A New Method Based on QSE Processing for Interferometric GNSS-R Ocean Altimetry

  • Chenghui YuEmail author
  • Chundi Xiu
  • Weiqiang Li
  • Dongkai Yang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 340)


Considering that in conventional GNSS-R (Global Navigation Satellite System-Reflection) altimetry, the reflected signals are cross-correlated with a locally generated clean replica of the transmitted signal, interferometric processing consists of the measurement of the complex cross-correlation between the direct and reflected signals. It allows the exploitation of P(Y) code and other civil signals to maximize the height estimation precision. This paper presents a new processing method called QSE (Quadrature Staggered Extracting) which utilizes P(Y) code to explore a further improvement of the altimetry precision. The assessment of the QSE processing procedure illustrates GPS L1 band as an example. In these conditions, this paper analysis the up-looking SNRs obtained by using QSE processing and traditional coherent demodulation respectively. The analysis of the altimetry precision shows that the results obtained by adopting QSE processing improve by a factor about 1.15 as compared to the results obtained by using coherent demodulation.


GNSS-R Quadrature staggered extracting Interferometric processing Ocean altimetry 



This study is supported by National High Technology Research and Development Program 863 of China (NO. 2013AA122402, NO. 2011AA120501).


  1. 1.
    Martín-Neira M (1993) A passive reflectometry and interferometry system (PARIS)—application to ocean altimetry. ESA J 17(4):331–355Google Scholar
  2. 2.
    Li W, Yang D, D’Addio S, Martín-Neira M (2014) Partial interferometric processing of reflected GNSS signals for ocean altimetry. IEEE Geosci Remote Sens Lett 11(9):1509–1513Google Scholar
  3. 3.
    H. Li, Q. Xia, C. Yin et al (2013) The current status of research on GNSS-R remote sensing technology in China and future development. J Radars 2(4):389–399Google Scholar
  4. 4.
    Martín-Neira M, D’Addio S, Buck C, Floury N, Prieto-Cerdeira R (2011) The PARIS ocean altimeter in-orbit demonstrator. IEEE Trans Geosci Remote Sens 49(6):2209–2237Google Scholar
  5. 5.
    Martín F, Camps A, Park H, D’Addio S, Martín-Neira M, Pascual D (2014) Cross-correlation waveform analysis for conventional and interferometric GNSS-R approaches. IEEE J Sel Top Appl Earth Observ Remote Sens 7(5):1560–1572Google Scholar
  6. 6.
    Park H, Valencia E, Camps A, Rius A (2013) Delay tracking in spaceborne GNSS-R ocean altimetry. IEEE Geosci Remote Sens Lett 10(1):57–61CrossRefGoogle Scholar
  7. 7.
    Alonso Arroyo A, Camps A, Aguasca A (2014) Dual-polarization GNSS-R interference pattern technique for soil moisture mapping. IEEE J Sel Top Appl Earth Observ Remote Sens 4(8):1533–1542Google Scholar
  8. 8.
    Mironov VL, Muzalevskiy KV (2012) The new algorithm for retrieval of soil moisture and surface roughness from GNSS reflectometry. In: IEEE international geoscience and remote sensing symposium (IGASS), Munich, Germany, pp 7530–7532, 22–27 JulyGoogle Scholar
  9. 9.
    Carreno-Luengo H, Camps A, Ramos-Perez I, Rius A (2014) Experimental evaluation of GNSS-reflectometry altimetric precision using the P(Y) and C/A signals. IEEE J Sel Top Appl Earth Observ Remote Sens 7(5):1493–1500Google Scholar
  10. 10.
    Cardellach E, Rius A, Martín-Neira M et al (2013) Consolidating the precision of interferometric GNSS-R ocean altimetry using airborne experimental data. IEEE Trans Geosci Remote Sens. doi: 10.1109/TGRS2286257
  11. 11.
    Valencia E, Camps A, Park H, Rodriguez-Alvarez N, Ramos-Perez I (2012) Impact of the observation geometry on the GNSS-R direct descriptors used for sea state monitoring. In: IEEE international geoscience and remote sensing symposium (IGASS), Munich, Germany, pp 2825–2828, 22–27 JulyGoogle Scholar
  12. 12.
    Park H, Pascual D, Camps A, Martín F, Alonso-Arroyo A, Carreno-Luengo H (2014) Analysis of spaceborne GNSS-R delay-doppler tracking. IEEE J Sel Top Appl Earth Observ Remote Sens 7(5):1481–1492Google Scholar
  13. 13.
    Yang D, Zhang Q (2012) GNSS reflected signal processing: fundamentals and applications. Publish House of Electronics Industry, BeijingGoogle Scholar
  14. 14.
    D’Addio S, Martín-Neira M, di Bisceglie M (2014) GNSS-R altimeter based on doppler multi-looking. IEEE J Sel Top Appl Earth Observ Remote Sens 7(5):1453–1460Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chenghui Yu
    • 1
    Email author
  • Chundi Xiu
    • 1
  • Weiqiang Li
    • 1
  • Dongkai Yang
    • 1
  1. 1.Electronic and Information Engineering InstituteBeihang UniversityBeijingChina

Personalised recommendations