Skip to main content

Continuous Predictive Line Queries for On-the-Go Traffic Estimation

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems XVIII

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 8980))

Abstract

Traffic condition is one vital piece of information that any commuter would wish to obtain to plan an efficient route. However, most existing works monitor and report only current traffic, which makes it too late for commuters to change their routes when they realize they are already stuck in the traffic. Therefore, in this paper, we propose a traffic prediction approach by defining and solving a novel continuous predictive line query. The continuous predictive line query aims to accurately estimate traffic conditions in the near future based on current movement of vehicles on the roads, and continuously update the predicted traffic conditions as vehicles move. The predicted traffic condition will not only help redirect commuters in advance but also help relieve the overall traffic congestion problem. We have proposed three algorithms to answer the query and carried out both theoretical and empirical study. Our experimental results demonstrate the effectiveness and efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Both the terms Moving Object and Vehicle will be used interchangeably.

  2. 2.

    Note that the minimum speed is always greater than 0 since we exclude outlier objects with speed equal to 0 (e.g., an object stopped at a gas station).

  3. 3.

    Since the accuracy is not affected by the buffer, it is omitted in the discussion.

References

  1. Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformatica 6, 153–180 (2004)

    Article  Google Scholar 

  2. Cai, Y., Hua, K.A., Cao, G.: Processing range-monitoring queries on heterogeneous mobile objects. In: IEEE International Conference on Mobile Data Management (2004)

    Google Scholar 

  3. Chen, S., Ooi, B.C., Tan, K.-L., Nascimento, M.A.: ST2B-tree: a self-tunable spatio-temporal B+-tree index for moving objects. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 29–42. ACM, New York (2008)

    Google Scholar 

  4. Predic, B., Papadopoulos, A.N., Stojanovic, D., Djordjevic-Kajan, S., Nanopoulos, A.: Continuous range query processing for network constrained mobile objects. In: 8th International Conference on Enterprise Information Systems (2006)

    Google Scholar 

  5. Feng, J., Lu, J., Zhu, Y., Mukai, N., Watanabe, T.: Indexing of moving objects on road network using composite structure. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007/WIRN 2007, Part II. LNCS (LNAI), vol. 4693, pp. 1097–1104. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Gedik, B., Liu, L.: MobiEyes: a distributed location monitoring service using moving location queries. IEEE Trans. Mob. Comput. 5, 1384–1402 (2006)

    Article  Google Scholar 

  7. Heendaliya, L., Lin, D., Hurson, A.R.: Predictive line queries for traffic forecasting. In: Database and Expert Systems Applications (2012)

    Google Scholar 

  8. Heendaliya, L., Lin, D., Hurson, A.: Continuous predictive line queries under road-network constraints. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part II. LNCS, vol. 8056, pp. 228–242. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial queries over moving objects. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2005)

    Google Scholar 

  10. Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient B\(^+\)-tree based indexing of moving objects. In: Proceedings of the 30\(^{th}\) International Conference on Very Large Data Bases, VLDB 2004, vol. 30, pp. 768–779. VLDB Endowment (2004)

    Google Scholar 

  11. Jensen, C.S., Lin, D., Beng, C.O., Zhang, R.: Effective density queries on continuously moving objects. In: Proceedings of the 22nd International Conference on Data Engineering (2006)

    Google Scholar 

  12. Kyoung-Sook, K., Si-Wan, K., Tae-Wan, K., Ki-Joune, L.: Fast indexing and updating method for moving objects on road networks. In: Proceedings of the 4th International Conference on Web Information Systems Engineering Workshops (2003)

    Google Scholar 

  13. Liu, F., Hua, K.A.: Moving query monitoring in spatial network environments. Mob. Netw. Appl. (2012)

    Google Scholar 

  14. Hadjieleftheriou, M., Kollios, G., Gunopulos, D., Tsotras, V.J.: On-line discovery of dense areas in spatio-temporal databases. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 306–324. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. mobiThinking (2013)

    Google Scholar 

  16. Mouratidis, K., Papadias, D., Bakiras, S., Tao, Y.: A threshold-based algorithm for continuous monitoring of k nearest neighbors. IEEE Trans. Knowl. Data Eng. 17, 1451–1464 (2005)

    Article  Google Scholar 

  17. Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2005)

    Google Scholar 

  18. Mouratidis, K., Yiu, L., Papadias, D., Mamoulis, N.: Continuous nearest neighbor monitoring in road networks. In: Proceedings of the 32nd International Conference on Very Large Data Bases (2006)

    Google Scholar 

  19. Nehme, R.V., Rundensteiner, E.A.: SCUBA: scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1001–1019. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Ni, J., Ravishankar, C.V.: Pointwise-dense region queries in spatio-temporal databases. In: IEEE 23rd International Conference on Data Engineering (2007)

    Google Scholar 

  21. Nutanong, S., Tanin, E., Shao, J., Zhang, R., Kotagiri, R.: Continuous detour queries in spatial networks. IEEE Trans. Knowl. Data Eng. 24, 1201–1215 (2012)

    Article  Google Scholar 

  22. Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch, S.E.: Query indexing and velocity constrained indexing: scalable techniques for continuous queries on moving objects. IEEE Trans. Comput. 51, 1124–1140 (2002)

    Article  MathSciNet  Google Scholar 

  23. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-temporal access method for predictive queries. In: Proceedings of the 29th International Conference on Very Large Data Bases, VLDB 2003, vol. 29, pp. 790–801. VLDB Endowment (2003)

    Google Scholar 

  24. Šaltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. SIGMOD Rec. 29(2), 331–342 (2000)

    Article  Google Scholar 

  25. Wang, H., Zimmermann, R.: Processing of continuous location-based range queries on moving objects in road networks. IEEE Trans. Knowl. Data Eng. 23, 1065–1078 (2011)

    Article  Google Scholar 

  26. Wen, J., Meng, X., Hao, X., Xu, J.: An Efficient approach for continuous density queries. Front. Comput. Sci. 6, 581–595 (2012)

    MathSciNet  Google Scholar 

  27. Xia, T., Zhang, D.: Continuous reverse nearest neighbor monitoring. In: Proceedings of the 22nd International Conference on Data Engineering (2006)

    Google Scholar 

  28. Xiong, X., Mokbel, M.F., Aref, W.G.: SEA-CNN: scalable processing of continuous K-Nearest neighbor queries in spatio-temporal databases. In: Proceedings of the 21st International Conference on Data Engineering (2005)

    Google Scholar 

  29. Yiu, M.L., Tao, Y., Mamoulis, N.: The Bdual-tree: indexing moving objects by space filling curves in the dual space. Very Large Data Bases J. 17, 379–400 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This work is partly funded by the U.S. National Science Foundation under Grant No. CNS-1250327.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lasanthi Heendaliya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heendaliya, L., Lin, D., Hurson, A. (2015). Continuous Predictive Line Queries for On-the-Go Traffic Estimation. In: Hameurlain, A., KĂĽng, J., Wagner, R., Decker, H., Lhotska, L., Link, S. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XVIII. Lecture Notes in Computer Science(), vol 8980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46485-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46485-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46484-7

  • Online ISBN: 978-3-662-46485-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics