Skip to main content

Fast Disjoint and Overlapping Community Detection

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems XVIII

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 8980))

Abstract

We propose algorithms for the detection of disjoint and overlapping communities in networks. The algorithms exploit both the degree and clustering coefficient of vertices as these metrics characterize dense connections, which we hypothesize as being indicative of communities. Each vertex independently seeks the community to which it belongs, by visiting its neighboring vertices and choosing its peers on the basis of their degrees and clustering coefficients. The algorithms are intrinsically data parallel. We devise a version for Graphics Processing Unit (GPU). We empirically evaluate the performance of our methods. We measure and compare their efficiency and effectiveness to several state-of-the-art community detection algorithms. Effectiveness is quantified by metrics, namely, modularity, conductance, internal density, cut ratio, weighted community clustering and normalized mutual information. Additionally, average community size and community size distribution are measured. Efficiency is measured by the running time. We show that our methods are both effective and efficient. Meanwhile, the opportunity to parallelize our algorithm yields an efficient solution to the community detection problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, Y.-Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466, 761 (2010)

    Article  Google Scholar 

  2. Baumes, J., Goldberg, M.K., Krishnamoorthy, M.S., Magdon-Ismail, M., Preston, N.: Finding communities by clustering a graph into overlapping subgraphs. In: IADIS AC, pp. 97–104 (2005)

    Google Scholar 

  3. Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient identification of overlapping communities. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 27–36. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Cao, X., Wang, X., Di, J., Cao, Y., Dongxiao, H.: Identifying overlapping communities as well as hubs and outliers via nonnegative matrix factorization. Scientific report (2013)

    Google Scholar 

  5. Chen, W., Liu, Z., Sun, X., Wang, Y.: A game-theoretic framework to identify overlapping communities in social networks. Data Min. Knowl. Discov. 21(2), 224–240 (2010)

    Article  MathSciNet  Google Scholar 

  6. Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72, 026132 (2005)

    Article  Google Scholar 

  7. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  8. Coscia, M., Rossetti, G., Giannotti, F., Pedreschi, D.: Demon: a local-first discovery method for overlapping communities. CoRR (2012)

    Google Scholar 

  9. CUDA-Zone. http://www.nvidia.com/object/what_is_cuda_new.html

  10. Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68, 065103 (2003)

    Article  Google Scholar 

  11. Du, N., Wu, B., Pei, X., Wang, B., Xu, L.: Community detection in large-scale social networks. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, WebKDD/SNA-KDD 2007, pp. 16–25. ACM (2007)

    Google Scholar 

  12. Email-URV. http://deim.urv.cat/aarenas/data/welcome.htm

  13. Fortunato, S., Lancichinetti, A.: Community detection algorithms: a comparative analysis: invited presentation, extended abstract. In: VALUETOOLS 2009. ICST, Brussels, Belgium (2009)

    Google Scholar 

  14. Gergely Palla, I.F., Derenyi, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  15. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gleich, D.F., Seshadhri, C.: Vertex neighborhoods, low conductance cuts, and good seeds for local community methods. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012. ACM, New York (2012)

    Google Scholar 

  17. Goldberg, M.K., Kelley, S., Magdon-Ismail, M., Mertsalov, K., Wallace, A.: Finding overlapping communities in social networks. In: SocialCom/PASSAT, pp. 104–113 (2010)

    Google Scholar 

  18. Gregory, S.: An algorithm to find overlapping community structure in networks. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 91–102. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Gregory, S.: A fast algorithm to find overlapping communities in networks. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 408–423. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Harel, D., Koren, Y.: On clustering using random walks. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 18–41. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Holland, P.W., Leinhardt, S.: Transitivity in structural models of small groups. Small Group Res. 2(2), 107–124 (1971)

    Article  Google Scholar 

  22. Jin, D., Yang, B., Baquero, C., Liu, D., He, D., Liu, J.: A markov random walk under constraint for discovering overlapping communities in complex networks. J. Stat. Mech. Theory Exp. 2011, P05031 (2011)

    Google Scholar 

  23. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11, 033015 (2009)

    Article  Google Scholar 

  24. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E (Stat. Nonlin. Soft Matter Phys.) 78(4), 046110 (2008)

    Article  Google Scholar 

  25. Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically significant communities in networks. PLoS One 6(5)

    Google Scholar 

  26. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web. ACM (2010)

    Google Scholar 

  27. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: densification and shrinking diameters. TKDD 1(1), 1–40 (2007)

    Article  Google Scholar 

  28. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  29. Massa, P., Avesani, P.: Trust metrics in recommender systems. In: Golbeck, J. (ed.) Computing with Social Trust. Springer, London (2009)

    Google Scholar 

  30. Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F.: Fuzzy communities and the concept of bridgeness in complex networks. Phys. Rev. E 77(1), 16107 (2008)

    Article  Google Scholar 

  31. Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  32. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity to directed graphs with overlapping communities. J. Stat. Mech. Theory Exp. 2009, P03024 (2009)

    Article  Google Scholar 

  33. Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  34. Prat-Pérez, A., Dominguez-Sal, D., Brunat, J.M., Larriba-Pey, J.-L.: Shaping communities out of triangles. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM 2012. ACM (2012)

    Google Scholar 

  35. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Nat. Acad. Sci. U.S.A. 105, 1118–1123 (2008)

    Article  Google Scholar 

  36. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. SNAP. http://snap.stanford.edu/data

  38. Song, Y., Bressan, S.: Fast community detection. DEXA 1, 404–418 (2013)

    Google Scholar 

  39. TrustLet. http://www.trustlet.org/

  40. van Dongen, S.M.: Graph clustering by flow simulation. Ph.D. thesis, University of Utrecht (2000)

    Google Scholar 

  41. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 409–410 (1998)

    Article  Google Scholar 

  42. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45(4), 43:1–43:35 (2013)

    Article  Google Scholar 

  43. Xie, J., Szymanski, B.K.: Towards linear time overlapping community detection in social networks. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part II. LNCS, vol. 7302, pp. 25–36. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  44. Yan, B., Gregory, S.: Detecting communities in networks by merging cliques. CoRR (2012)

    Google Scholar 

  45. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, MDS 2012. ACM (2012)

    Google Scholar 

  46. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative matrix factorization approach. In: WSDM (2013)

    Google Scholar 

  47. Yen, L., Vanvyve, L., Wouters, D., Fouss, F., Verleysen, F., Saerens, M.: Clustering using a random-walk based distance measure. In: Proceedings of ESANN’2005 (2005)

    Google Scholar 

  48. Zhang, S., Wang, R.S., Zhang, X.S.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Phys. A 374(1), 483–490 (2007)

    Article  Google Scholar 

  49. Zhang, Z.-Y., Wang, Y., Ahn, Y.-Y.: Overlapping community detection in complex networks using symmetric binary matrix factorization. CoRR (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, Y., Bressan, S., Dobbie, G. (2015). Fast Disjoint and Overlapping Community Detection. In: Hameurlain, A., Küng, J., Wagner, R., Decker, H., Lhotska, L., Link, S. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XVIII. Lecture Notes in Computer Science(), vol 8980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46485-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46485-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46484-7

  • Online ISBN: 978-3-662-46485-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics