Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 805 Accesses

Abstract

The sources of black carbon (BC) in the atmosphere include wildfires, volcanoes eruption, energy-related combustion of fossil fuels and biofuels and some industrial activities (Penner et al. 1993; Streets et al. 2001; Bond et al. 2004). For the present-day, over two thirds of BC emissions are coming from anthropogenic sources due to a rapid increase of fossil fuel and biofuel consumptions by industry and by domestic activities (Bond et al. 2004). In addition, some natural processes also produce BC to the atmosphere, in particular from forest fires and savanna fires (Andreae and Merlet 2001). Based on past emission inventories of BC (Turco et al. 1983; Penner et al. 1993; Cooke and Wilson 1996; Liousse et al. 1996; Andreae and Merlet 2001; Novakov et al. 2003; Bond et al. 2004, 2007; Ito and Penner 2005; Dentener et al. 2006; Junker and Liousse 2008; Zhang et al. 2009; Lamarque et al. 2010; Granier et al. 2011; Lu et al. 2011; Diehl et al. 2012), the major emission sources of BC in the atmosphere include: (1) combustion of carbon-based fuels, including coal, oil, natural gas, crop residues and fuel wood by power plants, industrial sector, transportation and residential sector; (2) coke production, including the refining processes, the gas heating and the leakage processes; (3) brick production, including the material conveying processes, the product drying and fuel firing processes; (4) waste incineration, including combustion of municipal and industrial waste; (5) outdoor biomass burning, including the natural fires (forests fires, grassland fires, woodland fires and peat fires) and human-induced fires (deforestation and open burning of agricultural waste in the field). Previous studies show that domestic heating, residential cooking, on-road diesel vehicles, coke and brick production, and wildfires are the most important emission sources of BC in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimoto, H., Ohara, T., Kurokawa, J.-I., & Horii, N. (2006). Verification of energy consumption in China during 1996–2003 by using satellite observational data. Atmospheric Environment, 40(40), 7663–7667.

    Article  CAS  Google Scholar 

  • Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15(4), 955–966.

    Article  CAS  Google Scholar 

  • Andres, R. J., Marland, G., Fung, I., & Matthews, E. (1996). A 1 × 1 distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990. Global Biogeochemical Cycles, 10(3), 419–429.

    Article  CAS  Google Scholar 

  • Anenberg, S., Talgo, K., Arunachalam, S., Dolwick, P., Jang, C., & West, J. (2011). Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality. Atmospheric Chemistry and Physics, 11(14), 7253–7267.

    Article  CAS  Google Scholar 

  • Anenberg, S. C., Schwartz, J., Vignati, E., Emberson, L., Muller, N. Z., West, J. J., et al. (2012). Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. Environmental Health Perspectives, 831–839. doi:10.1289/ehp.1104301.

  • Barath, S., Mills, N. L., Lundbäck, M., Törnqvist, H., Lucking, A. J., Langrish, J. P., et al. (2010). Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Particle and Fibre Toxicology, 7, 19.

    Article  Google Scholar 

  • Biswas, S., Verma, V., Schauer, J. J., Cassee, F. R., Cho, A. K., & Sioutas, C. (2009). Oxidative potential of semi-volatile and non volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies. Environmental Science and Technology, 43(10), 3905–3912.

    Article  CAS  Google Scholar 

  • Bond, T. C., Anderson, T. L., & Campbell, D. (1999). Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Science and Technology, 30(6), 582–600.

    Article  CAS  Google Scholar 

  • Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., & Klimont, Z. (2004). A technology‐based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research: Atmospheres (1984–2012), 109(D14), 1–43.

    Google Scholar 

  • Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., et al. (2007). Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850–2000. Global Biogeochemical Cycles, 21(2). doi:10.1029/2006GB002840.

  • Bond, T. C., Doherty, S. J., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B., et al. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), 5380–5552.

    CAS  Google Scholar 

  • Cao, G., Zhang, X., & Zheng, F. (2006). Inventory of black carbon and organic carbon emissions from China. Atmospheric Environment, 40(34), 6516–6527.

    Article  CAS  Google Scholar 

  • Carslaw, K., Lee, L., Reddington, C., Pringle, K., Rap, A., Forster, P., et al. (2013). Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503(7474), 67–71.

    Article  CAS  Google Scholar 

  • Charlson, R., & Pilat, M. (1969). Climate: The influence of aerosols. Journal of Applied Meteorology, 8(6), 1001–1002.

    Article  Google Scholar 

  • Chen, Y., Sheng, G., Bi, X., Feng, Y., Mai, B., & Fu, J. (2005). Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environmental Science and Technology, 39(6), 1861–1867.

    Article  CAS  Google Scholar 

  • Chen, Y., Zhi, G., Feng, Y., Fu, J., Feng, J., Sheng, G., et al. (2006). Measurements of emission factors for primary carbonaceous particles from residential raw‐coal combustion in China. Geophysical Research Letters, 33(20).

    Google Scholar 

  • Chen, Y., Zhi, G., Feng, Y., Liu, D., Zhang, G., Li, J., et al. (2009). Measurements of black and organic carbon emission factors for household coal combustion in China: Implication for emission reduction. Environmental Science and Technology, 43(24), 9495–9500.

    Article  CAS  Google Scholar 

  • Chimonas, M.-A. R., & Gessner, D. B. (2007). Airborne particulate matter from primarily geologic, non-industrial sources at levels below National Ambient Air Quality Standards is associated with outpatient visits for asthma and quick-relief medication prescriptions among children less than 20 years old enrolled in Medicaid in Anchorage, Alaska. Environmental Research, 103(3), 397–404.

    Article  CAS  Google Scholar 

  • Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., et al. (2002). Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements. Journal of the Atmospheric Sciences, 59(3), 461–483.

    Article  Google Scholar 

  • Chow, J. C., Watson, J. G., Crow, D., Lowenthal, D. H., & Merrifield, T. (2001). Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Science and Technology, 34(1), 23–34.

    Article  CAS  Google Scholar 

  • Chung, C. E., Ramanathan, V., Kim, D., & Podgorny, I. (2005). Global anthropogenic aerosol direct forcing derived from satellite and ground‐based observations. Journal of Geophysical Research: Atmospheres (1984–2012), 110(D24).

    Google Scholar 

  • Clarke, A., Shinozuka, Y., Kapustin, V., Howell, S., Huebert, B., Doherty, S., et al. (2004). Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties. Journal of Geophysical Research: Atmospheres (1984–2012), 109(D15).

    Google Scholar 

  • Cofala, J., Amann, M., Klimont, Z., Kupiainen, K., & Höglund-Isaksson, L. (2007). Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmospheric Environment, 41(38), 8486–8499.

    Article  CAS  Google Scholar 

  • Cooke, W., Liousse, C., Cachier, H., & Feichter, J. (1999). Construction of a 1 × 1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. Journal of Geophysical Research: Atmospheres (1984–2012), 104(D18), 22137–22162.

    Google Scholar 

  • Cooke, W. F., & Wilson, J. J. (1996). A global black carbon aerosol model. Journal of Geophysical Research: Atmospheres (1984–2012), 101(D14), 19395–19409.

    Google Scholar 

  • Delfino, R. J., Sioutas, C., & Malik, S. (2005). Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environmental Health Perspectives, 113, 934–946.

    Google Scholar 

  • Delfino, R. J., Murphy-Moulton, A. M., Burnett, R. T., Brook, J. R., & Becklake, M. R. (1997). Effects of air pollution on emergency room visits for respiratory illnesses in Montreal, Quebec. American Journal of Respiratory and Critical Care Medicine, 155(2), 568–576.

    Article  CAS  Google Scholar 

  • Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., et al. (2006). Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmospheric Chemistry and Physics, 6(12), 4321–4344.

    Article  CAS  Google Scholar 

  • Diehl, T., Heil, A., Chin, M., Pan, X., Streets, D., Schultz, M., et al. (2012). Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmospheric Chemistry and Physics Discussions, 12(9), 24895–24954.

    Google Scholar 

  • Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. (1993). An association between air pollution and mortality in six US cities. New England Journal of Medicine, 329(24), 1753–1759.

    Article  CAS  Google Scholar 

  • Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., et al. (2006). Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA, 295(10), 1127–1134.

    Google Scholar 

  • Dubovik, O., Smirnov, A., Holben, B., King, M., Kaufman, Y., Eck, T., et al. (2000). Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. Journal of Geophysical Research: Atmospheres (1984–2012), 105(D8), 9791–9806.

    Google Scholar 

  • Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., et al. (2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the Atmospheric Sciences, 59(3), 590–608.

    Article  Google Scholar 

  • Englert, N. (2004). Fine particles and human health—A review of epidemiological studies. Toxicology Letters, 149(1), 235–242.

    Article  CAS  Google Scholar 

  • Filleul, L., Cassadou, S., Médina, S., Fabres, P., Lefranc, A., Eilstein, D., et al. (2006). The relation between temperature, ozone, and mortality in nine French cities during the heat wave of 2003. Environmental Health Perspectives, 114, 1344–1347.

    Google Scholar 

  • Frampton, M. W., Stewart, J. C., Oberdörster, G., Morrow, P. E., Chalupa, D., Pietropaoli, A. P., et al. (2006). Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans. Environmental Health Perspectives, 114, 51–58.

    Google Scholar 

  • Ge, S., Bai, Z., Liu, W., Zhu, T., Wang, T., Qing, S., et al. (2001). Boiler briquette coal versus raw coal: Part I—Stack gas emissions. Journal of the Air and Waste Management Association, 51(4), 524–533.

    Google Scholar 

  • Geng, F., Hua, J., Mu, Z., Peng, L., Xu, X., Chen, R., et al. (2013). Differentiating the associations of black carbon and fine particle with daily mortality in a Chinese city. Environmental Research, 120, 27-32.

    Google Scholar 

  • Goss, C. H., Newsom, S. A., Schildcrout, J. S., Sheppard, L., & Kaufman, J. D. (2004). Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine, 169(7), 816–821.

    Article  Google Scholar 

  • Granier, C., Bessagnet, B., Bond, T., D’Angiola, A., Van Der Gon, H. D., Frost, G. J., et al. (2011). Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 109(1–2), 163–190.

    Article  CAS  Google Scholar 

  • Guan, D., Liu, Z., Geng, Y., Lindner, S., & Hubacek, K. (2012). The gigatonne gap in China’s carbon dioxide inventories. Nature Climate Change, 2(9), 672–675.

    Article  CAS  Google Scholar 

  • Gurney, K. R., Mendoza, D. L., Zhou, Y., Fischer, M. L., Miller, C. C., Geethakumar, S., et al. (2009). High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environmental Science and Technology, 43(14), 5535–5541.

    Google Scholar 

  • Hansen, J., & Nazarenko, L. (2004). Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 423–428.

    Article  CAS  Google Scholar 

  • Haywood, J., & Shine, K. (1995). The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophysical Research Letters, 22(5), 603–606.

    Article  CAS  Google Scholar 

  • Haywood, J., Roberts, D., Slingo, A., Edwards, J., & Shine, K. (1997). General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol. Journal of Climate, 10(7), 1562–1577.

    Article  Google Scholar 

  • Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P., & van den Brandt, P. A. (2002). Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study. The Lancet, 360(9341), 1203–1209.

    Article  Google Scholar 

  • Holben, B., Eck, T., Slutsker, I., Tanre, D., Buis, J., Setzer, A., et al. (1998). AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1), 1–16.

    Article  Google Scholar 

  • Houghton, J. T. (1996). Climate change 1995: The science of climate change: Contribution of working group I to the second assessment report of the intergovernmental panel on climate change (Vol. 2). Cambridge: Cambridge University Press.

    Google Scholar 

  • International Energy Agency. (2010a). Energy Statistics and Balances of OECD Countries 1960–2006 (Press release).

    Google Scholar 

  • International Energy Agency. (2010b). Energy Statistics and Balances of Non-OECD Countries 1970–2006 (Press release).

    Google Scholar 

  • Ito, A., & Penner, J. E. (2005). Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000. Global Biogeochemical Cycles, 19(2).

    Google Scholar 

  • Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821), 695–697.

    Article  CAS  Google Scholar 

  • Jacobson, M. Z. (2004). Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. Journal of Geophysical Research: Atmospheres (1984–2012), 109(D21).

    Google Scholar 

  • Janssen, N., Hoek, G., Simic-Lawson, M., Fischer, P., van Bree, L., ten Brink, H., et al. (2011). Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environmental Health Perspectives, 119(12), 1691–1699.

    Article  CAS  Google Scholar 

  • Janssen, N. A., Gerlofs-Nijland, M. E., Lanki, T., Salonen, R. O., Cassee, F., Hoek, G., et al. (2012). Health effects of black carbon. Copenhagen: World Health Organization.

    Google Scholar 

  • Junker, C., & Liousse, C. (2008). A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmospheric Chemistry and Physics, 8(5), 1195–1207.

    Article  CAS  Google Scholar 

  • Katsouyanni, K., Touloumi, G., Samoli, E., Gryparis, A., Le Tertre, A., Monopolis, Y., et al. (2001). Confounding and effect modification in the short-term effects of ambient particles on total mortality: Results from 29 European cities within the APHEA2 project. Epidemiology, 12(5), 521–531.

    Article  CAS  Google Scholar 

  • Kim, J. J., Smorodinsky, S., Lipsett, M., Singer, B. C., Hodgson, A. T., & Ostro, B. (2004). Traffic-related air pollution near busy roads: The East Bay Children’s Respiratory Health Study. American Journal of Respiratory and Critical Care Medicine, 170(5), 520–526.

    Article  Google Scholar 

  • Kim Oanh, N. T., Thiansathit, W., Bond, T. C., Subramanian, R., Winijkul, E., & Paw-armart, I. (2010). Compositional characterization of PM<sub>2.5</sub>emitted from in-use diesel vehicles. Atmospheric Environment, 44(1), 15–22.

    Google Scholar 

  • Klimont, Z., Cofala, J., Xing, J., Wei, W., Zhang, C., Wang, S., et al. (2009). Projections of SO2, NOx and carbonaceous aerosols emissions in Asia. Tellus B, 61(4), 602–617.

    Article  Google Scholar 

  • Koch, D. (2001). Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. Journal of Geophysical Research: Atmospheres (1984–2012), 106(D17), 20311–20332.

    Google Scholar 

  • Krewski, D., Jerrett, M., Burnett, R. T., Ma, R., Hughes, E., Shi, Y., et al. (2009). Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Boston, MA: Health Effects Institute.

    Google Scholar 

  • Kupiainen, K., & Klimont, Z. (2004). Primary emissions of submicron and carbonaceous particles in Europe and the potential for their control. International Institute for Applied Systems Analysis (IASA), Interim Report IR-04-79, Schlossplatz, 1.

    Google Scholar 

  • Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., et al. (2013). Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmospheric Chemistry and Physics, 13(21), 11019–11058.

    Article  CAS  Google Scholar 

  • Laden, F., Neas, L. M., Dockery, D. W., & Schwartz, J. (2000). Association of fine particulate matter from different sources with daily mortality in six US cities. Environmental Health Perspectives, 108(10), 941.

    Article  CAS  Google Scholar 

  • Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., et al. (2010). Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10(15), 7017–7039.

    Article  CAS  Google Scholar 

  • Lin, W., Huang, W., Zhu, T., Hu, M., Brunekreef, B., Zhang, Y., et al. (2011). Acute respiratory inflammation in children and black carbon in ambient air before and during the 2008 Beijing Olympics. Environmental Health Perspectives, 119(10), 1507.

    Article  CAS  Google Scholar 

  • Liousse, C., Penner, J., Chuang, C., Walton, J., Eddleman, H., & Cachier, H. (1996). A global three‐dimensional model study of carbonaceous aerosols. Journal of Geophysical Research: Atmospheres (1984–2012), 101(D14), 19411–19432.

    Google Scholar 

  • Lipfert, F., Wyzga, R., Baty, J., & Miller, J. (2006). Traffic density as a surrogate measure of environmental exposures in studies of air pollution health effects: Long-term mortality in a cohort of US veterans. Atmospheric Environment, 40(1), 154–169.

    Article  CAS  Google Scholar 

  • Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F., Kato, S., et al. (2009). Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. Journal of Climate, 22(3), 748–766.

    Article  Google Scholar 

  • Lu, Z., Zhang, Q., & Streets, D. G. (2011). Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmospheric Chemistry and Physics, 11(18), 9839–9864.

    Article  CAS  Google Scholar 

  • McCormick, R. A., & Ludwig, J. H. (1967). Climate modification by atmospheric aerosols. Science, 156(3780), 1358–1359.

    Article  CAS  Google Scholar 

  • Miller, K. A., Siscovick, D. S., Sheppard, L., Shepherd, K., Sullivan, J. H., Anderson, G. L., et al. (2007). Long-term exposure to air pollution and incidence of cardiovascular events in women. New England Journal of Medicine, 356(5), 447–458.

    Google Scholar 

  • Mills, N. L., Finlayson, A. E., Gonzalez, M. C., Törnqvist, H., Barath, S., Vink, E., et al. (2011). Diesel exhaust inhalation does not affect heart rhythm or heart rate variability. Heart, 97(7), 544–550.

    Article  Google Scholar 

  • Morgenstern, V., Zutavern, A., Cyrys, J., Brockow, I., Gehring, U., Koletzko, S., et al. (2007). Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occupational and Environmental Medicine, 64(1), 8–16.

    Article  CAS  Google Scholar 

  • Myhre, G., Stordal, F., Restad, K., & Isaksen, I. S. (1998). Estimation of the direct radiative forcing due to sulfate and soot aerosols. Tellus B, 50(5), 463–477.

    Article  Google Scholar 

  • Myhre, G., Samset, B., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T., et al. (2013). Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 13(4), 1853–1877.

    Article  CAS  Google Scholar 

  • National Bureau of Statistics and National Energy Administration. (2009). China Energy Statistical Yearbook, 1986, 1989–2008 editions (Press release).

    Google Scholar 

  • Novakov, T., Ramanathan, V., Hansen, J., Kirchstetter, T., Sato, M., Sinton, J., et al. (2003). Large historical changes of fossil‐fuel black carbon aerosols. Geophysical Research Letters, 30(6), 57–61.

    Google Scholar 

  • Ohara, T., Akimoto, H., Kurokawa, J.-I., Horii, N., Yamaji, K., Yan, X., et al. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics, 7(16), 4419–4444.

    Google Scholar 

  • Ostro, B., Feng, W.-Y., Broadwin, R., Green, S., & Lipsett, M. (2007). The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environmental Health Perspectives, 115, 13–19.

    Google Scholar 

  • Penner, J., Eddleman, H., & Novakov, T. (1993). Towards the development of a global inventory for black carbon emissions. Atmospheric Environment. Part A. General Topics, 27(8), 1277–1295.

    Article  Google Scholar 

  • Penner, J., Chuang, C., & Grant, K. (1998). Climate forcing by carbonaceous and sulfate aerosols. Climate Dynamics, 14(12), 839–851.

    Article  Google Scholar 

  • Podgorny, I. A., & Grenfell, T. C. (1996). Partitioning of solar energy in melt ponds from measurements of pond albedo and depth. Journal of Geophysical Research: Oceans (1978–2012), 101(C10), 22737–22748.

    Google Scholar 

  • Pope III, C. A., Burnett, R. T., Krewski, D., Jerrett, M., Shi, Y., Calle, E. E., et al. (2009). Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke shape of the exposure-response relationship. Circulation, 120(11), 941–948.

    Google Scholar 

  • Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9), 1132–1141.

    Google Scholar 

  • Qin, Y., & Xie, S. (2012). Spatial and temporal variation of anthropogenic black carbon emissions in China for the period 1980–2009. Atmospheric Chemistry and Physics, 12(11), 4825–4841.

    Article  CAS  Google Scholar 

  • Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221–227.

    Article  CAS  Google Scholar 

  • Reddy, M. S., & Venkataraman, C. (2002a). Inventory of aerosol and sulphur dioxide emissions from India. Part II—Biomass combustion. Atmospheric Environment, 36(4), 699–712.

    Article  CAS  Google Scholar 

  • Reddy, M. S., & Venkataraman, C. (2002b). Inventory of aerosol and sulphur dioxide emissions from India: I—Fossil fuel combustion. Atmospheric Environment, 36(4), 677–697.

    Article  CAS  Google Scholar 

  • Reff, A., Bhave, P. V., Simon, H., Pace, T. G., Pouliot, G. A., Mobley, J. D., et al. (2009). Emissions inventory of PM2. 5 trace elements across the United States. Environmental Science and Technology, 43(15), 5790-5796.

    Google Scholar 

  • Reid, J. S., Hobbs, P. V., Liousse, C., Martins, J. V., Weiss, R. E., & Eck, T. F. (1998). Comparisons of techniques for measuring shortwave absorption and black carbon content of aerosols from biomass burning in Brazil. Journal of Geophysical Research: Atmospheres (1984–2012), 103(D24), 32031–32040.

    Google Scholar 

  • Roemer, W. H., & van Wijnen, J. H. (2002). Pollution and daily mortality in Amsterdam. Epidemiology, 13(4), 491.

    Article  Google Scholar 

  • Rosen, H., Hansen, A., Gundel, L., & Novakov, T. (1978). Identification of the optically absorbing component in urban aerosols. Applied Optics, 17(24), 3859–3861.

    Article  CAS  Google Scholar 

  • Routledge, H. C., Manney, S., Harrison, R., Ayres, J., & Townend, J. N. (2006). Effect of inhaled sulphur dioxide and carbon particles on heart rate variability and markers of inflammation and coagulation in human subjects. Heart, 92(2), 220–227.

    Article  CAS  Google Scholar 

  • Saikawa, E., Naik, V., Horowitz, L. W., Liu, J., & Mauzerall, D. L. (2009). Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing. Atmospheric Environment, 43(17), 2814–2822.

    Article  CAS  Google Scholar 

  • Sarnat, J. A., Marmur, A., Klein, M., Kim, E., Russell, A. G., Sarnat, S. E., et al. (2008). Fine particle sources and cardiorespiratory morbidity: An application of chemical mass balance and factor analytical source-apportionment methods. Environmental Health Perspectives, 116(4), 459.

    Google Scholar 

  • Sato, M., Hansen, J., Koch, D., Lacis, A., Ruedy, R., Dubovik, O., et al. (2003). Global atmospheric black carbon inferred from AERONET. Proceedings of the National Academy of Sciences, 100(11), 6319–6324.

    Article  CAS  Google Scholar 

  • Sawant, A. A., Cocker, I., David, R., Miller, J. W., Taliaferro, T., Diaz-Sanchez, D., et al. (2008). Generation and characterization of diesel exhaust in a facility for controlled human exposures. Journal of the Air and Waste Management Association, 58(6), 829–837.

    Article  CAS  Google Scholar 

  • Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., et al. (2006). Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmospheric Chemistry and Physics, 6(12), 5225–5246.

    Article  CAS  Google Scholar 

  • Schwarz, J., Gao, R., Fahey, D., Thomson, D., Watts, L., Wilson, J., et al. (2006). Single‐particle measurements of midlatitude black carbon and light‐scattering aerosols from the boundary layer to the lower stratosphere. Journal of Geophysical Research: Atmospheres (1984–2012), 111(D16).

    Google Scholar 

  • Shindell, D., Kuylenstierna, J. C., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., et al. (2012). Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335(6065), 183–189.

    Article  CAS  Google Scholar 

  • Smith, K. R., Jerrett, M., Anderson, H. R., Burnett, R. T., Stone, V., Derwent, R., et al. (2010). Public health benefits of strategies to reduce greenhouse-gas emissions: Health implications of short-lived greenhouse pollutants. The Lancet, 374(9707), 2091–2103.

    Article  CAS  Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., et al. (2007). IPCC, 2007: Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Stier, P., Schutgens, N., Bellouin, N., Bian, H., Boucher, O., Chin, M., et al. (2013). Host model uncertainties in aerosol radiative forcing estimates: Results from the AeroCom Prescribed intercomparison study. Atmospheric Chemistry and Physics, 13(6), 3245–3270.

    Article  CAS  Google Scholar 

  • Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., et al. (2013). Climate change 2013. The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change-Abstract for decision-makers: Groupe d’experts intergouvernemental sur l’evolution du climat/Intergovernmental Panel on Climate Change-IPCC, C/O World Meteorological Organization, 7bis Avenue de la Paix, CP 2300 CH-1211 Geneva 2 (Switzerland).

    Google Scholar 

  • Streets, D., Bond, T., Carmichael, G., Fernandes, S., Fu, Q., He, D., et al. (2003). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research: Atmospheres (1984–2012), 108(D21), 8809.

    Google Scholar 

  • Streets, D. G., Gupta, S., Waldhoff, S. T., Wang, M. Q., Bond, T. C., & Yiyun, B. (2001). Black carbon emissions in China. Atmospheric Environment, 35(25), 4281–4296.

    Article  CAS  Google Scholar 

  • Turco, R., Toon, O., Whitten, R., Pollack, J., & Hamill, P. (1983). The global cycle of particulate elemental carbon: A theoretical assessment. Precipitation Scavenging, Dry Deposition, and Resuspension, 1337–1351.

    Google Scholar 

  • Wang, R., Tao, S., Shen, H., Wang, X., Li, B., Shen, G., et al. (2012). Global emission of black carbon from motor vehicles from 1960 to 2006. Environmental Science and Technology, 46(2), 1278–1284.

    Article  CAS  Google Scholar 

  • Wilkinson, P., Smith, K. R., Davies, M., Adair, H., Armstrong, B. G., Barrett, M., et al. (2009). Public health benefits of strategies to reduce greenhouse-gas emissions: Household energy. The Lancet, 374(9705), 1917–1929.

    Article  Google Scholar 

  • Wiscombe, W. J., & Warren, S. G. (1980). A model for the spectral albedo of snow. I: Pure snow. Journal of the Atmospheric Sciences, 37(12), 2712–2733.

    Article  Google Scholar 

  • Woodruff, T. J., Darrow, L. A., & Parker, J. D. (2008). Air pollution and postneonatal infant mortality in the United States, 1999–2002. Environmental Health Perspectives, 116, 110–115.

    Google Scholar 

  • Zhang, Q., Streets, D. G., He, K., & Klimont, Z. (2007a). Major components of China’s anthropogenic primary particulate emissions. Environmental Research Letters, 2(4), 045027.

    Article  Google Scholar 

  • Zhang, Y., Tao, S., Cao, J., & Coveney, R. M. (2007b). Emission of polycyclic aromatic hydrocarbons in China by county. Environmental Science and Technology, 41(3), 683–687.

    Article  CAS  Google Scholar 

  • Zhang, Q., Streets, D. G., Carmichael, G. R., He, K., Huo, H., Kannari, A., et al. (2009). Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 9(14), 5131–5153.

    Article  CAS  Google Scholar 

  • Zhang, Y., Schauer, J. J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y., et al. (2008). Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Environmental Science and Technology, 42(14), 5068–5073.

    Google Scholar 

  • Zhi, G., Chen, Y., Feng, Y., Xiong, S., Li, J., Zhang, G., et al. (2008). Emission characteristics of carbonaceous particles from various residential coal-stoves in China. Environmental Science and Technology, 42(9), 3310–3315.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, R. (2015). Research Background. In: Global Emission Inventory and Atmospheric Transport of Black Carbon. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46479-3_2

Download citation

Publish with us

Policies and ethics