Skip to main content
  • 2433 Accesses

Abstract

In planning reconstruction for wounds, efforts should include choosing the safest and least invasive method with a goal of achieving optimal functional and cosmetic outcomes. Although a variety of methods can be used to cover defects, skin grafting is generally straightforward with a relatively low risk of complications. However, the two major concerns of skin grafting are poor matching of colors in the recipient site and donor site morbidity. To minimize the limitations of the classic skin graft, the author has developed an autogenous dermis graft, which is a deepithelialized skin graft, and has reported promising results on the coverage of small- to medium-sized wounds. The important aspects of this method include the immediate return of the epidermis to the donor site thereby overcoming donor site morbidity and minimizing pigment mismatch between the graft and the surrounding skin by restoring the epidermal portion of the recipient site through inducing epithelialization from the adjacent skin. To make the autogenous dermis graft even easier, the author has also used allogenic and artificial dermis for surface grafts. Based on the author’s experience, allogenic dermis is difficult to be taken by the wound bed. In addition, resultant scar after wound healing is usually not satisfactory. In the case of artificial dermis, clinical results are generally acceptable. Collagen sponge and hyaluronic acid sheets are two main commercial materials that are frequently used. In this chapter, the author presents the reliability of these biologic dermis grafts for wound coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Abbruzzese L, Rizzo L, Fanelli G, et al. Effectiveness and safety of a novel gel dressing in the management of neuropathic leg ulcers in diabetic patients: a prospective double-blind randomized trial. Int J Low Extrem Wounds. 2009;8:134–40.

    Article  CAS  PubMed  Google Scholar 

  • Akasaka Y, Ono I, Tominaga A, et al. Basic fibroblast growth factor in an artificial dermis promotes apoptosis and inhibits expression of alpha-smooth muscle actin, leading to reduction of wound contraction. Wound Repair Regen. 2007;15:378–89.

    Article  PubMed  Google Scholar 

  • Akita S, Akino K, Tanaka K, et al. A basic fibroblast growth factor improves lower extremity wound healing with a porcine-derived skin substitute. J Trauma. 2008;64:809–15.

    Article  CAS  PubMed  Google Scholar 

  • Bourguignon LY, Ramez M, Gilad E, et al. Hyaluronan-CD44 interaction stimulates keratinocyte differentiation, lamellar body formation/secretion, and permeability barrier homeostasis. J Invest Dermatol. 2006;126:1356–65.

    Article  CAS  PubMed  Google Scholar 

  • Brenner MJ, Perro CA. Recontouring, resurfacing, and scar revision in skin cancer reconstruction. Facial Plast Surg Clin North Am. 2009;17:469–87.

    Article  PubMed  Google Scholar 

  • Brown D, Garner W, Young L. Skin grafting: dermal components in inhibition of wound contraction. South Med J. 1990;83:789–95.

    Article  CAS  PubMed  Google Scholar 

  • Calvin M. Cutaneous wound repair. Wounds. 1998;10:12–32.

    Google Scholar 

  • Caravaggi C, De Giglio R, Pritelli C, et al. HYAFF 11-based autologous dermal and epidermal grafts in the treatment of noninfected diabetic plantar and dorsal foot ulcers: a prospective, multicenter, controlled, randomized clinical trial. Diabetes Care. 2003;26:2853–9.

    Article  PubMed  Google Scholar 

  • Carlson JA, Grabowski R, Mu XC, et al. Possible mechanisms of hypopigmentation in lichen sclerosus. Am J Dermatopathol. 2002;24:97–107.

    Article  PubMed  Google Scholar 

  • Chakrabarty KH, Heaton M, Dalley AJ, et al. Keratinocyte-driven contraction of reconstructed human skin. Wound Repair Regen. 2001;9:95–106.

    Article  CAS  PubMed  Google Scholar 

  • Chou TD, Chen SL, Lee TW, et al. Reconstruction of burn scar of the upper extremities with artificial skin. Plast Reconstr Surg. 2001;108:378–84.

    Article  CAS  PubMed  Google Scholar 

  • Chvapil M. Collagen sponge: theory and practice of medical applications. J Biomed Mater Res. 1977;11:721–41.

    Article  CAS  PubMed  Google Scholar 

  • Clark RA. Potential roles of fibronectin in cutaneous wound repair. Arch Dermatol. 1988;124:201–6.

    Article  CAS  PubMed  Google Scholar 

  • Costagliola M, Agrosi M. Second-degree burns: a comparative, multicenter, randomized trial of hyaluronic acid plus silver sulfadiazine vs. silver sulfadiazine alone. Curr Med Res Opin. 2005;21:1235–40.

    Article  CAS  PubMed  Google Scholar 

  • Culp LA, Murray BA, Rollins BJ. Fibronectin and proteoglycans as determinants of cell-substratum adhesion. J Supramol Struct. 1979;11:401–27.

    Article  CAS  PubMed  Google Scholar 

  • Dereure O, Czubek M, Combemale P. Efficacy and safety of hyaluronic acid in treatment of leg ulcers: a double-blind RCT. J Wound Care. 2012;21:131–2, 134-136, 138-139.

    Article  CAS  PubMed  Google Scholar 

  • Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005;13:7–12.

    Article  PubMed  Google Scholar 

  • Dressler J, Busuttil A, Koch R, Harrision DJ. Sequence of melanocyte migration into human scar tissue. Int J Legal Med. 2001;115:61–3.

    Article  CAS  PubMed  Google Scholar 

  • Emerman JT, Pitelka DR. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro. 1977;13:316–28.

    Article  CAS  PubMed  Google Scholar 

  • Erdag G, Sheridan RL. Fibroblasts improve performance of cultured composite skin substitutes on athymic mice. Burns. 2004;30:322–8.

    Article  PubMed  Google Scholar 

  • Frenkel JS. The role of hyaluronan in wound healing. Int Wound J. 2014;11:159–63.

    Article  PubMed  Google Scholar 

  • Ge NN, McGuire JF, Dyson S, Chark D. Nonmelanoma skin cancer of the head and neck II: surgical treatment and reconstruction. Am J Otolaryngol. 2009;30:181–92.

    Article  PubMed  Google Scholar 

  • Ghalbzouri A, Gibbs S, Lamme E, et al. Effect of fibroblasts on epidermal regeneration. Br J Dermatol. 2002;147:230–43.

    Article  PubMed  Google Scholar 

  • Gill D. Angiogenic modulation. J Wound Care. 1998;7:411–4.

    CAS  PubMed  Google Scholar 

  • Gohari S, Gambla C, Healey M, et al. Evaluation of tissue-engineered skin (human skin substitute) and secondary intention healing in the treatment of full thickness wounds after Mohs micrographic or excisional surgery. Dermatol Surg. 2002;28:1107–14.

    PubMed  Google Scholar 

  • Goncalves JC. Fractional cryosurgery for skin cancer. Dermatol Surg. 2009;35:1788–96.

    Article  CAS  PubMed  Google Scholar 

  • Grinnell F. Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol. 1994;124:401–4.

    Article  CAS  PubMed  Google Scholar 

  • Han SK, Yoon TH, Kim JB, Kim WK. Dermis graft for wound coverage. Plast Reconstr Surg. 2007;120:166–72.

    Article  CAS  PubMed  Google Scholar 

  • Haslik W, Kalmolz LP, Manna F, et al. Management of full-thickness skin defects in the hand and wrist region: first long-term experiences with the dermal matrix Matriderm. J Plast Reconstr Aesthet Surg. 2010;63:360–4.

    Article  CAS  PubMed  Google Scholar 

  • Hayek B, Hatef E, Nguyen M, et al. Acellular dermal graft(AlloDerm) for upper eyelid reconstruction after cancer removal. Ophthal Plast Reconstr Surg. 2009;25:426–9.

    Article  PubMed  Google Scholar 

  • Horch RE, Stark GB. Comparison of the effect of a collagen dressing and polyurethane dressing on healing of split thickness skin graft donor sites. Scand J Plast Reconst Surg Hand Surg. 1998;32:407–13.

    Article  CAS  Google Scholar 

  • Horch RE, Debus M, Wagner G, et al. Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis. Tissue Eng. 2000;6:53–67.

    Article  CAS  PubMed  Google Scholar 

  • Hovig T, Jorgensen L. Platelet adherence to fibrin and collagen. J Lab Clin Med. 1968;71:29–40.

    CAS  PubMed  Google Scholar 

  • Jacek G, Wieslaw K, Elzbieta AT, Jerzy S. A new anti-infective collagen dressing containing antibiotics. J Biomed Mater Res. 1997;36:163–6.

    Article  Google Scholar 

  • King SR, Hickerson WL, Proctor KG. Beneficial actions of exogenous hyaluronic acid on wound healing. Surgery. 1991;109:76–84.

    CAS  PubMed  Google Scholar 

  • Kotimäki J. Photodynamic therapy of eyelid basal cell carcinoma. J Eur Acad Dermatol Venereol. 2009;23:1083–7.

    Article  PubMed  Google Scholar 

  • Kuroyanagi Y, Yamada N, Yamashita R, et al. Tissue-engineered product: allogenic cultured dermal substitute composed of spongy collagen with fibroblasts. Artif Organs. 2001;25:180–6.

    Article  CAS  PubMed  Google Scholar 

  • Lamme EN, Van Leeuwen RT, Brandsma K, et al. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation. J Pathol. 2000;190:595–603.

    Article  CAS  PubMed  Google Scholar 

  • Lazovic G, Colic M, Grubor M, Jovanovic M. The application of collagen sheet in open wound healing. Ann Burns Fire Disasters. 2005;18:151–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leipziger LS, Glushko V, DiBernardo B, et al. Dermal wound repair: role of collagen matrix implants and synthetic polymer dressings. J Am Acad Dermatol. 1985;12:409–19.

    Article  CAS  PubMed  Google Scholar 

  • Lindemalm-Lundstam B, Dalenbäck J. Prospective follow-up after curettage-cryosurgery for scalp and face skin cancers. Br J Dermatol. 2009;16:568–76.

    Article  Google Scholar 

  • Loots MA, Lamme EN, Zeegelaar J, et al. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol. 1998;111:850–7.

    Article  CAS  PubMed  Google Scholar 

  • Manish M, Hemant K, Kamlakar T. Diabetic delayed wound healing and the role of silver nanoparticles. Dig J Nanomater Bios. 2008;3:49–54.

    Google Scholar 

  • Marc GJ, Gunter S, Thomas S, Dagmar K. Effect of oxidized regenerated cellulose/collagen matrix on dermal and epidermal healing and growth factors in an acute wound. Wound Rep Reg. 2005;13:324–31.

    Article  Google Scholar 

  • Matsumoto Y, Ikeda K, Yamaha Y, et al. The usefulness of the collagen and elastin sponge derived from salmon as an artificial dermis and scaffold for tissue engineering. Biomed Res. 2011;32:29–36.

    Article  CAS  PubMed  Google Scholar 

  • Mauch C, Adelmann-Grill B, Hatamochi A, Krieq T. Collagenase gene expression in fibroblasts is regulated by a three-dimensional contact with collagen. FEBS Lett. 1989;250:301–5.

    Article  CAS  PubMed  Google Scholar 

  • Mawaki A, Nakatani T, Sugama J, Konya C. Relationship between the distribution of myofibroblasts, and stellar and circular scar formation due to the contraction of square and circular wound healing. Anat Sci Int. 2007;82:147–55.

    Article  PubMed  Google Scholar 

  • Mosterd K, Krekels GA, Nieman FH, et al. Surgical excision versus Mohs’ micrographic surgery for primary and recurrent basal-cell carcinoma of the face: a prospective randomized controlled trial with 5-years’ follow-up. Lancet Oncol. 2008;9:1149–56.

    Article  PubMed  Google Scholar 

  • Ng KW, Hutmacher DW. Reduced contraction of skin equivalent engineered using cell sheets cultured in 3D matrices. Biomaterials. 2006;27:4591–8.

    Article  CAS  PubMed  Google Scholar 

  • Park SN, Lee HJ, Lee KH, Suh H. Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomaterials. 2003;24:1631–41.

    Article  CAS  PubMed  Google Scholar 

  • Park DJ, Han SK, Lee BI, et al. Soft tissue regeneration using fibroblasts and hyaluronic acid. J Korean Wound Manag Soc. 2006;2:57–63.

    Google Scholar 

  • Porat S, Rousso M, Shoshan S. Improvement of gliding function of flexor tendon by topically applied enriched collagen solution. J Bone Joint Surg Br. 1980;62:208–13.

    PubMed  Google Scholar 

  • Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:136–44.

    Article  CAS  PubMed  Google Scholar 

  • Purna SK, Babu M. Collagen based dressings--a review. Burns. 2000;26:54–62.

    Article  CAS  PubMed  Google Scholar 

  • Rho KH, Han SK, Kim WK. New measurement method of wound healing by stereoimage optical topometer system. J Korean Soc Plast Reconstr Surg. 2008;35:755–8.

    Google Scholar 

  • Ross R. The fibroblast and wound repair. Biol Rev Camb Philos Soc. 1968;43:51–96.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph R. Inhibition of myofibroblasts by skin grafts. Plast Reconstr Surg. 1979;63:473–80.

    Article  CAS  PubMed  Google Scholar 

  • Saarialho-Kere UK, Kovacs SO, Pentland AP, et al. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. J Clin Invest. 1993;92:2858–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seo YK, Song KY, Kim YJ, Park JK. Wound healing effect of acellular artificial dermis containing extracellular matrix secreted by human skin fibroblasts. Artif Organs. 2007;31:509–20.

    Article  CAS  PubMed  Google Scholar 

  • Spector M. Novel cell-scaffold interactions encountered in tissue engineering: contractile behavior of musculoskeletal connective tissue cells. Tissue Eng. 2002;8:351–7.

    Article  CAS  PubMed  Google Scholar 

  • Steven AK, Thomas WM, David JL. Use of a lyophilized bovine collagen matrix in postoperative wound healing. Dermatol Surg. 1999;25:303–7.

    Article  Google Scholar 

  • Sullival T, Smith J, Kermode J, et al. Rating the burn scar. J Burn Care Rehabil. 1990;11:256–60.

    Article  Google Scholar 

  • Swope VB, Supp AP, Boyce ST. Regulation of cutaneous pigmentation by titration of human melanocytes in cultured skin substitutes grafted to athymic mice. Wound Repair Regen. 2002;10:378–86.

    Article  PubMed  Google Scholar 

  • Terino EO. Alloderm acellular dermal graft: applications in aesthetic soft tissue augmentation. Clin Plast Surg. 2001;28:83–99.

    CAS  PubMed  Google Scholar 

  • Tomaseck JJ, Hay ED, Fujiwara K. Collagen modulates cell shape and cytoskeleton of embryonic corneal and fibroma fibroblasts: distribution of actin, alpha-actinin and myosin. Dev Biol. 1982;92:107–22.

    Article  Google Scholar 

  • Tyack ZF, Pegg S, Ziviani J. Postburn dyspigmentation: its assessment, management, and relationship to scarring. J Burn Care Rehabil. 1997;18:435–40.

    Article  CAS  PubMed  Google Scholar 

  • Uccioli L, Giurato L, Ruotolo V, et al. Two-step autologous grafting using HYAFF scaffolds in treating difficult diabetic foot ulcers: results of a multicenter, randomized controlled clinical trial with long-term follow-up. Int J Low Extrem Wounds. 2011;10:80–5.

    Article  PubMed  Google Scholar 

  • Van der Geer S, Ostertag JU, Krekels GA. Treatment of basal cell carcinomas in patients with nevoid basal cell carcinoma syndrome. J Eur Acad Dermatol Venereol. 2009;23:308–13.

    Article  PubMed  Google Scholar 

  • Velangi SS, Rees JL. Why are scars pale? An immunohistochemical study indicating preservation of melanocyte number and function in surgical scars. Acta Derm Venereol. 2001;84:326–8.

    Google Scholar 

  • Vloemans AF, Soesman AM, Suijker M, et al. A randomised clinical trial comparing a hydrocolloid-derived dressing and glycerol preserved allograft skin in the management of partial thickness burns. Burns. 2003;29:702–10.

    Article  CAS  PubMed  Google Scholar 

  • Voigt J, Driver VR. Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen. 2012;20:317–31.

    Article  PubMed  Google Scholar 

  • Yang HT, Yim HJ, Cho YS, et al. Treatment of deep second degree burn wound using heterogenic type I collagen dressing. J Korean Burn Soc. 2010;13:136–9.

    Google Scholar 

  • Zucker MB, Borrelli J. Platelet clumping produced by connective tissue suspension and by collagen. Exp Biol Med (Maywood). 1962;109:779–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Han, SK. (2016). Biologic Dermis Graft. In: Innovations and Advances in Wound Healing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46587-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46587-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46586-8

  • Online ISBN: 978-3-662-46587-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics