A High-Precision and Flexible Array Antenna Signal Simulator Based on VFD Filter

  • Hai ShaEmail author
  • Han Mu
  • Hui Zhang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 340)


An array antenna signal simulator based on VFD filter is presented. To offer the design structure and make delay control more flexible, the VFD filter, which is suitable for changing the delay time, is used to control the delay of different channels. To improve the group delay precision of VFD filter, a design method in group delay minimax sense is proposed, instead of the variable frequency response criterion. The experimental results indicate that, in the DOA simulation, the elevation simulation accuracy of the new designed array simulator is better than 2°, the azimuth simulation accuracy is better than 1°.


Keywords are separated by half-angle origin 


  1. 1.
    Diego C, Maria CV, Toso G, Piero A, Alexander S, Renato C (2013) A hybrid deterministic/metaheuristic synthesis technique for non-uniformly spaced linear printed antenna arrays. Prog Electromagn Res 142:107–121Google Scholar
  2. 2.
    Jose MI, Jose MF, Manuel S (2013) Low loss power distribution network in stripline technology for planar array antennas. Prog Electromagn Res 143:369–384CrossRefGoogle Scholar
  3. 3.
    Yong LR, Jian W, Da CH, Ning Z (2013) Horn-based circular polarized antenna array with a compact feeding for Ka-band monopulse antenna. Prog Electromagn Res 142:291–308CrossRefGoogle Scholar
  4. 4.
    Liu JZ, Zhao ZQ, Yang K, Liu QH (2014) A hybrid optimization for pattern synthesis of large antenna arrays. Prog Electromagn Res 145:81–91CrossRefGoogle Scholar
  5. 5.
    Qiu L, Wang SS, Qi HY, Zhao F, Chai SL, Mao JJ (2013) A shaped-beam series-fed aperture-coupled stacked patch array antenna. Prog Electromagn Res 141:291–307CrossRefGoogle Scholar
  6. 6.
    Chun TF, Zamora A, Lei BJ et al (2011) An interleaved, interelement phase-detecting/phase-shifting retrodirective antenna array for interference reduction. IEEE Antennas Wirel Propag Lett 10:919–922CrossRefGoogle Scholar
  7. 7.
    Vendik OG, Kozlov DS (2012) Phased antenna array with a sidelobe cancellation for suppression of jamming. IEEE Antennas Wirel Propag Lett 11:648–650CrossRefGoogle Scholar
  8. 8.
    Dana H, Denice J, Bruce R, Gary G (2000) Virtual flight testing—a versatile approach to evaluate future GPS anti-jam technologies. In: Proceedings of the national technical meeting of the Institute of Navigation, pp 670–678Google Scholar
  9. 9.
    Test solutions for: interference, anti-jam, GPS/inertial, interference mitigation.
  10. 10.
  11. 11.
    David S, De L (2007) Navigation accuracy and interference rejection for GPS adoptive antenna arrays, Stanford UniversityGoogle Scholar
  12. 12.
    Han QW, Nie JW, Huo SM, Wang FX (2014) A high-precision and low-cost planar array signal simulator based on cable delays. IEEE Antennas Wireless Propag Lett 13:353Google Scholar
  13. 13.
    Laakso TI, Valimaki V, Karjalainen M (1996) Splitting the unit delay: tools for fractional delay filter design. IEEE Signal Process Mag 13:30–60CrossRefGoogle Scholar
  14. 14.
    Yu YJ, Xu WJ (2013) Investigation on the optimization criteria for the design of variable fractional delay filters. IEEE Trans Circuits Syst 60:522–526Google Scholar
  15. 15.
    Soo JJ, Pei SC, Cai CH (2008) Minimax design of variable fractional-delay FIR digital filters by iterative weighted least-squares approach. IEEE Signal Process Lett 15:693–696CrossRefGoogle Scholar
  16. 16.
    Deng TB, Chivapreecha S, Dejhan K (2012) Bi-minimax design of even-order variable fractional-delay FIR digital filter. IEEE Trans Circuits Syst 59:1766–1774CrossRefMathSciNetGoogle Scholar
  17. 17.
    Teng CC, Li SL (2011) Efficient design and implementation of variable fractional delay filters using differentiators. IEEE Trans Circuits Syst I Regul Pap 58:1311–1322CrossRefMathSciNetGoogle Scholar
  18. 18.
    Teng CC, Li SL (2012) Designs of fixed-fractional-delay filters using fractional-derivative constraints. IEEE Trans Circuits Syst II Express Briefs 59:683–687CrossRefGoogle Scholar
  19. 19.
    Farrow CW (1988) A continuously variable digital delay element. In: IEEE international symposium on circuits and systemsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Beijing Satellite Navigation CenterBeijingChina
  2. 2.WulumuqiChina

Personalised recommendations