Skip to main content
  • 2424 Accesses

Abstract

For wound coverage, proper selection of the reconstruction method is a key to achieving successful results. A variety of artificial dermal substitutes have been produced and used in clinical practice to accelerate wound healing and reduce wound contraction. However, some authors reported that artificial dermis delays wound healing and procedures using artificial dermis often heal with an unsightly scar. The resultant wound contraction, which is an important clinical component, is not an uncommon problem. Because skin and soft tissue defects are usually created by trauma or surgical excision of tumors, the most common sites are exposed areas such as the face and upper extremities. For this reason, in many cases, cosmetic outcome should also be considered when selecting a treatment method. To minimize the limitation of using artificial dermis, tissue-engineered dermis comprising of cultured fibroblasts seeded on artificial dermis has been developed; some benefits include better graft take, enhanced epithelialization and vascularization, and reduced wound contraction. In this chapter, the author’s experiences with tissue-engineered dermis grafts based on cultured dermal fibroblasts or adipose-derived stromal vascular fraction cells are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Ananta M, Brown RA, Mudera V. A rapid fabricated living dermal equivalent for skin tissue engineering: an in vivo evaluation in an acute wound model. Tissue Eng Part A. 2012;18:353–61.

    Article  CAS  PubMed  Google Scholar 

  • Ashjian PH, De Ugarte DA, Katz AJ, Hedrick MH. Lipoplasty: from body contouring to tissue engineering. Aesthetic Surg J. 2002;22:121–7.

    Article  Google Scholar 

  • Atasoy E, Ioakimidis E, Kasdan ML, et al. Reconstruction of amputated finger tip with a triangular volar flap. J Bone Joint Surg. 1970;52:921–6.

    CAS  PubMed  Google Scholar 

  • Bralliar F, Horner RL. Sensory cross finger pedicle graft. J Bone Joint Surg. 1969;51:1264–8.

    CAS  PubMed  Google Scholar 

  • Brenner MJ, Perro CA. Recontouring, resurfacing, and scar revision in skin cancer reconstruction. Facial Plast Surg Clin North Am. 2009;17:469–87.

    Article  PubMed  Google Scholar 

  • Carlson JA, Grabowski R, Mu XC, et al. Possible mechanisms of hypopigmentation in lichen sclerosus. Am J Dermatopathol. 2002;24:97–107.

    Article  PubMed  Google Scholar 

  • Chou TD, Chen SL, Lee TW, et al. Reconstruction of burn scar of the upper extremities with artificial skin. Plast Reconstr Surg. 2001;108:378–84.

    Article  CAS  PubMed  Google Scholar 

  • Chung S. Basal cell carcinoma. Arch Plast Surg. 2012;39:166–70.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chvapil M. Collagen sponge: theory and practice of medical applications. J Biomed Mater Res. 1977;11:721–41.

    Article  CAS  PubMed  Google Scholar 

  • Cook H, Davies KJ, Harding KG, et al. Defective extracellular matrix reorganization by chronic wound fibroblasts is associated with alterations in TIMP-1, TIMP-2, and MMP-2 activity. J Invest Dermatol. 2000;115:225–33.

    Article  CAS  PubMed  Google Scholar 

  • Curtis RM. Cross-finger pedicle flap in hand surgery. Ann Surg. 1957;145:650–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Vries HJ, Zeegelaar JE, Middelkoop E, et al. Reduced wound contraction and scar formation in punch biopsy wounds. Native collagen dermal substitutes. A clinical study. Br J Dermatol. 1995;132:690–7.

    Article  PubMed  Google Scholar 

  • Dressler J, Busuttil A, Koch R, et al. Sequence of melanocyte migration into human scar tissue. Int J Legal Med. 2001;115:61–3.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich HP. Wound closure: evidence of cooperation between fibroblasts and collagen matrix. Eye (Lond). 1988;2:149–57.

    Article  Google Scholar 

  • Eldardiri M, Martin Y, Roxburgh J, et al. Wound contraction is significantly reduced by the use of microcarriers to deliver keratinocytes and fibroblasts in an in vivo pig model of wound repair and regeneration. Tissue Eng Part A. 2012;18:587–97.

    Article  CAS  PubMed  Google Scholar 

  • El-Ghalbzouri A, Gibbs S, Lamme E, et al. Effect of fibroblasts on epidermal regeneration. Br J Dermatol. 2002;147:230–43.

    Article  CAS  PubMed  Google Scholar 

  • Erdag G, Sheridan RL. Fibroblasts improve performance of cultured composite skin substitutes on athymic mice. Burns. 2004;30:322–8.

    Article  PubMed  Google Scholar 

  • Flatt AE. The thenar flap. J Bone Joint Surg. 1957;39:80–5.

    Google Scholar 

  • Foucher G, Braun JB. A new island flap transfer from the dorsum of the index to the thumb. Plast Reconstr Surg. 1979;63:344–9.

    Article  CAS  PubMed  Google Scholar 

  • Ge NN, McGuire JF, Dyson S, Chark D. Nonmelanoma skin cancer of the head and neckII: surgical treatment and reconstruction. Am J Otolaryngol. 2009;30:181–92.

    Article  PubMed  Google Scholar 

  • Goncalves JC. Fractional cryosurgery for skin cancer. Dermatol Surg. 2009;35:1788–96.

    Article  CAS  PubMed  Google Scholar 

  • Grad JB, Beasley RW. Fingertip reconstruction. Hand Clin. 1985;1:667–76.

    CAS  PubMed  Google Scholar 

  • Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol. 1994;124:401–4.

    Article  CAS  PubMed  Google Scholar 

  • Han SK, Lee BI, Kim WK. The reverse digital artery island flap: clinical experience in 120 fingers. Plast Reconstr Surg. 1998;101:1006–11.

    Article  CAS  PubMed  Google Scholar 

  • Han SK, Yoon TH, Kim JB, et al. Dermis graft for wound coverage. Plast Reconstr Surg. 2007;120:166–72.

    Article  CAS  PubMed  Google Scholar 

  • Han SK, Kim HR, Kim WK. The treatment of diabetic foot ulcers with uncultured, processed lipoaspirate cells: a pilot study. Wound Repair Regen. 2010;18:342–8.

    Article  PubMed  Google Scholar 

  • Han SK, Kim SY, Choi RJ, et al. Comparison of tissue-engineered and artificial dermis grafts after removal of basal cell carcinoma on face-A pilot study. Dermatol Surg. 2014;40:460–7.

    Article  CAS  PubMed  Google Scholar 

  • Juckett G, Hartman-Adams H. Management of keloids and hypertrophic scars. Am Fam Physician. 2009;80:253–60.

    PubMed  Google Scholar 

  • Jurgens WJ, Kroeze RJ, Bank RA, et al. Rapid attachment of adipose stromal cells on resorbable polymeric scaffolds facilitates the one-step surgical procedure for cartilage and bone tissue engineering purposes. J Orthop Res. 2011;29:853–60.

    Article  CAS  PubMed  Google Scholar 

  • Kotimäki J. Photodynamic therapy of eyelid basal cell carcinoma. J Eur Acad Dermatol Venereol. 2009;23:1083–7.

    Article  PubMed  Google Scholar 

  • Kutler W. A new method of fingertip amputation. JAMA. 1947;133:29–30.

    Article  CAS  Google Scholar 

  • Lamme EN, van Leeuwen RT, Jonker A, et al. Living skin substitutes: survival and function of fibroblasts seeded in a dermal substitute in experimental wounds. J Invest Dermatol. 1998;111:989–95.

    Article  CAS  PubMed  Google Scholar 

  • Lamme EN, Van Leeuwen RT, Brandsma K, et al. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation. J Pathol. 2000;190:595–603.

    Article  CAS  PubMed  Google Scholar 

  • Lee TG, Chung S, Chung YK. A retrospective review of iatrogenic skin and soft tissue injuries. Arch Plast Surg. 2012;39:412–6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee JM, Moon KC, Han SK, et al. What tissue is formed after graft of adipose-derived stromal vascular fraction cells? J Craniofac Surg. 2013;24:636–9.

    Article  PubMed  Google Scholar 

  • Lindemalm-Lundstam B, Dalenbäck J. Prospective follow-up after curettage-cryosurgery for scalp and face skin cancers. Br J Dermatol. 2009;16:568–76.

    Article  Google Scholar 

  • Marks MG, Doillon C, Silver FH. Effects of fibroblasts and basic fibroblast growth factor on facilitation of dermal wound healing by type I collagen matrices. J Biomed Mater Res. 1991;25:683–96.

    Article  CAS  PubMed  Google Scholar 

  • Mauch C, Adelmann-Grill B, Hatamochi A, et al. Collagenase gene expression in fibroblasts is regulated by a three-dimensional contact with collagen. FEBS Lett. 1989;250:301–5.

    Article  CAS  PubMed  Google Scholar 

  • Milligen FJ, Ritt MJ, Helder MN. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study. Biores Open Access. 2013;2:315–25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Monami M, Vivarelli M, Desideri CM, et al. Autologous skin fibroblast and keratinocyte grafts in the treatment of chronic foot ulcers in aging type 2 diabetic patients. J Am Podiatr Med Assoc. 2011;101:55–8.

    Article  PubMed  Google Scholar 

  • Morimoto N, Saso Y, Tomihata K, et al. Viability and function of autologous and allogeneic fibroblasts seeded in dermal substitutes after implantation. J Surg Res. 2005;125:56–67.

    Article  PubMed  Google Scholar 

  • Mosterd K, Krekels GA, Nieman FH, et al. Surgical excision versus Mohs’ micrographic surgery for primary and recurrent basal-cell carcinoma of the face: a prospective randomized controlled trial with 5-years’ follow-up. Lancet Oncol. 2008;9:1149–56.

    Article  PubMed  Google Scholar 

  • Murphy GF, Orgill DP, Yannas IV. Partial dermal regeneration is induced by biodegradable collagen-glycosaminoglycan grafts. Lab Invest. 1990;62:305–13.

    CAS  PubMed  Google Scholar 

  • Ng KW, Hutmacher DW. Reduced contraction of skin equivalent engineered using cell sheets cultured in 3D matrices. Biomaterials. 2006;27(26):4591–8.

    Article  CAS  PubMed  Google Scholar 

  • Philandrianos C, Andrac-Meyer L, Mordon S, et al. Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns. 2012;38:820–9.

    Article  PubMed  Google Scholar 

  • Piasecki JH, Gutowski KA, Lahvis GP, Moreno KI. An experimental model for improving fat graft viability and purity. Plast Reconstr Surg. 2007;119:1571–83.

    Article  CAS  PubMed  Google Scholar 

  • Rho KH, Han SK, Kim WK. New measurement method of wound healing by stereoimage optical topometer system. J Korean Soc Plast Reconstr Surg. 2008;35:755–8.

    Google Scholar 

  • Rogers NE. Hair transplantation for reconstruction of scalp defects using artificial dermis. Dermatol Surg. 2011;37:1351–2.

    Article  CAS  PubMed  Google Scholar 

  • Sakrak T, Kose AA, Kivanc O, et al. The effects of combined application of autogenous fibroblast cell culture and full-tissue skin graft (FTSG) on wound healing and contraction in full-thickness tissue defects. Burns. 2012;38:225–31.

    Article  PubMed  Google Scholar 

  • Schmitt T, Talley J, Chang J. New concepts and technologies in reconstructive hand surgery. Clin Plast Surg. 2012;39:445–51.

    Article  PubMed  Google Scholar 

  • Seo YK, Song KY, Kim YJ, et al. Wound healing effect of acellular artificial dermis containing extracellular matrix secreted by human skin fibroblasts. Artif Organs. 2007;31:509–20.

    Article  CAS  PubMed  Google Scholar 

  • Sohn WI, Han SH, Jung SN. One-stage skin grafting of the exposed skull with artificial dermis after cancer removal: long-term experiences. Head Neck Oncol. 2012;4:73–8.

    Google Scholar 

  • Spector M. Novel cell-scaffold interactions encountered in tissue engineering: contractile behavior of musculoskeletal connective tissue cells. Tissue Eng. 2002;8:351–7.

    Article  CAS  PubMed  Google Scholar 

  • Suga H, Matsumoto D, Inoue K, et al. Numerical measurement of viable and nonviable adipocytes and other cellular components in aspirated fat tissue. Plast Reconstr Surg. 2008;122:103–14.

    Article  CAS  PubMed  Google Scholar 

  • Sugamata A. Regeneration of nails with artificial dermis. J Plast Surg Hand Surg. 2012;46:191–4.

    Article  PubMed  Google Scholar 

  • Swope VB, Supp AP, Boyce ST. Regulation of cutaneous pigmentation by titration of human melanocytes in cultured skin substitutes grafted to athymic mice. Wound Repair Regen. 2002;10:378–86.

    Article  PubMed  Google Scholar 

  • Tsoutsos D, Zapantioti P, Kakagia D, et al. Is expansion of artificial dermis a reliable reconstructive option? Ann Burns Fire Disasters. 2011;24:214–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tyack ZF, Pegg S, Ziviani J. Postburn dyspigmentation: its assessment, management, and relationship to scarring--a review of the literature. J Burn Care Rehabil. 1997;18:435–40.

    Article  CAS  PubMed  Google Scholar 

  • Uccioli L. A clinical investigation on the characteristics and outcomes of treating chronic lower extremity wounds using the tissuetech autograft system. Int J Low Extrem Wounds. 2003;2:140–51.

    Article  CAS  PubMed  Google Scholar 

  • Uccioli L, Giurato L, Ruotolo V, et al. Two-step autologous grafting using HYAFF scaffolds in treating difficult diabetic foot ulcers: results of a multicenter, randomized controlled clinical trial with long-term follow-up. Int J Low Extrem Wounds. 2011;10:80–5.

    Article  PubMed  Google Scholar 

  • Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med. 2001;344:1511–4.

    Article  CAS  PubMed  Google Scholar 

  • Van der Geer S, Ostertag JU, Krekels GA. Treatment of basal cell carcinomas in patients with nevoid basal cell carcinoma syndrome. J Eur Acad Dermatol Venereol. 2009;23:308–13.

    Article  PubMed  Google Scholar 

  • Velangi SS, Rees JL. Why are scars pale? An immunohistochemical study indicating preservation of melanocyte number and function in surgical scars. Acta Derm Venereol. 2001;81:326–8.

    Article  CAS  PubMed  Google Scholar 

  • Yates CC, Whaley D, Wells A. Transplanted fibroblasts prevents dysfunctional repair in a murine CXCR3-deficient scarring model. Cell Transplant. 2012;21:919–31.

    Article  PubMed  Google Scholar 

  • Yeong EK, Chen SH, Tang YB. The treatment of bone exposure in burns by using artificial dermis. Ann Plast Surg. 2012;69:607–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Han, SK. (2016). Tissue-Engineered Dermis Graft. In: Innovations and Advances in Wound Healing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46587-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46587-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46586-8

  • Online ISBN: 978-3-662-46587-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics