Skip to main content

Abstract

The realization that nature is a continuous optimization process founded a new engineering discipline. Beginning in the 1960s, various schools began to study and to reproduce bionic processes to improve previous optimization solutions. One of the most well-known examples is the winglet, an extension to the wings of aircrafts to stabilize the flow around the end of the wing. Another application is the sandwich structures of tailored blanks, where a sheet of material is subdivided into different layers. Only the outer ones, which are most important to the stiffness, are made of heavy and expensive metals. The filler, which only needs to keep the metal sheets separated by a certain distance, is made from less expensive and light-weight material. These blanks, especially honeycombs, are extremely stiff structures composed of minimal amounts of material. Unfortunately, their properties are very non-isotropic, so their use as load-carrying materials must be done with care and understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 94.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Au, S. K., & Beck, J. L. (1999). A new adaptive importance sampling scheme for reliability calculations. Structural Safety, 21, 135–158.

    Article  Google Scholar 

  • Bendsoe, M., & Sigmund, O. (2003). Topology optimization: Theory, methods and applications. Berlin: Springer.

    Google Scholar 

  • Bourinet, J.-M., Deheeger, F., & Lemaire, M. (2011). Assessing small failure probabilities by combined subset simulation and Support Vector Machines. Structural Safety, 33, 343–353.

    Article  Google Scholar 

  • Chelouah, R., & Siarry, P. (2000). A continuous genetic algorithm designed for the global optimization of multimodal functions. Journal of Heuristics, 6, 191–213.

    Article  MATH  Google Scholar 

  • Das, P. K., & Zheng, Y. (2000). Cumulative formation of response surface and its use in reliability analysis. Probabilistic Engineering Mechanics, 15, 309–315.

    Article  Google Scholar 

  • Doltsinis, I. S. (2012). Stochastic methods in engineering. Southampton: WIT Press.

    MATH  Google Scholar 

  • Dorigo, M., de Oca, M. A. M., & Engelbrecht, A. (2008). Particle swarm optimization. Scholarpedia, 3, 1486.

    Article  Google Scholar 

  • Dorigo, M., & StĂĽtzle, T. (2004). Ant colony optimization. Cambridge, MA: MIT Press.

    Book  MATH  Google Scholar 

  • Dreo, J., & Siarry, P. (2007). Stochastic Metaheuristics as sampling techniques using swarm intelligence. In T. S. C. Felix & K. T. Manoj (Eds.), Swarm intelligence, focus on ant and particle swarm optimization. Vienna, Austria: InTech Education and Publishing. doi:10.5772/5105. Available from: http://www.intechopen.com/books/swarm_intelligence_focus_on_ant_and_particle_swarm_optimization/stochastic_metaheuristics_as_sampling_techniques_using_swarm_intelligence. ISBN 978-3-902613-09-7.

    Google Scholar 

  • Dubourg, V., Sudret, B., & Deheeger, F. (2013). Metamodel-based importance sampling for structural reliability analysis. Probabilistic Engineering Mechanics, 33, 47–57.

    Article  Google Scholar 

  • Fahlman, S., & Lebiere, C. (1991). The cascade-correlation learning architecture. Carnegie-Mellon University Pittsburg School of Computer Science.

    Google Scholar 

  • Femur. Femur fibre arrangement for strength, picture from: Wikimedia Commons (26.05.15). Original: Popular Science Monthly Volume 42.

    Google Scholar 

  • Gekeler, S. (2012). Die Partikelschwarmoptimierung in der Strukturmechanik. Master thesis, Reutlingen University.

    Google Scholar 

  • Gekeler, S., Pandtle, J., Steinbuch, R., & Widmann, C. (2014). Remarks on the efficiency of bionic optimisation strategies. Journal of Mathematics and System Science, 4, 139–154.

    Google Scholar 

  • Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization. New York: Wiley.

    Google Scholar 

  • Glover, F., & Laguna, M. (1999). Handbook of combinatorial optimization (pp. 2093–2229). New York: Springer US.

    Google Scholar 

  • GĂĽnther, D., & Wender, K. F. (2010). Neuronale netze. WĂĽrzburg: Huber Hans.

    Google Scholar 

  • Haftka, R. T., & GĂĽrdal, Z. (1992). Elements of structural optimization. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  • Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transaction on Neural Networks, 5, 989–993.

    Article  Google Scholar 

  • Hansen, P., & Mladenović, N. (2005). Variable neighborhood search (pp. 211–238). New York: Springer US.

    Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior. Bulletin of mathematical biophysics (Vol. 5). New York: Wiley.

    Google Scholar 

  • Kennedy, J. (1999). Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. Proceedings of the 1999 Congress on Evolutionary Computation, 3, 1931–1938.

    Article  Google Scholar 

  • Kennedy, J. (2003). Bare bones particle swarms. Proceedings of the IEEE Swarm Intelligence Symposium. S. 80–87.

    Google Scholar 

  • Kennedy, J., & Eberhardt, R. (1995). Particle swarm Optimization. IEEE International Conference on Neural Networks (pp. 1942–1948).

    Google Scholar 

  • Kennedy, J., & Eberhardt, R. (1997). A discrete binary version of the particle swarm algorithm. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (pp. 4104–4108).

    Google Scholar 

  • Koziel, S., & Michalewicz, Z. (1999). Evolutionary algorithms homomorphous mappings, and constrained parameter optimization. MIT Press Journals, 7, 19–44.

    Google Scholar 

  • Kramer, O. (2009). Computational intelligence: Eine EinfĂĽhrung. Berlin: Springer.

    Google Scholar 

  • Lagaros, N. D., & Papadrakakis, M. (2004). Learning improvement of neural networks used in structural optimization. Advances in Engineering Software, 35, 9–25.

    Article  Google Scholar 

  • Matthies, H. G., Litvinenko, A., Rosić, B. V., KuÄŤerová, A., SĂ˝kora, J., & Pajonk, O. (2013). Stochastic setting for inverse identification problems. Report to workshop numerical methods for PDE constrained optimization with uncertain data. Report No. 04/2013. DOI:10.4171/OWR/2013/04, 27 January 2013

    Google Scholar 

  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239–245.

    MathSciNet  MATH  Google Scholar 

  • Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: Simpler, maybe better. IEEE Transactions on Evolutionary Computation, 8, 204–210.

    Article  Google Scholar 

  • Perez, R. E., & Behdinan, K. (2007). Particle swarm optimization in structural design. In F. T. S. Chan & M. K. Tiwari (Eds.), Swarm intelligence: Focus on ant and particle swarm optimization.

    Google Scholar 

  • Plevris, V., & Papadrakakis, M. (2011). A hybrid particle swarm—Gradient algorithm for global structural optimization. Computer-Aided Civil and Infrastructure Engineering, 26, 48–68.

    Google Scholar 

  • Rechenberg, I. (1994). Evolutionsstrategie’94. Stuttgart: Frommann-Holzboog.

    Google Scholar 

  • Rozvany, G. I. N. (1997). Topology optimization in structural mechanics. Vienna: Springer.

    Book  MATH  Google Scholar 

  • Schumacher, A. (2013). Optimierung mechanischer Strukturen. Berlin: Springer.

    Book  Google Scholar 

  • Schwefel, H. P. (1989). Numerical optimization of computer models. Chichester: Wiley.

    Google Scholar 

  • Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. IEEE World Congress on Computational Intelligence. Evolutionary Computation Proceedings (pp. 69–73).

    Google Scholar 

  • Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., & Wolf, P. G. (2006). A classification for extant ferns. Taxon, 55, 705–731.

    Article  Google Scholar 

  • Steinbuch, R. (2010). Successful application of evolutionary algorithms in engineering design. Journal of Bionic Engineering, 7(Suppl), 199–211.

    Google Scholar 

  • Stock, P., & ZĂĽlch, G. (2012). Reactive manufacturing control using the ant colony approach. International Journal of Production Research, 50, 6150–6161.

    Google Scholar 

  • Vanderplaats, G. N. (1984). Numerical optimization techniques for engineering design. New York: McGraw-Hill Ryerson.

    MATH  Google Scholar 

  • Widrow, B., & Hoff, M. E. (1960). Adaptiv switching circuits. IRE WESCON Convention Record.

    Google Scholar 

  • Zell, A. (1997). Simulation neuronaler Netze. MĂĽnchen: Oldenbourg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Steinbuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steinbuch, R. et al. (2016). Bionic Optimization Strategies. In: Steinbuch, R., Gekeler, S. (eds) Bionic Optimization in Structural Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46596-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46596-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46595-0

  • Online ISBN: 978-3-662-46596-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics