31. P.J. Slezak, A. Wieckowski: Interfacing surface electrochemistry with solid-state NMR. Characterization of surface CO on polycrystalline platinum, J. Magn. Res. A 102, 166 (1993)

    Article  Google Scholar 

  32. Y.Y. Tong, C. Rice, N. Godbout, A. Wieckowski, E. Oldfield: Correlation between the Knight shift of chemisorbed CO and the Fermi level local density of states at clean platinum catalyst surfaces, J. Am. Chem. Soc. 121, 2996–3003 (1999)

    Article  Google Scholar 

  33. B.M. Weckhuysen: Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales, Angew. Chem. Int. Ed. 48, 4910 (2009)

    Article  Google Scholar 

  34. H.T. Stokes, H.E. Rhodes, P.K. Wang, C.P. Slichter, J.H. Sinfelt: NMR of platinum catalysts. III. Microscopic variation of the knight shifts, Phys. Rev. B 26, 3575 (1982)

    Article  Google Scholar 

  35. W.D. Knight, F. Seitz, D. Turnbull: Electron paramagnetism and nuclear magnetic resonance in metals, Solid State Phys. 2, 93–136 (1956)

    Google Scholar 

  36. J. Korringa: Nuclear magnetic relaxation and resonnance line shift in metals, Physica. 16(7–8), 601–610 (1950)

    Article  MATH  Google Scholar 

  37. C.P. Slichter: Principles of Magnetic Resonance, 3rd edn. (Springer, Berlin, Heidelberg 1990)

    Book  Google Scholar 

  38. F. Tan, B. Du, A.L. Danberry, I.-S. Park, Y.-E. Sung, Y. Tong: A comparative in situ 195Pt electrochemical-NMR investigation of PtRu nanoparticles supported on diverse carbon nanomaterials, Faraday Disc. 140, 139–153 (2008)

    Article  Google Scholar 

  39. J.P. Bucher, J.J. van der Klink: Electronic properties of small supported Pt particles: NMR study of 195Pt hyperfine parameters, Phys. Rev. B 38, 11038 (1988)

    Article  Google Scholar 

  40. D.O. Atienza, T.C. Allison, Y.Y.J. Tong: Spatially resolved electronic alterations as seen by in situ 195Pt and 13CO NMR in Ru@Pt and Au@Pt core-shell nanoparticles, J. Phys. Chem. C 116, 26480–26486 (2012)

    Article  Google Scholar 

  41. B. Du, O. Zaluzhna, Y.Y.J. Tong: Electrocatalytic properties of Au@Pt nanoparticles: Effects of Pt shell packing density and Au core size, Phys. Chem. Chem. Phys. 13, 11568 (2011)

    Article  Google Scholar 

  42. I.S. Park, K.S. Lee, D.S. Jung, H.Y. Park, Y.-E. Sung: Electrocatalytic activity of carbon-supported Pt-Au nanoparticles for methanol electro-oxidation, Electrochimica Acta 52, 5599 (2007)

    Article  Google Scholar 

  43. B. Du, S.A. Rabb, C. Zangmeister, Y. Tong: A volcano curve: Optimizing methanol electrooxidation on Pt-decorated Ru nanoparticles, Phys. Chem. Phys. 11, 8231–8239 (2009)

    Article  Google Scholar 

  44. Y.Y. Tong, H.S. Kim, P.K. Babu, P. Waszczuk, A. Wieckowski, E. Oldfield: An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst, J. Am. Chem. Soc. 124, 468 (2002)

    Article  Google Scholar 

  45. P.K. Wang, J.P. Ansermet, S.L. Rudaz, Z. Wang, S. Shore, C.P. Slichter, J.H. Sinfelt: NMR studies of simple molecules on metal surfaces, Science 234, 35 (1986)

    Article  Google Scholar 

  46. Y.Y. Tong, C. Rice, A. Wieckowski, E. Oldfield: A detailed NMR-based model for CO on Pt catalysts in an electrochemical environment? Shifts, relaxation, back-bonding, and the Fermi-level local density of states, J. Am. Chem. Soc. 122, 1123 (2000)

    Article  Google Scholar 

  47. G. Blyholder: Molecular orbital view of chemisorbed carbon monoxide, J. Phys. Chem. 68, 2772 (1964)

    Article  Google Scholar 

  48. M.K. Oudenhuijzen, J.A. van Bokhoven, D.E. Ramaker, D.C. Koningsberger: Theoretical study on Pt particle adsorbate bonding: Influence of support ionicity and implications for catalysis, J. Phys. Chem. B 108, 20247 (2004)

    Article  Google Scholar 

  49. R. Dronskowski, P.E. Bloechl: Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations, J. Phys. Chem. 97, 8617 (1993)

    Article  Google Scholar 

  50. G. Papoian, J.K. Norskov, R. Hoffmann: A comparative theoretical study of the hydrogen, methyl, and ethyl chemisorption on the Pt(111) surface, J. Am. Chem. Soc. 122, 4129 (2000)

    Article  Google Scholar 

  51. W.V. Glassey, R. Hoffmann: A Comparative study of the p(2 × 2)-CO/M(111), M=Pt,Cu,Al chemisorption systems, J. Phys. Chem. B 105, 3245 (2001)

    Article  Google Scholar 

  52. W.V. Glassey, R. Hoffmann: A molecular orbital study of surface–adsorbate interactions during the oxidation of CO on the Pt(1 1 1) surface, Surface Sci. 475, 47 (2001)

    Article  Google Scholar 

  53. W.V. Glassey, G.A. Papoian, R. Hoffmann: Total energy partitioning within a one-electron formalism: A Hamilton population study of surface–CO interaction in the c (2 × 2)-CO/Ni (100) chemisorption system, J. Chem. Phys. 111, 893 (1999)

    Article  Google Scholar 

  54. G.A. Somorjai, C. Aliaga: Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts, Langmuir 26, 16190 (2010)

    Article  Google Scholar 

  55. G.A. Somorjai, A.M. Contreras, M. Montano, R.M. Rioux: Clusters, surfaces, catalysis, Proc. Nat. Acad. Sci.‘06 (2006) p. 10577

    Google Scholar 

  56. G.A. Somorjai: Introduction to Surface Chemistry and Catalysis (Wiley, New York 1994)

    Google Scholar 

  57. R. Hoffmann: A chemical and theoretical approach to bonding at surfaces, J. Phys. Condens. Matter 5, A1 (1993)

    Article  Google Scholar 

  58. R. Hoffmann: Interaction of orbitals through space and through bonds, Acc. Chem. Res. 4, 1 (1971)

    Article  Google Scholar 

  59. C.P. Grey, Y.J. Lee: Lithium MAS NMR studies of cathode materials for lithium-ion batteries, Solid State Sci. 5, 883 (2003)

    Article  Google Scholar 

  60. I.R.E. Gerald, J. Sanchez, C.S. Johnson, R.J. Klingler, J.W. Rathke: In situ nuclear magnetic resonance investigations of lithium ions in carbon electrode materials using a novel detector, J. Phys. Condens. Matter 13, 8269 (2001)

    Article  Google Scholar 

  61. I.R.E. Gerald, C.S. Johnson, J.W. Rathke, R.J. Klingler, G. Sandí, L.G. Scanlon: 7 Li NMR study of intercalated lithium in curved carbon lattices, J. Power Sources 89, 237 (2000)

    Article  Google Scholar 

  62. M. Letellier, F. Chevallier, M. Morcrette: In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle, Carbon 45, 1025 (2007)

    Article  Google Scholar 

  63. M. Letellier, F. Chevallier, F. Béguin: In situ 7Li NMR during lithium electrochemical insertion into graphite and a carbon/carbon composite, J. Phys. Chem. Solids 67, 1228 (2006)

    Article  Google Scholar 

  64. M. Letellier, F. Chevallier, F. Béguin, E. Frackowiak, J.-N. Rouzaud: The first in situ 7Li NMR study of the reversible lithium insertion mechanism in disorganised carbons, J. Phys. Chem. Solids 65, 245 (2004)

    Article  Google Scholar 

  65. F. Chevallier, M. Letellier, M. Morcrette, J.M. Tarascon, E. Frackowiak, J.N. Rouzaud, F. Beguin: In situ 7Li-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons, Electrochem. Solid-State Lett. 6, A225 (2003)

    Article  Google Scholar 

  66. J.W. Rathke, R.J. Klingler, R.E. Gerald, K.W. Kramarz, K. Woelk: Toroids in NMR spectroscopy, Prog. Nucl. Magn. Res. Spectrosc. 30, 209 (1997)

    Article  Google Scholar 

  67. N.M. Trease, L. Zhou, H.J. Chang, B.Y. Zhu, C.P. Grey: In situ NMR of lithium ion batteries: Bulk susceptibility effects and practical considerations, Solid State Nucl. Magn. Reson. 42, 62 (2012)

    Article  Google Scholar 

  68. R. Bhattacharyya, B. Key, H. Chen, A.S. Best, A.F. Hollenkamp, C.P. Grey: In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries, Nature Mater. 9, 504–510 (2010)

    Article  Google Scholar 

  69. B. Key, R. Bhattacharyya, M. Morcrette, V. Seznéc, J.-M. Tarascon, C.P. Grey: Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries, J. Am. Chem. Soc. 131, 9239 (2009)

    Article  Google Scholar 

  70. J.M. Tarascon, A.S. Gozdz, C. Schmutz, F. Shokoohi, P.C. Warren: Performance of Bellcore’s plastic rechargeable Li-ion batteries, Solid State Ionics 49, 86–88 (1996)

    Google Scholar 

  71. M. Letellier, F. Chevallier, C. Clinard, E. Frackowiak, J.-N. Rouzaud, F. Béguin, M. Morcrette, J.-M. Tarascon: The first in situ 7Li nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries, J. Chem. Phys. 118, 6038 (2003)

    Article  Google Scholar 

  72. S. Chandrashekar, N.M. Trease, H.J. Chang, L.-S. Du, C.P. Grey, A. Jerschow: 7Li MRI of Li batteries reveals location of microstructural lithium, Nature Mater. 11, 311 (2012)

    Article  Google Scholar 

  73. Z. Zhang, J. Martin, J. Wu, H. Wang, K. Promislow, B.J. Balcom: Magnetic resonance imaging of water content across the Nafion membrane in an operational PEM fuel cell, J. Magn. Reson. 193(2), 259–266 (2008)

    Article  Google Scholar 

  74. J.Y. Shim, S. Tsushima, S. Hirai: High resolution MRI investigation of transversal water content distributions in PEM under fuel cell operation MEA performance and component diagnostics I: In-situ diagnostics and imaging, ECS Trans. 25, 523 (2009)

    Article  Google Scholar 

  75. T. Ikeda, T. Koido, S. Tsushima, S. Hirai: MRI investigation of water transport mechanism in a membrane under elevated temperature condition with relative humidity and current density variation A2.1:Diagnostics, ECS Trans. 16, 1035 (2008)

    Article  Google Scholar 

  76. S. Tsushima, S. Hirai, K. Kitamura, M. Yamashita, S. Takase: MRI application for clarifying fuel cell performance with variation of polymer electrolyte membranes: Comparison of water content of a hydrocarbon membrane and a perfluorinated membrane, Appl. Magn. Reson. 32, 233 (2007)

    Article  Google Scholar 

  77. S. Tsushima, T. Nanjo, K. Nishida, S. Hirai: Investigation of the lateral water distribution in a proton exchange membrane in fuel cell operation by 3D-MRI membranes, ECS Trans. 1(6), 199–205 (2006)

    Article  Google Scholar 

  78. S. Tsushima, K. Teranishi, K. Nishida, S. Hirai: Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply, Magn. Reson. Imaging 23, 255 (2005)

    Article  Google Scholar 

  79. S. Tsushima, K. Teranishi, S. Hirai: Magnetic resonance imaging of the water distribution within a polymer electrolyte membrane in fuel cells, Electrochem. Solid-State Lett. 7, A269 (2004)

    Article  Google Scholar 

  80. M. Wang, K.W. Feindel, S.H. Bergens, R.E. Wasylishen: In situ quantification of the in-plane water content in the Nafion membrane of an operating polymer-electrolyte membrane fuel cell using 1H micro-magnetic resonance imaging experiments, J. Power Sources 195, 7316 (2010)

    Article  Google Scholar 

  81. K.W. Feindel, S.H. Bergens, R.E. Wasylishen: The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy, Phys. Chem. Phys. 9, 1850–1857 (2007)

    Article  Google Scholar 

  82. K.W. Feindel, S.H. Bergens, R.E. Wasylishen: Insights into the distribution of water in a self-humidifying H2/O2 proton-exchange membrane fuel cell using 1H NMR microscopy, J. Am. Chem. Soc. 128, 14192 (2006)

    Article  Google Scholar 

  83. K.W. Feindel, S.H. Bergens, R.E. Wasylishen: The use of 1H NMR microscopy to study proton exchange membrane fuel cells, Chem. Phys. Chem. 7, 67–75 (2006)

    Google Scholar 

  84. K.W. Feindel, L.P.A. LaRocque, D. Starke, S.H. Bergens, R.E. Wasylishen: In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using 1H NMR microscopy, J. Am. Chem. Soc. 126, 11436 (2004)

    Article  Google Scholar 

  85. Z. Zhang, A.E. Marble, B. MacMillan, K. Promislow, J. Martin, H. Wang, B.J. Balcom: Spatial and temporal mapping of water content across Nafion membranes under wetting and drying conditions, J. Magn. Res. 194, 245 (2008)

    Article  Google Scholar 

  86. K.R. Minard, V.V. Viswanathan, P.D. Majors, L.-Q. Wang, P.C. Rieke: Magnetic resonance imaging (MRI) of PEM dehydration and gas manifold flooding during continuous fuel cell operation, J. Power Sources 161, 856 (2006)

    Article  Google Scholar 

  87. Z.W. Dunbar, R.I. Masel: Magnetic resonance imaging investigation of water accumulation and transport in graphite flow fields in a polymer electrolyte membrane fuel cell: Do defects control transport?, J. Power Sources 182, 76 (2008)

    Article  Google Scholar 

  88. Z. Dunbar, R.I. Masel: Quantitative MRI study of water distribution during operation of a PEM fuel cell using Teflon flow field, J. Power Sources 171, 678 (2007)

    Article  Google Scholar 

  89. Z. Zhang, B.J. Balcom: Magnetic resonance imaging. In: Handbook of PEM Fuel Cell Durability, ed. by H. Wang, X.-Z. Yuan, H. Li (CRC, Boca Raton 2012) p. 229

    Google Scholar 

  90. T.A. Zawodzinski, M. Neeman, L.O. Sillerud, S. Gottesfeld: Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes, J. Phys. Chem. 95, 6040 (1991)

    Article  Google Scholar 

  91. F. Poli, J.S. Kshetrimayum, L. Monconduit, M. Letellier: New cell design for in-situ NMR studies of lithium-ion batteries, Electrochem. Commun. 13, 1293 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tong, Y.J. (2017). Electrochemical Energy Generation and Storage as Seen by In-Situ NMR. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics