Skip to main content

Enhanced RTK Integer Ambiguity Resolution with BeiDou Triple-Frequency Observations

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 342))

Abstract

With the availability of BeiDou Navigation Satellite System (BDS) triple-frequency observations, more strategies can be carried out to improve integer ambiguity resolution (IAR) performance for both short and long baseline RTK. In this paper, we first present the intrinsic natures of IAR for short and long baseline RTK. The double differenced mathematical models for short and long baseline are specified first. From the model perspective, the IAR performances of dual-frequency and triple-frequency are analyzed and compared. To improve the AR performance using triple-frequency observations, the integer least-squares (ILS) success-rate can be increased by first partial fixing the Extra Wide-lane (B2&B3) and then the Wide-lane (B1&B2, B1&B3) integer ambiguities in a geometry-based model because of their relatively long wavelengths. For short baselines, the IAR at each carrier can be resolved conditioned on the resolved WL integer ambiguities. For long baselines, two ionosphere-free combinations (B1&B2, B1&B3) can be formulated, and only the integer ambiguity vector on each carrier needs to be fixed with more redundant observations. It turns out that with triple-frequency observations, the performances of both short and long baseline RTK can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. BeiDou navigation satellite system signal in space interface control document, open service signal Version 2.0, 2013

    Google Scholar 

  2. Bernese GPS Software Version 5.0 (2007)

    Google Scholar 

  3. Chang XW, Yang X, Zhou T et al (2005) MLAMBDA: A modified LAMBDA method for integer least-squares estimation. J Geodesy 79:552–565

    Article  MATH  Google Scholar 

  4. Feng Y (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. J Geodesy 82:847–862

    Article  Google Scholar 

  5. Forsell B, Martin-Neira M, Harris R (1997) Carrier phase ambiguity resolution in GNSS-2. In: Proceedings ION GPS-97:1727–1736

    Google Scholar 

  6. Frei E, Beutler G (1990) Rapid static positioning based on the fast ambiguity resolution approach FARA: theory and first results. Manuscripta Geodaetica 15:325–356

    Google Scholar 

  7. Han S (1997) Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning. J Geodesy 71:351–361

    Article  MATH  Google Scholar 

  8. Hassibi A, Boyd S (1998) Integer parameter estimation in linear models with applications to GPS. IEEE Trans Signal Process 46(11):2938–2952

    Article  MathSciNet  Google Scholar 

  9. Hatch R (1983) The synergism of GPS code and carrier measurements. In: International geodetic symposium on satellite Doppler positioning, vol 2, pp 1213–1231

    Google Scholar 

  10. Hatch R, Jung J, Enge P, Pervan B (2000) Civilian GPS: the benefit of three frequencies. GPS Solut 3(4):1–9

    Article  Google Scholar 

  11. Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice, 5th revised edn

    Google Scholar 

  12. Jung J, Enge P, Pervan B (2000) Optimization of cascade integer resolution with three civil GPS frequencies. Proceedings of ION-GPS 2000. Salt Lake City, UT, USA, pp 2191–2200

    Google Scholar 

  13. Li B, Feng Y, Shen Y (2010) Three carrier ambiguity resolution: distance-independent performance demonstrated using semi-generated triple frequency GPS signals. GPS Solutions 14:177–184

    Article  Google Scholar 

  14. Li T, Wang J (2012) Some remarks on GNSS integer ambiguity validation methods. Surv Rev 44:230–238

    Article  Google Scholar 

  15. Li T (2013) Integer ambiguity estimation and validation for precise GNSS positioning. Ph.D. dissertation

    Google Scholar 

  16. Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17:211–222

    Article  Google Scholar 

  17. Tang W, Deng C, Shi C, Liu J (2013) Triple-frequency carrier ambiguity resolution for BeiDou navigation satellite system. GPS Solut 18(3):335–344

    Article  Google Scholar 

  18. Teunissen P (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geodesy 70:65–82

    Article  Google Scholar 

  19. Teunissen P (1999) An optimality property of the integer least-squares estimator. J Geodesy 76:587–593

    Article  Google Scholar 

  20. Teunissen P, Joosten P, Tiberius C (2002) A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution. In: Proceedings ION GPS 2002, Portland, OR, 24–27 Sept 2002

    Google Scholar 

  21. Teunissen P, Verhagen S (2009) The GNSS ambiguity ratio-test revisited: a better way of using it. Surv Rev 41:138–151

    Article  Google Scholar 

  22. Verhagen S (2005) The GNSS integer ambiguities: estimation and validation. Ph.D. dissertation

    Google Scholar 

  23. Vollath U, Birnbach S, Landau H (1998) Analysis of three-carrier ambiguity resolution (TCAR) technique for precise relative positioning in GNSS-2. In: Proceedings ION GPS-98, pp 417–426

    Google Scholar 

  24. Wang J, Stewart MP, Tsakiri M (1998) A discrimination test procedure for ambiguity resolution on-the-fly. J Geodesy 72:644–653

    Article  MATH  Google Scholar 

  25. Yang YX, Li JL, Xu JY, Tang J, Guo HR, He HB (2011) Contribution of the compass satellite navigation system to global PNT users. Chin Sci Bull 56:2813–2819

    Article  Google Scholar 

  26. Zhao QL, Dai ZQ, Hu ZG, Sun BZ, Shi C, Liu JN (2014) Three-carrier ambiguity resolution using the modified TCAR method. GPS Solut. doi:10.1007/s10291-014-0421-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, T., Chen, K., Wang, J. (2015). Enhanced RTK Integer Ambiguity Resolution with BeiDou Triple-Frequency Observations. In: Sun, J., Liu, J., Fan, S., Lu, X. (eds) China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III. Lecture Notes in Electrical Engineering, vol 342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46632-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46632-2_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46631-5

  • Online ISBN: 978-3-662-46632-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics