Advertisement

A Synthesis of 2D Mammographic Image Using Super- Resolution Technique: A Phantom Study

  • Surangkana Kantharak
  • Thanarat H. Chalidabhongse
  • Jenjeera Prueksadee
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 339)

Abstract

The gold standard for early detection of breast cancer has been the mammogram. However, this technique still has limitation for women with dense breast. Combining mammogram with digital breast tomosynthesis overcomes the limitation but increases exposure dose approximately twice. This study focuses on reducing radiation dose by synthesizing the 2D mammographic image from multiple tomosynthesis projection images using an image Super-Resolution technique based on sparse representation. We evaluated the result images using peak signal to noise ratio (PSNR), mean structure similarity (MSSIM) and phantom passing score. We compared the synthesized 2D mammographic image from multiple projection images to the one from a single central projection image. The one from multiple images yields better result with. 27.2426 PSNR and 0.4436 MSSIM. For the phantom passing score, we obtained 5, 2, 4 for fibers, group of micocalcifications, and masses, respectively.

Keywords

Digital Breast Tomosynthesis Super-Resolution Dose Reduction synthesized 2D mammographic image 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A Fundamental of Breast Tomosynthesis: Improving the Performance of Mammography, www.hologic.com/data/WP-00007-Tomo-0808.pdf
  2. 2.
    Gennaro, G., et al.: Digital Breast Tomosynthesis versus Digital Mammography: A Clinical Performance Study. European Radiology. 20(7), 1545-1553 (2010)Google Scholar
  3. 3.
    Good, W.F., et al.: Digital Breast Tomosynthesis: A Pilot Observer Study. A JR. 190(4), 865-869 (2008)Google Scholar
  4. 4.
    Noroozian, M., et al.: Digital Breast Tomosynthesis Is Comparable to Mammographic Spot Views for Mass Characterization. Radiology. 262(1), 61-68 (2012)Google Scholar
  5. 5.
    Poplack, S.P., TosTeson, T.D., Kogel, C.A., Nagy, H.M.: Digital Breast Tomosynthesis: Initial Experience in 98 Women with Abnormal Digital Screening Mammography. AJR. 189(3), 616-623 (2007)Google Scholar
  6. 6.
    Skaan, P., et al.: Comparison of Digital Mammography Alone and Digital Mammography plus Tomosynthesis in a Population-based Screening Program. Radiology. 257(1), 47-56 (2013)Google Scholar
  7. 7.
    Breast Tomosynthesis: The Use of Breast Tomosynthesis in Clinical Setting, http://www.breasttomo.com/sites/breasttomo.com/files/010-WP-00060-Rev2_June2012- TomoWhitePaper.pdf
  8. 8.
    Gur, D., et al.: Dose Reduction in Digital Breast Tomosynthesis (DBT) Screening Using Syntheically Reconstructed Projection Images. Acad Radiol. 19(2), 166-171 (2012)Google Scholar
  9. 9.
    Hologic Selenia Dimensions C-View Software Module, http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Medic alDevies/MedicalDevicesAdvisoryCommittee/RadiologicalDevicesPanel/UCM325903.pdf
  10. 10.
    Schie, G.V., Mann, R., Imhof-Tas, M., Karssemeijer, N.: Generating Synthetic Mammo-grams from Reconstructed Tomosynthesis Volumes. IEEE Transaction on Medical Imaging. 32(12), 2322-2331 (2013)Google Scholar
  11. 11.
    Park, S.C., Park, M.K., Kang, M.G.: Super-resolution Image Reconstruction: A Technical Overview. In: IEEE Signal Processing Magazine. 21-36 (2003)Google Scholar
  12. 12.
    He, H., Sui, W.C.: Single Image Super-resolution Using Gaussian Process regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.449-456. (2011)Google Scholar
  13. 13.
    Yang, J., Wright, J., Huang, T., Ma, Y.: Image Super-Resolution as Sparse Representation of Raw Image Patches. In: IEEE Conference on Computer Vision and Recognition, pp. 1-8 (2008)Google Scholar
  14. 14.
    Ning, B., Gao, X.: Multi-fram Image Super-Resolution Reconstruction Using Sparse Cooccurrence Prior and Sub-pixel Registration. Neurocomputing. 117, 128-137 (2013)Google Scholar
  15. 15.
    Yang, J., Wright, J., Huang, T., Ma, Y.: Image Super-Resolution via Sparse Represention. IEEE Transaction on Image Processing. 19(11), 2861-2873 (2010)Google Scholar
  16. 16.
    Mammography Accreditation Program Requirements, http://www.acr.org/~/media/ACR/Documents/Accreditation/Mammography/Requirements .pdf
  17. 17.
  18. 18.
    Role of the Medical Physicist in Clinical Implementation of Breast Tomosyntheis, http://www.aapm.org/meetings/amos2/pdf/59-17210-92736-449.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Surangkana Kantharak
    • 1
  • Thanarat H. Chalidabhongse
    • 2
  • Jenjeera Prueksadee
    • 3
  1. 1.Biomedical Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand
  2. 2.Computer Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand
  3. 3.Radiology, Faculty of MedicineChulalongkorn UniversityBangkokThailand

Personalised recommendations