Pain Control pp 103-117 | Cite as

Nitric Oxide-Mediated Pain Processing in the Spinal Cord

  • Achim SchmidtkoEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 227)


A large body of evidence indicates that nitric oxide (NO) plays an important role in the processing of persistent inflammatory and neuropathic pain in the spinal cord. Several animal studies revealed that inhibition or knockout of NO synthesis ameliorates persistent pain. However, spinal delivery of NO donors caused dual pronociceptive and antinociceptive effects, pointing to multiple downstream signaling mechanisms of NO. This review summarizes the localization and function of NO-dependent signaling mechanisms in the spinal cord, taking account of the recent progress made in this field.


Pain Nociception Dorsal root ganglia Spinal cord Nitric oxide cGMP 



cGMP-dependent protein kinase I (synonym PKG-1, protein kinase G-1)


3′, 5′-cyclic guanosine monophosphate


Cyclic-nucleotide gated


Dorsal root ganglion


Particulate guanylyl cyclase A (synonym NPR-A, natriuretic peptide receptor A)


Particulate guanylyl cyclase B (synonym NPR-B, natriuretic peptide receptor B)


Hyperpolarization activated and cyclic-nucleotide gated


Nitric oxide


NO-sensitive guanylyl cyclase (synonym sGC, soluble guanylyl cyclase)


NO synthase





Related work done in the author’s laboratory was supported by the Deutsche Forschungsgemeinschaft, Witten/Herdecke University, and Doktor Robert Pfleger-Stiftung.


  1. Aimi Y, Fujimura M, Vincent SR, Kimura H (1991) Localization of NADPH-diaphorase-containing neurons in sensory ganglia of the rat. J Comp Neurol 306:382–392PubMedGoogle Scholar
  2. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624PubMedCentralPubMedGoogle Scholar
  3. Bernardi PS, Valtschanoff JG, Weinberg RJ, Schmidt HH, Rustioni A (1995) Synaptic interactions between primary afferent terminals and GABA and nitric oxide-synthesizing neurons in superficial laminae of the rat spinal cord. J Neurosci 15:1363–1371PubMedGoogle Scholar
  4. Berrazueta JR, Losada A, Poveda J, Ochoteco A, Riestra A, Salas E, Amado JA (1996) Successful treatment of shoulder pain syndrome due to supraspinatus tendinitis with transdermal nitroglycerin. A double blind study. Pain 66:63–67PubMedGoogle Scholar
  5. Bian K, Ke Y, Kamisaki Y, Murad F (2006) Proteomic modification by nitric oxide. J Pharmacol Sci 101:271–279PubMedGoogle Scholar
  6. Boettger MK, Uceyler N, Zelenka M, Schmitt A, Reif A, Chen Y, Sommer C (2007) Differences in inflammatory pain in nNOS-, iNOS- and eNOS-deficient mice. Eur J Pain 11:810–818PubMedGoogle Scholar
  7. Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schroder E, Browning DD, Eaton P (2007) Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317:1393–1397PubMedGoogle Scholar
  8. Cadiou H, Studer M, Jones NG, Smith ES, Ballard A, McMahon SB, McNaughton PA (2007) Modulation of acid-sensing ion channel activity by nitric oxide. J Neurosci 27:13251–13260PubMedGoogle Scholar
  9. Chen Z, Muscoli C, Doyle T, Bryant L, Cuzzocrea S, Mollace V, Mastroianni R, Masini E, Salvemini D (2010) NMDA-receptor activation and nitroxidative regulation of the glutamatergic pathway during nociceptive processing. Pain 149:100–106PubMedCentralPubMedGoogle Scholar
  10. Chu YC, Guan Y, Skinner J, Raja SN, Johns RA, Tao YX (2005) Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund’s adjuvant-induced persistent pain. Pain 119:113–123PubMedGoogle Scholar
  11. Craven KB, Zagotta WN (2006) CNG and HCN channels: two peas, one pod. Annu Rev Physiol 68:375–401PubMedGoogle Scholar
  12. Dableh LJ, Henry JL (2011) The selective neuronal nitric oxide synthase inhibitor 7-nitroindazole has acute analgesic but not cumulative effects in a rat model of peripheral neuropathy. J Pain Res 4:85–90PubMedCentralPubMedGoogle Scholar
  13. De Alba J, Clayton NM, Collins SD, Colthup P, Chessell I, Knowles RG (2006) GW274150, a novel and highly selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), shows analgesic effects in rat models of inflammatory and neuropathic pain. Pain 120:170–181PubMedGoogle Scholar
  14. Ding JD, Weinberg RJ (2006) Localization of soluble guanylyl cyclase in the superficial dorsal horn. J Comp Neurol 495:668–678PubMedCentralPubMedGoogle Scholar
  15. Doyle T, Chen Z, Muscoli C, Bryant L, Esposito E, Cuzzocrea S, Dagostino C, Ryerse J, Rausaria S, Kamadulski A, Neumann WL, Salvemini D (2012) Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J Neurosci 32:6149–6160PubMedCentralPubMedGoogle Scholar
  16. Dun NJ, Dun SL, Wu SY, Forstermann U, Schmidt HH, Tseng LF (1993) Nitric oxide synthase immunoreactivity in the rat, mouse, cat and squirrel monkey spinal cord. Neuroscience 54:845–857PubMedGoogle Scholar
  17. Eliasson MJ, Blackshaw S, Schell MJ, Snyder SH (1997) Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Proc Natl Acad Sci U S A 94:3396–3401PubMedCentralPubMedGoogle Scholar
  18. Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol (184):529–560Google Scholar
  19. Ferreira J, Santos AR, Calixto JB (1999) The role of systemic, spinal and supraspinal L-arginine-nitric oxide-cGMP pathway in thermal hyperalgesia caused by intrathecal injection of glutamate in mice. Neuropharmacology 38:835–842PubMedGoogle Scholar
  20. Francis SH, Busch JL, Corbin JD, Sibley D (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62:525–563PubMedCentralPubMedGoogle Scholar
  21. Friebe A, Mergia E, Dangel O, Lange A, Koesling D (2007) Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci U S A 104:7699–7704PubMedCentralPubMedGoogle Scholar
  22. Garbers DL, Chrisman TD, Wiegn P, Katafuchi T, Albanesi JP, Bielinski V, Barylko B, Redfield MM, Burnett JC Jr (2006) Membrane guanylyl cyclase receptors: an update. Trends Endocrinol Metab 17:251–258PubMedCentralPubMedGoogle Scholar
  23. Garry MG, Abraham E, Hargreaves KM, Aanonsen LM (1994) Intrathecal injection of cell-permeable analogs of cyclic 3′,5′-guanosine monophosphate produces hyperalgesia in mice. Eur J Pharmacol 260:129–131PubMedGoogle Scholar
  24. Gassner M, Leitner J, Gruber-Schoffnegger D, Forsthuber L, Sandkuhler J (2013) Properties of spinal lamina III GABAergic neurons in naive and in neuropathic mice. Eur J Pain 17:1168–1179PubMedGoogle Scholar
  25. Guan Y, Yaster M, Raja SN, Tao YX (2007) Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice. Mol Pain 3:29PubMedCentralPubMedGoogle Scholar
  26. Guhring H, Gorig M, Ates M, Coste O, Zeilhofer HU, Pahl A, Rehse K, Brune K (2000) Suppressed injury-induced rise in spinal prostaglandin E2 production and reduced early thermal hyperalgesia in iNOS-deficient mice. J Neurosci 20:6714–6720PubMedGoogle Scholar
  27. Haley JE, Dickenson AH, Schachter M (1992) Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat. Neuropharmacology 31:251–258PubMedGoogle Scholar
  28. Heine S, Michalakis S, Kallenborn-Gerhardt W, Lu R, Lim HY, Weiland J, Del Turco D, Deller T, Tegeder I, Biel M, Geisslinger G, Schmidtko A (2011) CNGA3: a target of spinal NO/cGMP signaling and modulator of inflammatory pain hypersensitivity. J Neurosci 31:11184–11192PubMedGoogle Scholar
  29. Henrich M, Hoffmann K, Konig P, Gruss M, Fischbach T, Godecke A, Hempelmann G, Kummer W (2002) Sensory neurons respond to hypoxia with NO production associated with mitochondria. Mol Cell Neurosci 20:307–322PubMedGoogle Scholar
  30. Herdegen T, Rudiger S, Mayer B, Bravo R, Zimmermann M (1994) Expression of nitric oxide synthase and colocalisation with Jun, Fos and Krox transcription factors in spinal cord neurons following noxious stimulation of the rat hindpaw. Brain Res Mol Brain Res 22:245–258PubMedGoogle Scholar
  31. Hervera A, Negrete R, Leanez S, Martin-Campos JM, Pol O (2010) The spinal cord expression of neuronal and inducible nitric oxide synthases and their contribution in the maintenance of neuropathic pain in mice. PLoS One 5:e14321PubMedCentralPubMedGoogle Scholar
  32. Hervera A, Leanez S, Negrete R, Motterlini R, Pol O (2012) Carbon monoxide reduces neuropathic pain and spinal microglial activation by inhibiting nitric oxide synthesis in mice. PLoS One 7:e43693PubMedCentralPubMedGoogle Scholar
  33. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166PubMedGoogle Scholar
  34. Hughes AS, Averill S, King VR, Molander C, Shortland PJ (2008) Neurochemical characterization of neuronal populations expressing protein kinase C gamma isoform in the spinal cord and gracile nucleus of the rat. Neuroscience 153:507–517PubMedGoogle Scholar
  35. Ibi M, Matsuno K, Shiba D, Katsuyama M, Iwata K, Kakehi T, Nakagawa T, Sango K, Shirai Y, Yokoyama T, Kaneko S, Saito N, Yabe-Nishimura C (2008) Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J Neurosci 28:9486–9494PubMedGoogle Scholar
  36. Ikeda H, Stark J, Fischer H, Wagner M, Drdla R, Jager T, Sandkuhler J (2006) Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 312:1659–1662PubMedGoogle Scholar
  37. Iwamoto ET, Marion L (1994) Pharmacologic evidence that spinal muscarinic analgesia is mediated by an L-arginine/nitric oxide/cyclic GMP cascade in rats. J Pharmacol Exp Ther 271:601–608PubMedGoogle Scholar
  38. Jin XG, Chen SR, Cao XH, Li L, Pan HL (2011) Nitric oxide inhibits nociceptive transmission by differentially regulating glutamate and glycine release to spinal dorsal horn neurons. J Biol Chem 286:33190–33202PubMedCentralPubMedGoogle Scholar
  39. Kallenborn-Gerhardt W, Schroder K, Del Turco D, Lu R, Kynast K, Kosowski J, Niederberger E, Shah AM, Brandes RP, Geisslinger G, Schmidtko A (2012) NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci 32:10136–10145PubMedGoogle Scholar
  40. Kallenborn-Gerhardt W, Schroder K, Geisslinger G, Schmidtko A (2013) NOXious signaling in pain processing. Pharmacol Ther 137:309–317PubMedGoogle Scholar
  41. Kawamata T, Omote K (1999) Activation of spinal N-methyl-D-aspartate receptors stimulates a nitric oxide/cyclic guanosine 3,5-monophosphate/glutamate release cascade in nociceptive signaling. Anesthesiology 91:1415–1424PubMedGoogle Scholar
  42. Kawano T, Zoga V, Kimura M, Liang MY, Wu HE, Gemes G, McCallum JB, Kwok WM, Hogan QH, Sarantopoulos CD (2009) Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. Mol Pain 5:12PubMedCentralPubMedGoogle Scholar
  43. Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR (2008) Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 14:331–336PubMedCentralPubMedGoogle Scholar
  44. Keilhoff G, Fansa H, Wolf G (2002) Neuronal nitric oxide synthase is the dominant nitric oxide supplier for the survival of dorsal root ganglia after peripheral nerve axotomy. J Chem Neuroanat 24:181–187PubMedGoogle Scholar
  45. Keilhoff G, Schroder H, Peters B, Becker A (2013) Time-course of neuropathic pain in mice deficient in neuronal or inducible nitric oxide synthase. Neurosci Res 77:215–221PubMedGoogle Scholar
  46. Kim D, You B, Jo EK, Han SK, Simon MI, Lee SJ (2010) NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci U S A 107:14851–14856PubMedCentralPubMedGoogle Scholar
  47. Kina VA, Villarreal CF, Prado WA (2005) The effects of intraspinal L-NOARG or SIN-1 on the control by descending pathways of incisional pain in rats. Life Sci 76:1939–1951PubMedGoogle Scholar
  48. Kishimoto I, Tokudome T, Horio T, Soeki T, Chusho H, Nakao K, Kangawa K (2008) C-type natriuretic peptide is a Schwann cell-derived factor for development and function of sensory neurons. J Neuroendocrinol 20:1213–1223PubMedGoogle Scholar
  49. Kitto KF, Haley JE, Wilcox GL (1992) Involvement of nitric oxide in spinally mediated hyperalgesia in the mouse. Neurosci Lett 148:1–5PubMedGoogle Scholar
  50. Kuboyama K, Tsuda M, Tsutsui M, Toyohara Y, Tozaki-Saitoh H, Shimokawa H, Yanagihara N, Inoue K (2011) Reduced spinal microglial activation and neuropathic pain after nerve injury in mice lacking all three nitric oxide synthases. Mol Pain 7:50PubMedCentralPubMedGoogle Scholar
  51. Laing I, Todd AJ, Heizmann CW, Schmidt HH (1994) Subpopulations of GABAergic neurons in laminae I-III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase or parvalbumin. Neuroscience 61:123–132PubMedGoogle Scholar
  52. Lauretti GR, Lima IC, Reis MP, Prado WA, Pereira NL (1999a) Oral ketamine and transdermal nitroglycerin as analgesic adjuvants to oral morphine therapy for cancer pain management. Anesthesiology 90:1528–1533PubMedGoogle Scholar
  53. Lauretti GR, de Oliveira R, Reis MP, Mattos AL, Pereira NL (1999b) Transdermal nitroglycerine enhances spinal sufentanil postoperative analgesia following orthopedic surgery. Anesthesiology 90:734–739PubMedGoogle Scholar
  54. Lim H, Kim D, Lee SJ (2013) Toll-like receptor 2 mediates peripheral nerve injury-induced NADPH oxidase 2 expression in spinal cord microglia. J Biol Chem 288:7572–7579PubMedCentralPubMedGoogle Scholar
  55. Lin Q, Palecek J, Paleckova V, Peng YB, Wu J, Cui M, Willis WD (1999) Nitric oxide mediates the central sensitization of primate spinothalamic tract neurons. J Neurophysiol 81:1075–1085PubMedGoogle Scholar
  56. Loo L, Shepherd AJ, Mickle AD, Lorca RA, Shutov LP, Usachev YM, Mohapatra DP (2012) The C-type natriuretic peptide induces thermal hyperalgesia through a noncanonical Gbetagamma-dependent modulation of TRPV1 channel. J Neurosci 32:11942–11955PubMedCentralPubMedGoogle Scholar
  57. Lorenz JE, Kallenborn-Gerhardt W, Lu R, Syhr KM, Eaton P, Geisslinger G, Schmidtko A (2014) Oxidant-induced activation of cGMP-dependent protein kinase Iα mediates neuropathic pain after peripheral nerve injury. Antioxid Redox Signal 21(10):1504–1515PubMedGoogle Scholar
  58. Lu J, Katano T, Uta D, Furue H, Ito S (2011) Rapid S-nitrosylation of actin by NO-generating donors and in inflammatory pain model mice. Mol Pain 7:101PubMedCentralPubMedGoogle Scholar
  59. Lu R, Lukowski R, Sausbier M, Zhang DD, Sisignano M, Schuh CD, Kuner R, Ruth P, Geisslinger G, Schmidtko A (2014) BKCa channels expressed in sensory neurons modulate inflammatory pain in mice. Pain 155(3):556–565PubMedGoogle Scholar
  60. Luo ZD, Cizkova D (2000) The role of nitric oxide in nociception. Curr Rev Pain 4:459–466PubMedGoogle Scholar
  61. Luo ZD, Chaplan SR, Scott BP, Cizkova D, Calcutt NA, Yaksh TL (1999) Neuronal nitric oxide synthase mRNA upregulation in rat sensory neurons after spinal nerve ligation: lack of a role in allodynia development. J Neurosci 19:9201–9208PubMedGoogle Scholar
  62. Luo C, Gangadharan V, Bali KK, Xie RG, Agarwal N, Kurejova M, Tappe-Theodor A, Tegeder I, Feil S, Lewin G, Polgar E, Todd AJ, Schlossmann J, Hofmann F, Liu DL, Hu SJ, Feil R, Kuner T, Kuner R (2012) Presynaptically localized cyclic GMP-dependent protein kinase 1 is a key determinant of spinal synaptic potentiation and pain hypersensitivity. PLoS Biol 10:e1001283PubMedCentralPubMedGoogle Scholar
  63. Machelska H, Przewlocki R, Radomski MW, Przewlocka B (1998) Differential effects of intrathecally and intracerebroventricularly administered nitric oxide donors on noxious mechanical and thermal stimulation. Pol J Pharmacol 50:407–415PubMedGoogle Scholar
  64. Maihofner C, Euchenhofer C, Tegeder I, Beck KF, Pfeilschifter J, Geisslinger G (2000) Regulation and immunohistochemical localization of nitric oxide synthases and soluble guanylyl cyclase in mouse spinal cord following nociceptive stimulation. Neurosci Lett 290:71–75PubMedGoogle Scholar
  65. Mantyh PW, Hunt SP (2004) Setting the tone: superficial dorsal horn projection neurons regulate pain sensitivity. Trends Neurosci 27:582–584PubMedGoogle Scholar
  66. Martucci C, Trovato AE, Costa B, Borsani E, Franchi S, Magnaghi V, Panerai AE, Rodella LF, Valsecchi AE, Sacerdote P, Colleoni M (2008) The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain 137:81–95PubMedGoogle Scholar
  67. Meller ST, Gebhart GF (1993) Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 52:127–136PubMedGoogle Scholar
  68. Meller ST, Dykstra C, Gebhart GF (1992) Production of endogenous nitric oxide and activation of soluble guanylate cyclase are required for N-methyl-D-aspartate-produced facilitation of the nociceptive tail-flick reflex. Eur J Pharmacol 214:93–96PubMedGoogle Scholar
  69. Miyamoto T, Dubin AE, Petrus MJ, Patapoutian A (2009) TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS One 4:e7596PubMedCentralPubMedGoogle Scholar
  70. Morris R, Southam E, Braid DJ, Garthwaite J (1992) Nitric oxide may act as a messenger between dorsal root ganglion neurones and their satellite cells. Neurosci Lett 137:29–32PubMedGoogle Scholar
  71. Ndengele MM, Cuzzocrea S, Esposito E, Mazzon E, Di Paola R, Matuschak GM, Salvemini D (2008) Cyclooxygenases 1 and 2 contribute to peroxynitrite-mediated inflammatory pain hypersensitivity. FASEB J 22:3154–3164PubMedGoogle Scholar
  72. Paoloni JA, Appleyard RC, Nelson J, Murrell GA (2003) Topical nitric oxide application in the treatment of chronic extensor tendinosis at the elbow: a randomized, double-blinded, placebo-controlled clinical trial. Am J Sports Med 31:915–920PubMedGoogle Scholar
  73. Pehl U, Schmid HA (1997) Electrophysiological responses of neurons in the rat spinal cord to nitric oxide. Neuroscience 77:563–573PubMedGoogle Scholar
  74. Polgar E, Sardella TC, Tiong SY, Locke S, Watanabe M, Todd AJ (2013) Functional differences between neurochemically defined populations of inhibitory interneurons in the rat spinal dorsal horn. Pain 154:2606–2615PubMedCentralPubMedGoogle Scholar
  75. Puskar Z, Polgar E, Todd AJ (2001) A population of large lamina I projection neurons with selective inhibitory input in rat spinal cord. Neuroscience 102:167–176PubMedGoogle Scholar
  76. Qian Y, Chao DS, Santillano DR, Cornwell TL, Nairn AC, Greengard P, Lincoln TM, Bredt DS (1996) cGMP-dependent protein kinase in dorsal root ganglion: relationship with nitric oxide synthase and nociceptive neurons. J Neurosci 16:3130–3138PubMedGoogle Scholar
  77. Ruscheweyh R, Goralczyk A, Wunderbaldinger G, Schober A, Sandkuhler J (2006) Possible sources and sites of action of the nitric oxide involved in synaptic plasticity at spinal lamina I projection neurons. Neuroscience 141:977–988PubMedGoogle Scholar
  78. Saito S, Kidd GJ, Trapp BD, Dawson TM, Bredt DS, Wilson DA, Traystman RJ, Snyder SH, Hanley DF (1994) Rat spinal cord neurons contain nitric oxide synthase. Neuroscience 59:447–456PubMedGoogle Scholar
  79. Salvemini D, Little JW, Doyle T, Neumann WL (2011) Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 51:951–966PubMedCentralPubMedGoogle Scholar
  80. Sardella TC, Polgar E, Watanabe M, Todd AJ (2011) A quantitative study of neuronal nitric oxide synthase expression in laminae I-III of the rat spinal dorsal horn. Neuroscience 192:708–720PubMedCentralPubMedGoogle Scholar
  81. Scheving R, Wittig I, Heide H, Albuquerque B, Steger M, Brandt U, Tegeder I (2012) Protein S-nitrosylation and denitrosylation in the mouse spinal cord upon injury of the sciatic nerve. J Proteomics 75:3987–4004PubMedGoogle Scholar
  82. Schmidt H, Stonkute A, Juttner R, Schaffer S, Buttgereit J, Feil R, Hofmann F, Rathjen FG (2007) The receptor guanylyl cyclase Npr2 is essential for sensory axon bifurcation within the spinal cord. J Cell Biol 179:331–340PubMedCentralPubMedGoogle Scholar
  83. Schmidtko A, Ruth P, Geisslinger G, Tegeder I (2003) Inhibition of cyclic guanosine 5′-monophosphate-dependent protein kinase I (PKG-I) in lumbar spinal cord reduces formalin-induced hyperalgesia and PKG upregulation. Nitric Oxide 8:89–94PubMedGoogle Scholar
  84. Schmidtko A, Gao W, Konig P, Heine S, Motterlini R, Ruth P, Schlossmann J, Koesling D, Niederberger E, Tegeder I, Friebe A, Geisslinger G (2008a) cGMP produced by NO-sensitive guanylyl cyclase essentially contributes to inflammatory and neuropathic pain by using targets different from cGMP-dependent protein kinase I. J Neurosci 28:8568–8576PubMedGoogle Scholar
  85. Schmidtko A, Gao W, Sausbier M, Rauhmeier I, Sausbier U, Niederberger E, Scholich K, Huber A, Neuhuber W, Allescher HD, Hofmann F, Tegeder I, Ruth P, Geisslinger G (2008b) Cysteine-rich protein 2, a novel downstream effector of cGMP/cGMP-dependent protein kinase I-mediated persistent inflammatory pain. J Neurosci 28:1320–1330PubMedGoogle Scholar
  86. Schmidtko A, Tegeder I, Geisslinger G (2009) No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing. Trends Neurosci 32:339–346PubMedGoogle Scholar
  87. Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368PubMedGoogle Scholar
  88. Shi TJ, Holmberg K, Xu ZQ, Steinbusch H, de Vente J, Hokfelt T (1998) Effect of peripheral nerve injury on cGMP and nitric oxide synthase levels in rat dorsal root ganglia: time course and coexistence. Pain 78:171–180PubMedGoogle Scholar
  89. Song XJ, Wang ZB, Gan Q, Walters ET (2006) cAMP and cGMP contribute to sensory neuron hyperexcitability and hyperalgesia in rats with dorsal root ganglia compression. J Neurophysiol 95:479–492PubMedGoogle Scholar
  90. Sousa AM, Prado WA (2001) The dual effect of a nitric oxide donor in nociception. Brain Res 897:9–19PubMedGoogle Scholar
  91. Spike RC, Todd AJ, Johnston HM (1993) Coexistence of NADPH diaphorase with GABA, glycine, and acetylcholine in rat spinal cord. J Comp Neurol 335:320–333PubMedGoogle Scholar
  92. Sung YJ, Walters ET, Ambron RT (2004) A neuronal isoform of protein kinase G couples mitogen-activated protein kinase nuclear import to axotomy-induced long-term hyperexcitability in Aplysia sensory neurons. J Neurosci 24:7583–7595PubMedGoogle Scholar
  93. Sung YJ, Chiu DT, Ambron RT (2006) Activation and retrograde transport of protein kinase G in rat nociceptive neurons after nerve injury and inflammation. Neuroscience 141:697–709PubMedGoogle Scholar
  94. Tang Q, Svensson CI, Fitzsimmons B, Webb M, Yaksh TL, Hua XY (2007) Inhibition of spinal constitutive NOS-2 by 1400W attenuates tissue injury and inflammation-induced hyperalgesia and spinal p38 activation. Eur J Neurosci 25:2964–2972PubMedGoogle Scholar
  95. Tao YX, Johns RA (2002) Activation and up-regulation of spinal cord nitric oxide receptor, soluble guanylate cyclase, after formalin injection into the rat hind paw. Neuroscience 112:439–446PubMedGoogle Scholar
  96. Tao YX, Hassan A, Haddad E, Johns RA (2000) Expression and action of cyclic GMP-dependent protein kinase Ialpha in inflammatory hyperalgesia in rat spinal cord. Neuroscience 95:525–533PubMedGoogle Scholar
  97. Tao F, Tao YX, Mao P, Zhao C, Li D, Liaw WJ, Raja SN, Johns RA (2003) Intact carrageenan-induced thermal hyperalgesia in mice lacking inducible nitric oxide synthase. Neuroscience 120:847–854PubMedGoogle Scholar
  98. Tao F, Tao YX, Zhao C, Dore S, Liaw WJ, Raja SN, Johns RA (2004) Differential roles of neuronal and endothelial nitric oxide synthases during carrageenan-induced inflammatory hyperalgesia. Neuroscience 128:421–430PubMedGoogle Scholar
  99. Tegeder I, Schmidtko A, Niederberger E, Ruth P, Geisslinger G (2002) Dual effects of spinally delivered 8-bromo-cyclic guanosine mono-phosphate (8-bromo-cGMP) in formalin-induced nociception in rats. Neurosci Lett 332:146–150PubMedGoogle Scholar
  100. Tegeder I, Del Turco D, Schmidtko A, Sausbier M, Feil R, Hofmann F, Deller T, Ruth P, Geisslinger G (2004) Reduced inflammatory hyperalgesia with preservation of acute thermal nociception in mice lacking cGMP-dependent protein kinase I. Proc Natl Acad Sci U S A 101:3253–3257PubMedCentralPubMedGoogle Scholar
  101. Tegeder I, Scheving R, Wittig I, Geisslinger G (2011) SNO-ing at the nociceptive synapse? Pharmacol Rev 63:366–389PubMedGoogle Scholar
  102. Tiong SY, Polgar E, van Kralingen JC, Watanabe M, Todd AJ (2011) Galanin-immunoreactivity identifies a distinct population of inhibitory interneurons in laminae I-III of the rat spinal cord. Mol Pain 7:36PubMedCentralPubMedGoogle Scholar
  103. Valtschanoff JG, Weinberg RJ, Rustioni A, Schmidt HH (1992) Nitric oxide synthase and GABA colocalize in lamina II of rat spinal cord. Neurosci Lett 148:6–10PubMedGoogle Scholar
  104. Wu J, Lin Q, Lu Y, Willis WD, Westlund KN (1998) Changes in nitric oxide synthase isoforms in the spinal cord of rat following induction of chronic arthritis. Exp Brain Res 118:457–465PubMedGoogle Scholar
  105. Yonehara N, Takemura M, Yoshimura M, Iwase K, Seo HG, Taniguchi N, Shigenaga Y (1997) Nitric oxide in the rat spinal cord in Freund’s adjuvant-induced hyperalgesia. Jpn J Pharmacol 75:327–335PubMedGoogle Scholar
  106. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607PubMedGoogle Scholar
  107. Zhang X, Verge V, Wiesenfeld-Hallin Z, Ju G, Bredt D, Synder SH, Hokfelt T (1993) Nitric oxide synthase-like immunoreactivity in lumbar dorsal root ganglia and spinal cord of rat and monkey and effect of peripheral axotomy. J Comp Neurol 335:563–575PubMedGoogle Scholar
  108. Zhang X, Chen Y, Wang C, Huang LY (2007) Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci U S A 104:9864–9869PubMedCentralPubMedGoogle Scholar
  109. Zhang FX, Liu XJ, Gong LQ, Yao JR, Li KC, Li ZY, Lin LB, Lu YJ, Xiao HS, Bao L, Zhang XH, Zhang X (2010) Inhibition of inflammatory pain by activating B-type natriuretic peptide signal pathway in nociceptive sensory neurons. J Neurosci 30:10927–10938PubMedGoogle Scholar
  110. Zhuang ZY, Gerner P, Woolf CJ, Ji RR (2005) ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 114:149–159PubMedGoogle Scholar
  111. Zhuo M, Meller ST, Gebhart GF (1993) Endogenous nitric oxide is required for tonic cholinergic inhibition of spinal mechanical transmission. Pain 54:71–78PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für Pharmakologie und ToxikologieUniversität Witten/Herdecke, ZBAFWittenGermany

Personalised recommendations