Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 442 Accesses

Abstract

In response to the large-scale variation in geomagnetic field, the trapped electrons experience the adiabatic transport process (conserving the three adiabatic invariants but changing the pitch-angle, energy, and drift-shell \(L\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert JM (2003) Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. J Geophys Res 108(A8):1249. doi:10.1029/2002JA009792

    Article  Google Scholar 

  • Albert JM, Meredith NP, Horne RB (2009) Three-dimensional diffusion simulation of outer radiation belt electrons during the october 9, 1990, magnetic storm. J Geophys Res 114(A09):214. doi:10.1029/2009JA014336

    Google Scholar 

  • Bortnik J, Thorne RM, O’Brien TP, Green JC, Strangeway RJ, Shprits YY, Baker DN (2006) Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event. J Geophys Res 111(A12):216. doi:10.1029/2006JA011802

    Google Scholar 

  • Brautigam DH, Albert JM (2000) Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm. J Geophys Res 105:291–310. doi:10.1029/1999JA900344

    Article  Google Scholar 

  • Carpenter DL, Anderson RR (1992) An ISEE/whistler model of equatorial electron density in the magnetosphere. J Geophys Res 97:1097–1108

    Article  Google Scholar 

  • Desorgher L, Bühler P, Zehnder A, Flückiger EO (2000) Simulation of the outer radiation belt electron flux decrease during the March 26, 1995, magnetic storm. J Geophys Res 105:21211–21224. doi:10.1029/2000JA900060

    Article  Google Scholar 

  • Dessler AJ, Karplus R (1961) Some effects of diamagnetic ring currents on Van Allen radiation. J Geophys Res 66:2289–2295. doi:10.1029/JZ066i008p02289

    Article  Google Scholar 

  • Friedel RHW, Reeves GD, Obara T (2002) Relativistic electron dynamics in the inner magnetosphere—a review. J Atmos Sol-Terr Phys 64:265–282. doi:10.1016/S1364-6826(01)00088-8

    Article  Google Scholar 

  • Ganushkina NY, Pulkkinen TI, Kubyshkina MV, Singer HJ, Russell CT (2002) Modeling the ring current magnetic field during storms. J Geophys Res 107:1092. doi:10.1029/2001JA900101

    Article  Google Scholar 

  • Glauert SA, Horne RB (2005) Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J Geophys Res 110(A04):206. doi:10.1029/2004JA010851

    Google Scholar 

  • Green JC, Onsager TG, O’Brien TP, Baker DN (2004) Testing loss mechanisms capable of rapidly depleting relativistic electron flux in the Earth’s outer radiation belt. J Geophys Res 109(A12):211. doi:10.1029/2004JA010579

    Google Scholar 

  • Hilmer RV, Voigt G (1995) A magnetospheric magnetic field model with flexible current systems driven by independent physical parameters. J Geophys Res 100:5613–5626. doi:10.1029/94JA03139

    Article  Google Scholar 

  • Horne RB, Meredith NP, Thorne RM, Heynderickx D, Iles RHA, Anderson RR (2003) Evolution of energetic electron pitch angle distributions during storm time electron acceleration to megaelectronvolt energies. J Geophys Res 108:1016. doi:10.1029/2001JA009165

    Article  Google Scholar 

  • Kim H-J, Chan AA (1997) Fully adiabatic changes in storm time relativistic electron fluxes. J Geophys Res 102:22107–22116. doi:10.1029/97JA01814

    Article  Google Scholar 

  • Kim KC, Lee D, Kim H, Lee ES, Choi CR (2010) Numerical estimates of drift loss and dst effect for outer radiation belt relativistic electrons with arbitrary pitch angle. J Geophys Res 115(A03):208. doi:10.1029/2009JA014523

    Google Scholar 

  • Li W, Shprits YY, Thorne RM (2007) Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms. J Geophys Res 112(A11):A10, 220. doi: 10.1029/2007JA012368

    Google Scholar 

  • McIlwain CE (1966) Ring current effects on trapped particles. J Geophys Res 71:3623–3628

    Article  Google Scholar 

  • Millan RM, Thorne RM (2007) Review of radiation belt relativistic electron losses. J Atmos Sol-Terr Phys 69:362–377. doi:10.1016/j.jastp.2006.06.019

    Article  Google Scholar 

  • Reeves GD, McAdams KL, Friedel RHW, O’Brien TP (2003) Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys Res Lett 30:1529. doi:10.1029/2002GL016513

    Google Scholar 

  • Schulz M, Lanzerotti LJ (1974) Particle diffusion in the radiation belts. Physics and chemistry in space, vol 7. Springer, New York

    Google Scholar 

  • Shprits YY, Thorne RM, Friedel R, Reeves GD, Fennell J, Baker DN, Kanekal SG (2006) Outward radial diffusion driven by losses at magnetopause. J Geophys Res 111(A11):214. doi:10.1029/2006JA011657

    Google Scholar 

  • Shprits YY, Subbotin D, Ni B (2009) Evolution of electron fluxes in the outer radiation belt computed with the VERB code. J Geophys Res 114(A11):209. doi:10.1029/2008JA013784

    Google Scholar 

  • Shue J, Song P, Russell CT, Steinberg JT, Chao JK, Zastenker G, Vaisberg OL, Kokubun S, Singer HJ, Detman TR, Kawano H (1998) Magnetopause location under extreme solar wind conditions. J Geophys Res 103:17691–17700. doi:10.1029/98JA01103

    Article  Google Scholar 

  • Su Z, Zheng H, Wang S (2009a) Dynamic evolution of energetic outer zone electrons due to whistler-mode chorus based on a realistic density model. J Geophys Res 114(A07):201. doi:10.1029/2008JA014013

    Google Scholar 

  • Su Z, Zheng H, Wang S (2009b) Evolution of electron pitch angle distribution due to interactions with whistler-mode chorus following substorm injections. J Geophys Res 114(A08):202. doi:10.1029/2009JA014269

    Google Scholar 

  • Su Z, Zheng H, Xiong M (2009c) Dynamic evolution of outer radiation belt electrons due to whistler-mode chorus. Chin Phys Lett 26(039):401

    Google Scholar 

  • Su Z, Xiao F, Zheng H, Wang S (2010a) STEERB: a three-dimensional code for storm-time evolution of electron radiation belt. J Geophys Res 115(A09):208. doi:10.1029/2009JA015210

    Google Scholar 

  • Su Z, Xiao F, Zheng H, Wang S (2010b) Combined radial diffusion and adiabatic transport of radiation belt electrons with arbitrary pitch-angles. J Geophys Res 115(A10):249. doi:10.1029/2010JA015903

    Google Scholar 

  • Su Z, Zheng H, Wang S (2010c) A parametric study on the diffuse auroral precipitation by resonant interaction with whistler-mode chorus. J Geophys Res 115(A05):219. doi:10.1029/2009JA014759

    Google Scholar 

  • Su Z, Zheng H, Wang S (2010d) Three dimensional simulations of energetic outer zone electron dynamics due to wave-particle interaction and azimuthal advection. J Geophys Res 115(A06):203. doi:10.1029/2009JA014980

    Google Scholar 

  • Su Z, Xiao F, Zheng H, Wang S (2011a) CRRES observation and STEERB simulation of the 9 (October 1990) electron radiation belt dropout event. Geophys Res Lett 38(L06):106. doi:10.1029/2011GL046873

    Google Scholar 

  • Su Z, Xiao F, Zheng H, Wang S (2011b) Radiation belt electron dynamics driven by adiabatic transport, radial diffusion, and wave-particle interactions. J Geophys Res 116(A04):205. doi:10.1029/2010JA016228

    Google Scholar 

  • Su Z, Zheng H, Chen L, Wang S (2011c) Numerical simulations of storm-time outer radiation belt dynamics by wave-particle interactions including cross diffusion. J Atmos Sol-Terr Phys 73:95–105. doi:10.1016/j.jastp.2009.08.002

    Article  Google Scholar 

  • Summers D, Thorne RM (2003) Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J Geophys Res 108:1143. doi:10.1029/2002JA009489

    Article  Google Scholar 

  • Summers D, Ni B, Meredith NP (2007) Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory J Geophys Res 112(A04):206. doi:10.1029/2006JA011801

    Google Scholar 

  • Thorne RM, O’Brien TP, Shprits YY, Summers D, Horne RB (2005) Timescale for MeV electron microburst loss during geomagnetic storms. J Geophys Res 110(A09):202. doi:10.1029/2004JA010882

    Google Scholar 

  • Thorne RM, Shprits YY, Meredith NP, Horne RB, Li W, Lyons LR (2007) Refilling of the slot region between the inner and outer electron radiation belts during geomagnetic storms. J Geophys Res 112(A06):203. doi:10.1029/2006JA012176

    Google Scholar 

  • Tsyganenko NA (1995) Modeling the earth’s magnetospheric magnetic field confined within a realistic magnetopause. J Geophys Res 100:5599–5612

    Article  Google Scholar 

  • Xiao F, Su Z, Zheng H, Wang S (2009) Modeling of outer radiation belt electrons by multidimensional diffusion process. J Geophys Res 114(A03):201. doi:10.1029/2008JA013580

    Google Scholar 

  • Xiao F, Su Z, Zheng H, Wang S (2010) Three-dimensional simulations of outer radiation belt electron dynamics including cross diffusion terms. J Geophys Res 115(A05):216. doi:10.1029/2009JA014541

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenpeng Su .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Su, Z. (2015). Adiabatic Transport. In: A Global Kinetic Model for Electron Radiation Belt Formation and Evolution. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46651-3_4

Download citation

Publish with us

Policies and ethics