Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 791 Accesses

Abstract

This section presents the methods used for developing the emission inventory of black carbon (BC) is described, including the collection of BC emission factors, compilation of high-resolution fuel consumption data, technology divisions, and calculation of BC emissions. The atmospheric transport model used to simulate the global transport and distribution of BC in the atmosphere and the methodology used to estimate the exposure of black carbon are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimoto, H., Ohara, T., Kurokawa, J. -I., & Horii, N. (2006). Verification of energy consumption in China during 1996–2003 by using satellite observational data. Atmospheric Environment, 40(40), 7663–7667.

    Article  CAS  Google Scholar 

  • American Petroleum Institute. (2001). Compendium of greenhouse gas emissions estimation methodologies for the oil and gas industry, pilot test version. Retrieved from http://www.api.org/environment-health-and-safety/climate-change/whats-new/compendium-ghg-methodologies-oil-and-gas-industry.

  • Andres, R. J., Marland, G., Fung, I., & Matthews, E. (1996). A 1 × 1 distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990. Global Biogeochemical Cycles, 10(3), 419–429.

    Article  CAS  Google Scholar 

  • Australian Bureau of Agricultural and Resource Economics and Sciences. (2008). Energy in Australia 2008. Retrieved from http://www.abares.gov.au/publications.

  • Balkanski, Y., Schulz, M., Claquin, T., & Guibert, S. (2007). Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmospheric Chemistry and Physics, 7(1), 81–95.

    Article  CAS  Google Scholar 

  • Balkanski, Y., Myhre, G., Gauss, M., Rädel, G., Highwood, E., & Shine, K. (2010). Direct radiative effect of aerosols emitted by transport: From road, shipping and aviation. Atmospheric Chemistry and Physics, 10(10), 4477–4489.

    Article  CAS  Google Scholar 

  • Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., & Turekian, K. K. (1993). Transport and residence times of tropospheric aerosols inferred from a global three‐dimensional simulation of 210Pb. Journal of Geophysical Research: Atmospheres (1984–2012), 98(D11), 20573–20586.

    Google Scholar 

  • Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S., Honoré, C., et al. (2004). Aerosol modeling with CHIMERE—preliminary evaluation at the continental scale. Atmospheric Environment, 38(18), 2803–2817.

    Article  CAS  Google Scholar 

  • Bi, X., Simoneit, B. R., Sheng, G., & Fu, J. (2008). Characterization of molecular markers in smoke from residential coal combustion in China. Fuel, 87(1), 112–119.

    Article  CAS  Google Scholar 

  • Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., & Klimont, Z. (2004). A technology‐based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research: Atmospheres (1984–2012), 109(D14).

    Google Scholar 

  • Boucher, O., & Pham, M. (2002). History of sulfate aerosol radiative forcings. Geophysical Research Letters, 29(9), 22-21-22-24.

    Google Scholar 

  • Brazil Energy Ministry. (2010). Brazil energy statistics. Retrieved from http://www.mme.gov.br/mme.

  • Cao, G., Zhang, X., & Zheng, F. (2006). Inventory of black carbon and organic carbon emissions from China. Atmospheric Environment, 40(34), 6516–6527.

    Article  CAS  Google Scholar 

  • Cao, G., Zhang, X., Gong, S., & Zheng, F. (2008). Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning. Journal of Environmental Sciences, 20(1), 50–55.

    Article  CAS  Google Scholar 

  • Centre on Emission Inventories and Projections. (2011). Emissions as used in EMEP models. Retrieved from http://www.ceip.

  • Chen, Y., Sheng, G., Bi, X., Feng, Y., Mai, B., & Fu, J. (2005). Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environmental Science and Technology, 39(6), 1861–1867.

    Article  CAS  Google Scholar 

  • Chen, Y., Zhi, G., Feng, Y., Fu, J., Feng, J., Sheng, G., & Simoneit, B. R. (2006). Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China. Geophysical Research Letters, 33(20), L20815.

    Article  Google Scholar 

  • Chen, Y., Zhi, G., Feng, Y., Liu, D., Zhang, G., Li, J., et al. (2009). Measurements of black and organic carbon emission factors for household coal combustion in China: Implication for emission reduction. Environmental Science and Technology, 43(24), 9495–9500.

    Article  CAS  Google Scholar 

  • Ciais, P., Paris, J., Marland, G., Peylin, P., Piao, S., Levin, I., et al. (2010). The European carbon balance. Part 1: Fossil fuel emissions. Global Change Biology, 16(5), 1395–1408.

    Article  Google Scholar 

  • Cooke, W. F., & Wilson, J. J. (1996). A global black carbon aerosol model. Journal of Geophysical Research: Atmospheres (1984–2012), 101(D14), 19395–19409.

    Google Scholar 

  • Elvidge, C. D., Ziskin, D., Baugh, K. E., Tuttle, B. T., Ghosh, T., Pack, D. W., et al. (2009). A fifteen year record of global natural gas flaring derived from satellite data. Energies, 2(3), 595–622.

    Article  CAS  Google Scholar 

  • Endresen, Ø., Sørgård, E., Behrens, H. L., Brett, P. O., & Isaksen, I. S. (2007). A historical reconstruction of ships’ fuel consumption and emissions. Journal of Geophysical Research: Atmospheres (1984–2012), 112(D12).

    Google Scholar 

  • Environment Canada/Natural Resource Canada. (2010). State Energy Statistics 2007. Retrieved from www.nrcan.gc.ca.

  • Equasis. (2008). The world merchant fleet in 2007 (Lisbon). Retrieved from http://www.equasis.org/EquasisWeb/public/HomePage.

  • European Commission Joint Research Centre/Netherlands Environmental Assessment Agency. (2011). Emission database for global atmospheric research (EDGAR), release version 4.2. Retrieved from http://edgar.jrc.ec.europa.eu.

  • Eyring, V., Köhler, H., Van Aardenne, J., & Lauer, A. (2005). Emissions from international shipping: 1. The last 50 years. Journal of Geophysical Research: Atmospheres (1984–2012), 110(D17).

    Google Scholar 

  • Fraser, M. P., Cass, G. R., & Simoneit, B. R. (1999). Particulate organic compounds emitted from motor vehicle exhaust and in the urban atmosphere. Atmospheric Environment, 33(17), 2715–2724.

    Article  CAS  Google Scholar 

  • Friedl, M. A., McIver, D. K., Hodges, J. C., Zhang, X., Muchoney, D., Strahler, A. H., et al. (2002). Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment, 83(1), 287–302.

    Article  Google Scholar 

  • Guan, D., Liu, Z., Geng, Y., Lindner, S., & Hubacek, K. (2012). The gigatonne gap in China’s carbon dioxide inventories. Nature Climate Change, 2(9), 672–675.

    Article  CAS  Google Scholar 

  • Guelle, W., Balkanski, Y., Dibb, J., Schulz, M., & Dulac, F. (1998). Wet deposition in a global size‐dependent aerosol transport model: 2. Influence of the scavenging scheme on 210Pb vertical profiles, surface concentrations, and deposition. Journal of Geophysical Research: Atmospheres (1984–2012), 103(D22), 28875–28891.

    Google Scholar 

  • Guelle, W., Balkanski, Y., Schulz, M., Marticorena, B., Bergametti, G., Moulin, C., Arimoto, R., & Perry, K. (2000). Modeling the atmospheric distribution of mineral aerosol: Comparison with ground measurements and satellite observations for yearly and synoptic timescales over the North Atlantic. Journal of Geophysical Research: Atmospheres (1984–2012), 105(D2), 1997–2012.

    Google Scholar 

  • Hourdin, F., & Armengaud, A. (1999). The use of finite-volume methods for atmospheric advection of trace species. Part I: Test of various formulations in a general circulation model. Monthly Weather Review, 127(5), 822–837.

    Article  Google Scholar 

  • Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., et al. (2006). The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dynamics, 27(7–8), 787–813.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change. (1996). Revised 1996 IPCC guidelines for national greenhouse gas inventories, Reference Manual (Vol. 3). Retrieved from http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.htm.

  • International Energy Agency. (2010a). Energy statistics and balances of Non-OECD countries 1970–2006 [Press release].

    Google Scholar 

  • International Energy Agency. (2010b). Energy statistics and balances of OECD countries 1960–2006 [Press release].

    Google Scholar 

  • International Road Federation. (2009). World road statistics 2009. Geneva.

    Google Scholar 

  • Johnson, M., Edwards, R., Alatorre Frenk, C., & Masera, O. (2008). In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmospheric Environment, 42(6), 1206–1222.

    Article  CAS  Google Scholar 

  • Jung, C. H., Kim, Y. P., & Lee, K. (2003). A moment model for simulating raindrop scavenging of aerosols. Journal of Aerosol Science, 34(9), 1217–1233.

    Article  CAS  Google Scholar 

  • Junker, C., & Liousse, C. (2008). A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmospheric Chemistry and Physics, 8(5), 1195–1207.

    Article  CAS  Google Scholar 

  • Kim Oanh, N. T., Thiansathit, W., Bond, T. C., Subramanian, R., Winijkul, E., & Paw-armart, I. (2010). Compositional characterization of PM <sub> 2.5 </sub> emitted from in-use diesel vehicles. Atmospheric Environment, 44(1), 15–22.

    Google Scholar 

  • Kleeman, M. J., Robert, M. A., Riddle, S. G., Fine, P. M., Hays, M. D., Schauer, J. J., & Hannigan, M. P. (2008). Size distribution of trace organic species emitted from biomass combustion and meat charbroiling. Atmospheric Environment, 42(13), 3059–3075.

    Article  CAS  Google Scholar 

  • Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., et al. (2010). Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10(15), 7017–7039.

    Article  CAS  Google Scholar 

  • Lee, S., Baumann, K., Schauer, J. J., Sheesley, R. J., Naeher, L. P., Meinardi, S., et al. (2005). Gaseous and particulate emissions from prescribed burning in Georgia. Environmental Science and Technology, 39(23), 9049–9056.

    Article  CAS  Google Scholar 

  • Li, X., Wang, S., Duan, L., Hao, J., & Nie, Y. (2009). Carbonaceous aerosol emissions from household biofuel combustion in China. Environmental Science and Technology, 43(15), 6076–6081.

    Article  CAS  Google Scholar 

  • Li, X., Wang, S., Duan, L., Hao, J., Li, C., Chen, Y., & Yang, L. (2007). Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environmental Science and Technology, 41(17), 6052–6058.

    Article  CAS  Google Scholar 

  • Lin, X., Tang, D., Ding, Y., Yin, H., & Ji, Z. (2009). Study on the distribution of vehicle mileage traveled in China. Research of Environmental Sciences, 22(3), 377–380.

    Google Scholar 

  • Liu, H., Jacob, D. J., Bey, I., & Yantosca, R. M. (2001). Constraints from 210Pb and 7Be on wet deposition and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological fields. Journal of Geophysical Research: Atmospheres (1984–2012), 106(D11), 12109–12128.

    Google Scholar 

  • Marland, G., Boden, T. A., Andres, R. J., Brenkert, A., & Johnston, C. (2003). Global, regional, and national fossil fuel CO2 emissions (pp. 34–43). Trends: A compendium of data on global change.

    Google Scholar 

  • Menut, L., Vautard, R., Beekmann, M., & Honoré, C. (2000). Sensitivity of photochemical pollution using the adjoint of a simplified chemistry‐transport model. Journal of Geophysical Research: Atmospheres (1984–2012), 105(D12), 15379–15402.

    Google Scholar 

  • Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., et al. (2014). CHIMERE 2013: A model for regional atmospheric composition modelling. Geoscientific Model Development, 6(4), 981–1028.

    Google Scholar 

  • Ministry of Agriculture of China. (2008). China agriculture yearbook 2008. Beijing.

    Google Scholar 

  • National Bureau of Statistics and National Energy Administration. (2009). China energy statistical yearbook, 1986, 1989–2008 (editions) [Press release].

    Google Scholar 

  • National Development and Reform Commission and Development Research Center of the State Council. (2009). 2050 China energy and CO2 emissions report. Beijing.

    Google Scholar 

  • NOAA Earth Observation Group. (2011). Global gas flaring estimates. Retrieved from http://www.ngdc.noaa.gov/dmsp/interest/gasflares.html.

  • Nyboer, J., Strickland, C., & Tu, J. J. (2006). Improved CO2, CH4 and N2O emission factors for producer-consumed fuels in oil refinerie. Canadian Industrial End-use Energy Data and Analysis Centre.

    Google Scholar 

  • Oak Ridge National Laboratory. (2008). LandScan global population 2007 database. Retrieved from http://www.ornl.gov/sci/landscan/.

  • Oda, T., & Maksyutov, S. (2011). A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmospheric Chemistry and Physics, 11(2), 543–556.

    Article  CAS  Google Scholar 

  • Olivares, G., Ström, J., Johansson, C., & Gidhagen, L. (2008). Estimates of black carbon and size-resolved particle number emission factors from residential wood burning based on ambient monitoring and model simulations. Journal of the Air and Waste Management Association, 58(6), 838–848.

    Article  CAS  Google Scholar 

  • Parashar, D., Gadi, R., Mandal, T., & Mitra, A. (2005). Carbonaceous aerosol emissions from India. Atmospheric Environment, 39(40), 7861–7871.

    Article  CAS  Google Scholar 

  • Quaas, J., Boucher, O., & Lohmann, U. (2006). Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data. Atmospheric Chemistry and Physics, 6(4), 947–955.

    Article  CAS  Google Scholar 

  • Reddy, M. S., & Boucher, O. (2004). A study of the global cycle of carbonaceous aerosols in the LMDZT general circulation model. Journal of Geophysical Research: Atmospheres (1984–2012), 109(D14).

    Google Scholar 

  • Reddy, M. S., Boucher, O., Balkanski, Y., & Schulz, M. (2005). Aerosol optical depths and direct radiative perturbations by species and source type. Geophysical Research Letters, 32(12).

    Google Scholar 

  • Roden, C. A., Bond, T. C., Conway, S., & Pinel, A. B. O. (2006). Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environmental Science and Technology, 40(21), 6750–6757.

    Article  CAS  Google Scholar 

  • Roden, C. A., Bond, T. C., Conway, S., Osorto Pinel, A. B., MacCarty, N., & Still, D. (2009). Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmospheric Environment, 43(6), 1170–1181.

    Google Scholar 

  • Saud, T., Gautam, R., Mandal, T., Gadi, R., Singh, D., Sharma, S., et al. (2012). Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India. Atmospheric Environment, 61, 212–220.

    Article  CAS  Google Scholar 

  • Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K., Goldammer, J. G., et al. (2008). Global wildland fire emissions from 1960 to 2000. Global Biogeochemical Cycles, 22(2).

    Google Scholar 

  • Schulz, M., Balkanski, Y. J., Guelle, W., & Dulac, F. (1998). Role of aerosol size distribution and source location in a three‐dimensional simulation of a Saharan dust episode tested against satellite‐derived optical thickness. Journal of Geophysical Research: Atmospheres (1984–2012), 103(D9), 10579–10592.

    Google Scholar 

  • Seinfeld, J., & Pandis, S. (1998). Atmospheric chemistry and physics (pp. 1326). Hoboken, NJ: Wiley.

    Google Scholar 

  • Shen, G., Yang, Y., Wang, W., Tao, S., Zhu, C., Min, Y., et al. (2010). Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. Environmental Science and Technology, 44(18), 7157–7162.

    Article  CAS  Google Scholar 

  • Shen, G., Siye, W., Wen, W., Yanyan, Z., Yujia, M., Bin, W., et al. (2012). Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China. Environmental Science and Technology, 46(7), 4207–4214.

    Article  CAS  Google Scholar 

  • Shen, G., Tao, S., Wei, S., Chen, Y., Zhang, Y., Shen, H., et al. (2013). Field measurement of emission factors of PM, EC, OC, Parent, Nitro-, and Oxy-Polycyclic Aromatic Hydrocarbons for Residential Briquette, Coal Cake, and Wood in Rural Shanxi, China. Environmental science & Technology, 47(6), 2998–3005.

    Article  CAS  Google Scholar 

  • Sjödin, Å., & Andréasson, K. (2000). Multi-year remote-sensing measurements of gasoline light-duty vehicle emissions on a freeway ramp. Atmospheric Environment, 34(27), 4657–4665.

    Article  Google Scholar 

  • Slinn, S., & Slinn, W. (1980). Predictions for particle deposition on natural waters. Atmospheric Environment (1967), 14(9), 1013–1016.

    Google Scholar 

  • Statistics South Africa. (2009). Energy accounts for South Africa: 2002–2006. Pretoria.

    Google Scholar 

  • Streets, D., Bond, T., Carmichael, G., Fernandes, S., Fu, Q., He, D., et al. (2003). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research: Atmospheres (1984–2012), 108(D21).

    Google Scholar 

  • Streets, D. G., Gupta, S., Waldhoff, S. T., Wang, M. Q., Bond, T. C., & Yiyun, B. (2001). Black carbon emissions in China. Atmospheric Environment, 35(25), 4281–4296.

    Article  CAS  Google Scholar 

  • Streets, D. G., Hao, J., Wu, Y., Jiang, J., Chan, M., Tian, H., & Feng, X. (2005). Anthropogenic mercury emissions in China. Atmospheric Environment, 39(40), 7789–7806.

    Article  CAS  Google Scholar 

  • Subramanian, R., Winijkul, E., Bond, T. C., Thiansathit, W., Oanh, N. T. K., Paw-Armart, I., & Duleep, K. (2009). Climate-relevant properties of diesel particulate emissions: Results from a piggyback study in Bangkok. Thailand. Environmental Science & Technology, 43(11), 4213–4218.

    Article  CAS  Google Scholar 

  • Sun, X. (2006). Authorities work on SO2 trade system.

    Google Scholar 

  • Szopa, S., Balkanski, Y., Schulz, M., Bekki, S., Cugnet, D., Fortems-Cheiney, A., et al. (2013). Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Climate Dynamics, 40(9–10), 2223–2250.

    Article  Google Scholar 

  • Tata Energy Research Institute. (2008). Tata energy directory and data yearbook 2007. New Delhi, India.

    Google Scholar 

  • The World Bank. (2010). World development indicators. Retrieved from http://databank.worldbank.org/ddp/home.do.

  • Tiedtke, M. (1989). A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review, 117(8), 1779–1800.

    Article  Google Scholar 

  • Tsyro, S. (2002). First estimates of the effect of aerosol dynamics in the calculation of PM10 and PM2. 5. EMEP Report, 4(02).

    Google Scholar 

  • Turkish Statistical Institute. (2010). Turkish statistical institute regional statistics 2007. Retrieved from http://tuikapp.tuik.gov.tr/Bolgesel/sorguSayfa.do?target=tablo.

  • Ummel, K. (2012). CARMA revisited: An updated database of carbon dioxide emissions from power plants worldwide. Center for Global Development, Working Paper 304.

    Google Scholar 

  • United Nations Industrial Development Organization. (2008). International yearbook of industrial statistics 2008. Cheltenham, UK.

    Google Scholar 

  • United Nations Statistics Division. (1995). United Nations energy statistics, 1950–1995. New York: United Nations Statistics Division.

    Google Scholar 

  • United Nations Statistics Division. (2010). Environmental indicators: Waste. Retrieved from http://unstats.un.org/unsd/environment/qindicators.htm.

  • United States Environmental Protection Agency. (2006). Mexico national emissions inventory. Retrieved from http://www.epa.gov/ttn/chief/net/mexico.html.

  • United States Environmental Protection Agency. (2011). National emissions inventory data & documentation (NC: USEPA, Research Triangle Park). Retrieved from http://www.epa.gov/ttn/chief/net/2008inventory.html.

  • URS. (2003). Corporation EME greenhouse gas emission factor review—final technical memorandum. Austin, Texas.

    Google Scholar 

  • US Department of Energy. (2000). Instructions for form EIA 1605 voluntary reporting of greenhouse gases, Appendix B—Fuel and energy source codes and emission coefficients. Retrieved from http://www.eia.gov/oiaf/1605/reportingformprelaunch.html.

  • US Energy Information Administration. (2008). State energy data. from http://www.eia.gov/state/.

  • US Geological Survey. (2010). Cement statistics and information 2007. Retrieved from http://minerals.usgs.gov/minerals/pubs/commodity/cement/.

  • van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G., Mu, M., Kasibhatla, P. S., et al. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735.

    Google Scholar 

  • Van Leer, B. (1977). Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. Journal of Computational Physics, 23(3), 276–299.

    Article  Google Scholar 

  • Vautard, R., Beekmann, M., Honoré, C., & Martel, F. (2000). Prévisibilité et prévision des pics de pollution en région parisienne.

    Google Scholar 

  • Vautard, R., Honore, C., Beekmann, M., & Rouil, L. (2005). Simulation of ozone during the August 2003 heat wave and emission control scenarios. Atmospheric Environment, 39(16), 2957–2967.

    Article  CAS  Google Scholar 

  • Vautard, R., Beekmann, M., Bessagnet, B., Blond, N., Hodzic, A., Honoré, C., et al. (2004). The use of MM5 for operational ozone/NOx/aerosols prediction in Europe: Strengths and weaknesses of MM5. Paper presented at the Workshop Papers from the 5th WRF & 14th MM5 Users’ Workshop.

    Google Scholar 

  • Vautard, R., Builtjes, P., Thunis, P., Cuvelier, C., Bedogni, M., Bessagnet, B., et al. (2007). Evaluation and intercomparison of Ozone and PM10 simulations by several chemistry transport models over four European cities within the City Delta project. Atmospheric Environment, 41(1), 173–188.

    Article  CAS  Google Scholar 

  • Wang, C., Corbett, J. J., & Firestone, J. (2008). Improving spatial representation of global ship emissions inventories. Environmental Science and Technology, 42(1), 193–199.

    Article  CAS  Google Scholar 

  • Wang, R., Tao, S., Shen, H., Wang, X., Li, B., Shen, G., et al. (2012a). Global emission of black carbon from motor vehicles from 1960 to 2006. Environmental Science and Technology, 46(2), 1278–1284.

    Article  CAS  Google Scholar 

  • Wang, R., Tao, S., Wang, W., Liu, J., Shen, H., Shen, G., et al. (2012b). Black carbon emissions in China from 1949 to 2050. Environmental Science and Technology, 46(14), 7595–7603.

    Article  CAS  Google Scholar 

  • Wang, R., Tao, S., Ciais, P., Shen, H., Huang, Y., Chen, H., et al. (2013). High-resolution mapping of combustion processes and implications for CO2 emissions. Atmospheric Chemistry and Physics, 13(10), 5189–5203.

    Article  CAS  Google Scholar 

  • Wang, R., Tao, S., Balkanski, Y., Ciais, P., Boucher, O., Liu, J., et al. (2014a). Exposure to ambient black carbon derived from a unique inventory and high-resolution model. Proceedings of the National Academy of Sciences, 111(7), 2459–2463.

    Article  CAS  Google Scholar 

  • Wang, R., Tao, S., Shen, H., Huang, Y., Chen, H., Balkanski, Y., et al. (2014b). Trend in global black carbon emissions from 1960 to 2007. Environmental science & technology.

    Google Scholar 

  • Watson, J. C., Chow, J., & Chen, L. (2005). Summary of organic and elemental carbon/black carbon analysis methods and intercompari- sons. Aerosol Air Quality Research, 5(1), 65–102.

    CAS  Google Scholar 

  • Westerdahl, D., Wang, X., Pan, X., & Zhang, K. M. (2009). Characterization of on-road vehicle emission factors and microenvironmental air quality in Beijing, China. Atmospheric Environment, 43(3), 697–705.

    Article  CAS  Google Scholar 

  • Wheeler, D., & Ummel, K. (2008). Calculating CARMA: Global estimation of CO2 emissions from the power sector. Center for Global Development, Working Paper 145.

    Google Scholar 

  • Williams, D. J., Milne, J. W., Quigley, S. M., Roberts, D. B., & Kimberlee, M. C. (1989). Particulate emissions from ‘in-use’ motor vehicles—II. Diesel vehicles. Atmospheric Environment, 23, 2647–2661.

    Article  CAS  Google Scholar 

  • Xu, Y. (2010). Improvements in the operation of SO2 scrubbers in China’s coal power plants. Environmental Science and Technology, 45(2), 380–385.

    Article  Google Scholar 

  • Yevich, R., & Logan, J. A. (2003). An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochemical Cycles, 17(4).

    Google Scholar 

  • Zhang, H., Ye, X., Cheng, T., Chen, J., Yang, X., Wang, L., & Zhang, R. (2008a). A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory. Atmospheric Environment, 42(36), 8432–8441.

    Article  CAS  Google Scholar 

  • Zhang, Y., Schauer, J. J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y., & Shao, M. (2008b). Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Environmental Science and Technology, 42(14), 5068–5073.

    Article  CAS  Google Scholar 

  • Zhang, Q., Streets, D. G., Carmichael, G. R., He, K., Huo, H., Kannari, A., et al. (2009). Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 9(14), 5131–5153.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Tao, S. (2009). Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment, 43(4), 812–819.

    Article  CAS  Google Scholar 

  • Zhang, Y., Tao, S., Cao, J., & Coveney, R. M. (2007). Emission of polycyclic aromatic hydrocarbons in China by county. Environmental Science and Technology, 41(3), 683–687.

    Article  CAS  Google Scholar 

  • Zhi, G., Chen, Y., Feng, Y., Xiong, S., Li, J., Zhang, G., et al. (2008). Emission characteristics of carbonaceous particles from various residential coal-stoves in China. Environmental Science and Technology, 42(9), 3310–3315.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, R. (2015). Research Method. In: Global Emission Inventory and Atmospheric Transport of Black Carbon. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46479-3_3

Download citation

Publish with us

Policies and ethics