Skip to main content

Abstract

Wound infections delay and may even prevent wound healing. Management of wound infection cannot be overstated for successful wound healing. To properly manage wound infections, there must first be accurate diagnosis as to what constitutes an infected wound. Various diagnostic methods for wound infection are presented in this chapter. After identifying the offending organism, the physician must determine the most appropriate intervention to reduce the wound’s bioburden. Available options include antimicrobial therapy, debridement, and adjunctive therapies. Debridement plays a vital role in the management of wound infections. Debridement of necrotic tissue and exudate helps to reduce wound bioburden and may also increase the effectiveness of topical antimicrobials and antibiotics. There are six primary types of debridements: autolytic, enzymatic, biological, mechanical, sharp, and surgical debridements. Surgical debridement is required for severe infection including osteomyelitis or sepsis and is usually followed by a course of antibiotics. Details of each debridement are described in this chapter. Biofilm is a relatively new concept in the fields of wound infection and healing. Although scientific research regarding wound biofilm is increasing, little is known about the effective management strategies. The author’s method to treat the wound biofilm is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Alvarez OM, Fernandez-Obregon A, Rogers RS, et al. A prospective, randomized, comparative study of collagenase and papain-urea for pressure ulcer debridement. Wounds. 2002;14:293–301.

    Google Scholar 

  • Andrew JM, Boulton MD, Kirsner RS, et al. Neuropathic diabetic foot ulcers. N Engl J Med. 2004;351:48–55.

    Article  Google Scholar 

  • Armstrong DG, Lipsky BA. Advances in the treatment of diabetic foot infections. Diabetes Technol Ther. 2004;6:167–77.

    Article  CAS  PubMed  Google Scholar 

  • Attinger CE, Janis JE, Steinberg J, et al. Clinical approach to wounds: debridement and wound bed preparation including the use of dressings and wound-healing adjuvants. Plast Reconstr Surg. 2006;117:72S–109.

    Article  CAS  PubMed  Google Scholar 

  • Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14:244–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brem H, Sheehan P, Rosenberg HJ, et al. Evidence-based protocol for diabetic foot ulcers. Plast Reconstr Surg. 2006;117:193S–209.

    Article  CAS  PubMed  Google Scholar 

  • Broughton 2nd G, Janis JE, Attinger CE. The basic science of wound healing. Plast Reconstr Surg. 2006;117:12S–34.

    Article  CAS  PubMed  Google Scholar 

  • Crane M, Werber B. Critical pathway approach to diabetic pedal infections in a multidisciplinary setting. J Foot Ankle Surg. 1999;38:30–3.

    Article  CAS  PubMed  Google Scholar 

  • Dang CN, Prasad YD, Boulton AJ, Jude EB. Methicillin-resistant staphylococcus aureus in the diabetic foot clinic: a worsening problem. Diabet Med. 2002;20:159–61.

    Article  Google Scholar 

  • Dargis V, Pantelejeva O, Jonushaite A, et al. Benefits of a multidisciplinary approach in the management of recurrent diabetic foot ulcerantion in Lithunania: a prospective study. Diabetes Care. 1999;22:1428–31.

    Article  CAS  PubMed  Google Scholar 

  • Debats IB, Booi D, Deutz NE, et al. Infected chronic wounds show different local and systemic arginine conversion compared with acute wounds. J Surg Res. 2006;134:205–14.

    Article  CAS  PubMed  Google Scholar 

  • Demling RH, Desanti RN. Effects of silver on wound management. Wounds. 2001;13:1–15.

    Google Scholar 

  • Dogra S, Kumar B, Bhansali A, Chakrabarty A. Epidemiology of onychomycosis in patients with diabetes mellitus in India. Int J Dermatol. 2002;41:647–51.

    Article  PubMed  Google Scholar 

  • Ebright JR, Fairfax MR, Vazquezl JA. Trichosporonasahii, a non-candida yeast that caused fatal septic shock in a patient without cancer or neutropenia. Clin Infect Dis. 2001;33:28–30.

    Article  Google Scholar 

  • Ecemis T, Deqerli K, Aktas E, et al. The necessity of culture for the diagnosis of tineapedis. Am J Med Sci. 2006;331:88–90.

    Article  PubMed  Google Scholar 

  • Edmonds M, Foster A. The use of antibiotics in the diabetic foot. Am J Surg. 2004;187:25S–8.

    Article  CAS  PubMed  Google Scholar 

  • Emsen IM. Fatal side effect of maggot treatment on wound healing. Plast Reconstr Surg. 2007;119:1624.

    Article  CAS  PubMed  Google Scholar 

  • Enoch S, Harding K. Wound bed preparation: the science behind the removal of barriers to healing. Part 1. Wounds. 2003;15:213.

    Google Scholar 

  • Enoch S, Grey JE, Harding KG. ABC of wound healing. Non-surgical and drug treatments. BMJ. 2006;332:900–3.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ethuin F, Gérard B, Benna JE, et al. Human neutrophils produce interferon gamma upon stimulation by interleukin-12. Lab Invest. 2004;84:1363–71.

    Article  CAS  PubMed  Google Scholar 

  • Falanga V. Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen. 2000;8:347–52.

    Article  CAS  PubMed  Google Scholar 

  • Fivenson DP, Faria DT, Nickoloff BJ. Chemokine and inflammatory cytokine changes during chronic wound healing. Wound Repair Regen. 1997;5:310–22.

    Article  CAS  PubMed  Google Scholar 

  • Fleck CA. Identifying infection in chronic wounds. Adv Skin Wound Care. 2006;19:20–1.

    Article  PubMed  Google Scholar 

  • Fowler EM, Vesely N, Johnson V, et al. Wound care for patients with diabetes. Adv Skin Wound Care. 2003;16:342–6.

    Article  PubMed  Google Scholar 

  • Frykberg RG. Diabetic foot ulcer: pathogenesis and management. Am Fam Physician. 2002;66:1655–62.

    PubMed  Google Scholar 

  • Granick MS, Jacoby M, Noruthrun S, et al. Clinical and economic impact of hydro surgical debridement on chronic wounds. Wounds. 2006;18:35–9.

    Google Scholar 

  • Han SK. Advanced treatments of diabetic foot ulcers. Diabetes (Korean). 2004;171:69.

    Google Scholar 

  • Han SK. Diagnosis of wound infection in diabetic patients. J Korean Wound Manag Soc. 2007;3:53.

    Google Scholar 

  • Han SK, Lee BI, Kim WK. Microbiology of diabetic foot patients in Korea. J Korean Wound Manag Soc. 2007;3:19.

    Google Scholar 

  • Harbarth S, Fankhauser C, Schrenzel J, et al. Universal screening for methicillin-resistant staphylococcus aureus at hospital admission and nosocomial infection in surgical patients. JAMA. 2008;299:1149–57.

    Article  CAS  PubMed  Google Scholar 

  • Husain TM, Kim DH. C-reactive protein and erythrocyte sedimentation rate in orthopaedics. The Univ Pa Orthop J. 2002;15:13–6.

    Google Scholar 

  • Jeffcoate WJ, Harding KG. Diabetic foot ulcers. Lancet. 2003;361:1545–51.

    Article  PubMed  Google Scholar 

  • Jones CE, Kennedy JP. Treatment options to manage wound biofilm. Adv Wound Care. 2012;1:120–6.

    Article  Google Scholar 

  • Kelley ST, Theisen U, Angenent LT, et al. Molecular analysis of shower curtain biofilm microbes. Appl Environ Microbiol. 2004;70:4187–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krcmery V, Krupova I, Denning DW. Invasive yeast infections other than candida spp. in acute leukaemia. J Hosp Infect. 1999;41:181–94.

    Article  CAS  PubMed  Google Scholar 

  • Lavery LA, Armstrong DG, Wunderlich RP, et al. Diabetic foot syndrome: evaluating the prevalence and incidence of foot pathology in Mexican Americans and non-Hispanic whites from a diabetes disease management cohort. Diabetes Care. 2003;26:1435–8.

    Article  PubMed  Google Scholar 

  • Lee JM, Han SK, Jeong SH, et al. Comparison of WBC, ESR, and CRP levels for diagnosis of diabetic foot infection. J Korean Soc Plast Reconst Surg. 2010;37(4):346–50.

    Google Scholar 

  • Lipsky BA. Evidence-based antibiotic therapy of diabetic foot infections. FEMS Immunol Med Microbiol. 1999;26:267–76.

    Article  CAS  PubMed  Google Scholar 

  • Lipsky BA. A report from the international consensus on diagnosing and treating the infected diabetic foot. Diabetes Metab Res Rev. 2004;20:S68–77.

    Article  PubMed  Google Scholar 

  • Lugo-Somolinos A, Sanchez JL. Prevalence of dermatophytosis in patients with diabetes. J Am Acad Dermatol. 1992;26:408–10.

    Article  CAS  PubMed  Google Scholar 

  • Mosti G, Mattaliano V. The debridement of chronic leg ulcers by means of a new, fluidjet-based device. Wounds. 2006;18:227–37.

    Google Scholar 

  • Motta RN, Oliveira MM, Magalhães PS, et al. Plasmid-mediated extended-spectrum b-lactamase-producing strains of enterobacteriaceae isolated from diabetes foot infections in a brazilian diabetic center. Braz J Infect Dis. 2003;7:129–34.

    Article  CAS  PubMed  Google Scholar 

  • O’Gorman C, McMullan R, Webb CH, Bedi A. Trichosporonasahii. Blood-stream infection in anon-cancer patient receiving antifungal therapy. Ulster Med J. 2006;75:226–7.

    PubMed Central  PubMed  Google Scholar 

  • Pecoraro RE, Reiber GE, Burgess EM. Pathways to diabetic limb amputation. Basis for prevention. Diabetes Care. 1990;13:513–21.

    Article  CAS  PubMed  Google Scholar 

  • Percival SL Bowler P (2004) Understanding the effects of bacterial communities and biofilms on wound healing. World Wide Wounds.

    Google Scholar 

  • Percival SL, Hill KE, Williams DW, et al. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 2012;20:647–57.

    Article  PubMed  Google Scholar 

  • Prete PE. Growth effects of Phaenicasericata larval extracts on fibroblasts: mechanism for wound healing by maggot therapy. Life Sci. 1997;60:505–10.

    Article  CAS  PubMed  Google Scholar 

  • Pryor KO, Lien CA, Fahey 3rd TJ, Goldstein PA. Supplemental oxygen and risk of surgical wound infection. JAMA. 2006;295:1642–3.

    Article  CAS  PubMed  Google Scholar 

  • RagnarsonTennvall G, Apelqvist J. Prevention of diabetesrelated foot ulcers and amputations: a cost-utility analysis based on Markov model simulations. Diabetologia. 2001;44:2077–87.

    Article  CAS  Google Scholar 

  • Ramsey SD, Newton K, Blougt D, et al. Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes Care. 1999;22:382–7.

    Article  CAS  PubMed  Google Scholar 

  • Reiber GE. The epidemiology of diabetic foot problems. Diabet Med. 1996;13:S6–11.

    PubMed  Google Scholar 

  • Reiber GE, Vileikyte L, Boyko EJ, et al. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care. 1999;22:157–62.

    Article  CAS  PubMed  Google Scholar 

  • Schaper NC, Apelqvist J, Bakker K. The international consensus and practical goudelines on the management and prevention of the diabetic foot. Curr Diad Rep. 2003;3:475–9.

    Article  Google Scholar 

  • Schultz GS, Sibbald RG, Falanga V, et al. Wound bed preparation: a systematic approach to wound management. Wound Repair Regen. 2003;11:S1–28.

    Article  PubMed  Google Scholar 

  • Senneville E, Yazdanpanah Y, Cazaubiel M, et al. Rifampicin-ofloxacin oral regimen for the treatment of mild to moderate diabetic foot osteomyelitis. J Antimicrob Chemother. 2001;48:927–30.

    Article  CAS  PubMed  Google Scholar 

  • Tennvall GR, Apelqvist J, Eneroth M. Costs of deep foot infections in patients with diabetes mellitus. Pharmacoeconomis. 2000;18:225–38.

    Article  CAS  Google Scholar 

  • Thomas S, Andrews AM, Hay NP, Bourgoise S. The anti-microbial activity of maggot secretions: results of a preliminary study. J Tissue Viability. 1999;9:127–32.

    Article  CAS  PubMed  Google Scholar 

  • Todd WF, Armstrong DG, Liswood PJ. Evaluation and treatment of the infected foot in a community teaching hospital. J Am Podiatr Med Assoc. 1996;86:421–6.

    Article  CAS  PubMed  Google Scholar 

  • Wieman TJ. Principles of management: the diabetic foot. Am J Surg. 2005;190:295–9.

    Article  PubMed  Google Scholar 

  • Williams DT, Hilton JR, Harding KG. Diagnosing foot infection in diabetes. Clin Infect Dis. 2004;39:S83–6.

    Article  PubMed  Google Scholar 

  • Wollina U, Karte K, Herold C, Looks A. Biosurgery in wound healing-the renaissance of maggot therapy. J Eur Acad Dermatol Venereol. 2000;14:285–9.

    Article  CAS  PubMed  Google Scholar 

  • Younggren BN, Denny M. Emergency management of difficult wounds: Part II. Emerg Med Clin North Am. 2007;25:123–34.

    Article  PubMed  Google Scholar 

  • Zacur H, Kirsner RS. Debridement: rationale and therapeutic options. Wounds. 2002;14:2S–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Han, SK. (2016). Infection, Debridement, and Biofilm. In: Innovations and Advances in Wound Healing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46587-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46587-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46586-8

  • Online ISBN: 978-3-662-46587-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics