Advertisement

A New Method Based on QSE Processing for Interferometric GNSS-R Ocean Altimetry

  • Chenghui YuEmail author
  • Chundi Xiu
  • Weiqiang Li
  • Dongkai Yang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 340)

Abstract

Considering that in conventional GNSS-R (Global Navigation Satellite System-Reflection) altimetry, the reflected signals are cross-correlated with a locally generated clean replica of the transmitted signal, interferometric processing consists of the measurement of the complex cross-correlation between the direct and reflected signals. It allows the exploitation of P(Y) code and other civil signals to maximize the height estimation precision. This paper presents a new processing method called QSE (Quadrature Staggered Extracting) which utilizes P(Y) code to explore a further improvement of the altimetry precision. The assessment of the QSE processing procedure illustrates GPS L1 band as an example. In these conditions, this paper analysis the up-looking SNRs obtained by using QSE processing and traditional coherent demodulation respectively. The analysis of the altimetry precision shows that the results obtained by adopting QSE processing improve by a factor about 1.15 as compared to the results obtained by using coherent demodulation.

Keywords

GNSS-R Quadrature staggered extracting Interferometric processing Ocean altimetry 

Notes

Acknowledgments

This study is supported by National High Technology Research and Development Program 863 of China (NO. 2013AA122402, NO. 2011AA120501).

References

  1. 1.
    Martín-Neira M (1993) A passive reflectometry and interferometry system (PARIS)—application to ocean altimetry. ESA J 17(4):331–355Google Scholar
  2. 2.
    Li W, Yang D, D’Addio S, Martín-Neira M (2014) Partial interferometric processing of reflected GNSS signals for ocean altimetry. IEEE Geosci Remote Sens Lett 11(9):1509–1513Google Scholar
  3. 3.
    H. Li, Q. Xia, C. Yin et al (2013) The current status of research on GNSS-R remote sensing technology in China and future development. J Radars 2(4):389–399Google Scholar
  4. 4.
    Martín-Neira M, D’Addio S, Buck C, Floury N, Prieto-Cerdeira R (2011) The PARIS ocean altimeter in-orbit demonstrator. IEEE Trans Geosci Remote Sens 49(6):2209–2237Google Scholar
  5. 5.
    Martín F, Camps A, Park H, D’Addio S, Martín-Neira M, Pascual D (2014) Cross-correlation waveform analysis for conventional and interferometric GNSS-R approaches. IEEE J Sel Top Appl Earth Observ Remote Sens 7(5):1560–1572Google Scholar
  6. 6.
    Park H, Valencia E, Camps A, Rius A (2013) Delay tracking in spaceborne GNSS-R ocean altimetry. IEEE Geosci Remote Sens Lett 10(1):57–61CrossRefGoogle Scholar
  7. 7.
    Alonso Arroyo A, Camps A, Aguasca A (2014) Dual-polarization GNSS-R interference pattern technique for soil moisture mapping. IEEE J Sel Top Appl Earth Observ Remote Sens 4(8):1533–1542Google Scholar
  8. 8.
    Mironov VL, Muzalevskiy KV (2012) The new algorithm for retrieval of soil moisture and surface roughness from GNSS reflectometry. In: IEEE international geoscience and remote sensing symposium (IGASS), Munich, Germany, pp 7530–7532, 22–27 JulyGoogle Scholar
  9. 9.
    Carreno-Luengo H, Camps A, Ramos-Perez I, Rius A (2014) Experimental evaluation of GNSS-reflectometry altimetric precision using the P(Y) and C/A signals. IEEE J Sel Top Appl Earth Observ Remote Sens 7(5):1493–1500Google Scholar
  10. 10.
    Cardellach E, Rius A, Martín-Neira M et al (2013) Consolidating the precision of interferometric GNSS-R ocean altimetry using airborne experimental data. IEEE Trans Geosci Remote Sens. doi: 10.1109/TGRS2286257
  11. 11.
    Valencia E, Camps A, Park H, Rodriguez-Alvarez N, Ramos-Perez I (2012) Impact of the observation geometry on the GNSS-R direct descriptors used for sea state monitoring. In: IEEE international geoscience and remote sensing symposium (IGASS), Munich, Germany, pp 2825–2828, 22–27 JulyGoogle Scholar
  12. 12.
    Park H, Pascual D, Camps A, Martín F, Alonso-Arroyo A, Carreno-Luengo H (2014) Analysis of spaceborne GNSS-R delay-doppler tracking. IEEE J Sel Top Appl Earth Observ Remote Sens 7(5):1481–1492Google Scholar
  13. 13.
    Yang D, Zhang Q (2012) GNSS reflected signal processing: fundamentals and applications. Publish House of Electronics Industry, BeijingGoogle Scholar
  14. 14.
    D’Addio S, Martín-Neira M, di Bisceglie M (2014) GNSS-R altimeter based on doppler multi-looking. IEEE J Sel Top Appl Earth Observ Remote Sens 7(5):1453–1460Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chenghui Yu
    • 1
    Email author
  • Chundi Xiu
    • 1
  • Weiqiang Li
    • 1
  • Dongkai Yang
    • 1
  1. 1.Electronic and Information Engineering InstituteBeihang UniversityBeijingChina

Personalised recommendations