Sodium Channels and Pain

  • Abdella M. Habib
  • John N. Wood
  • James J. CoxEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 227)


Human and mouse genetic studies have led to significant advances in our understanding of the role of voltage-gated sodium channels in pain pathways. In this chapter, we focus on Nav1.7, Nav1.8, Nav1.9 and Nav1.3 and describe the insights gained from the detailed analyses of global and conditional transgenic Nav knockout mice in terms of pain behaviour. The spectrum of human disorders caused by mutations in these channels is also outlined, concluding with a summary of recent progress in the development of selective Nav1.7 inhibitors for the treatment of pain.


Voltage-gated sodium channels Channelopathy Transgenic mice Analgesia Chronic pain Sensory neurons 


  1. Abrahamsen B, Zhao J et al (2008) The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321(5889):702–705CrossRefPubMedGoogle Scholar
  2. Akopian AN, Sivilotti L et al (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379(6562):257–262CrossRefPubMedGoogle Scholar
  3. Akopian AN, Souslova V et al (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2(6):541–548CrossRefPubMedGoogle Scholar
  4. Amaya F, Wang H et al (2006) The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 26(50):12852–12860CrossRefPubMedGoogle Scholar
  5. Baker MD, Chandra SY et al (2003) GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol 548(Pt 2):373–382CrossRefPubMedCentralPubMedGoogle Scholar
  6. Beckh S, Noda M et al (1989) Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J 8(12):3611–3616PubMedCentralPubMedGoogle Scholar
  7. Black JA, Frezel N et al (2012) Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn. Mol Pain 8:82CrossRefPubMedCentralPubMedGoogle Scholar
  8. Catterall WA (2014) 2013 Sharpey-Schafer Prize Lecture: structure and function of voltage-gated sodium channels at atomic resolution. Exp Physiol 99(1):35–51CrossRefPubMedGoogle Scholar
  9. Cox JJ, Reimann F et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444(7121):894–898CrossRefPubMedGoogle Scholar
  10. Cox JJ, Sheynin J et al (2010) Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Hum Mutat 31(9):E1670–E1686CrossRefPubMedGoogle Scholar
  11. Cummins TR, Waxman SG (1997) Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci 17(10):3503–3514PubMedGoogle Scholar
  12. Cummins TR, Howe JR et al (1998) Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 18(23):9607–9619PubMedGoogle Scholar
  13. Cummins TR, Dib-Hajj SD et al (1999) A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 19(24):RC43PubMedGoogle Scholar
  14. Cummins TR, Dib-Hajj SD et al (2004) Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci 24(38):8232–8236CrossRefPubMedGoogle Scholar
  15. Dib-Hajj SD, Tyrrell L et al (1998) NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci U S A 95(15):8963–8968CrossRefPubMedCentralPubMedGoogle Scholar
  16. Dib-Hajj SD, Fjell J et al (1999) Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain 83(3):591–600CrossRefPubMedGoogle Scholar
  17. Dib-Hajj S, Black JA et al (2002) NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci 25(5):253–259CrossRefPubMedGoogle Scholar
  18. Dib-Hajj SD, Cummins TR et al (2010) Sodium channels in normal and pathological pain. Annu Rev Neurosci 33:325–347CrossRefPubMedGoogle Scholar
  19. Eijkelkamp N, Linley JE et al (2012) Neurological perspectives on voltage-gated sodium channels. Brain 135(Pt 9):2585–2612CrossRefPubMedCentralPubMedGoogle Scholar
  20. Estacion M, Dib-Hajj SD et al (2008) NaV1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J Neurosci 28(43):11079–11088CrossRefPubMedGoogle Scholar
  21. Faber CG, Hoeijmakers JG et al (2012a) Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 71(1):26–39CrossRefPubMedGoogle Scholar
  22. Faber CG, Lauria G et al (2012b) Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A 109(47):19444–19449CrossRefPubMedCentralPubMedGoogle Scholar
  23. Fang X, Djouhri L et al (2002) The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons. J Neurosci 22(17):7425–7433PubMedGoogle Scholar
  24. Fertleman CR, Baker MD et al (2006) SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52(5):767–774CrossRefPubMedGoogle Scholar
  25. Goldberg YP, MacFarlane J et al (2007) Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 71(4):311–319CrossRefPubMedGoogle Scholar
  26. Goldberg Y, Pimstone S et al (2012a) Human Mendelian pain disorders: a key to discovery and validation of novel analgesics. Clin Genet 82(4):367–373CrossRefPubMedGoogle Scholar
  27. Goldberg YP, Price N et al (2012b) Treatment of Na(v)1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain 153(1):80–85CrossRefPubMedGoogle Scholar
  28. Goldin AL, Barchi RL et al (2000) Nomenclature of voltage-gated sodium channels. Neuron 28(2):365–368CrossRefPubMedGoogle Scholar
  29. Hayden R, Grossman M (1959) Rectal, ocular, and submaxillary pain; a familial autonomic disorder related to proctalgia fugaz: report of a family. AMA J Dis Child 97(4):479–482CrossRefPubMedGoogle Scholar
  30. Herzog RI, Cummins TR et al (2001) Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 86(3):1351–1364PubMedGoogle Scholar
  31. Herzog RI, Cummins TR et al (2003) Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. J Physiol 551(Pt 3):741–750CrossRefPubMedCentralPubMedGoogle Scholar
  32. Huang J, Yang Y et al (2013) Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J Neurosci 33(35):14087–14097CrossRefPubMedGoogle Scholar
  33. Kerr BJ, Souslova V et al (2001) A role for the TTX-resistant sodium channel Nav 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. Neuroreport 12(14):3077–3080CrossRefPubMedGoogle Scholar
  34. Klugbauer N, Lacinova L et al (1995) Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. EMBO J 14(6):1084–1090PubMedCentralPubMedGoogle Scholar
  35. Kremeyer B, Lopera F et al (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66(5):671–680CrossRefPubMedGoogle Scholar
  36. Leipold E, Liebmann L et al (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet 45(11):1399–1404CrossRefPubMedGoogle Scholar
  37. Leo S, D’Hooge R et al (2010) Exploring the role of nociceptor-specific sodium channels in pain transmission using Nav1.8 and Nav1.9 knockout mice. Behav Brain Res 208(1):149–157CrossRefPubMedGoogle Scholar
  38. Lolignier S, Amsalem M et al (2011) Nav1.9 channel contributes to mechanical and heat pain hypersensitivity induced by subacute and chronic inflammation. PLoS One 6(8):e23083CrossRefPubMedCentralPubMedGoogle Scholar
  39. McCormack K, Santos S et al (2013) Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. Proc Natl Acad Sci U S A 110(29):E2724–E2732CrossRefPubMedCentralPubMedGoogle Scholar
  40. Middleton RE, Warren VA et al (2002) Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry 41(50):14734–14747CrossRefPubMedGoogle Scholar
  41. Minett MS, Quick K, Wood JN (2011) Behavioral measures of pain thresholds. In: Auwerx J, Brown SD, Justice M, Moore DD, Ackerman SL, Nadeau J (eds) Current protocols in mouse biology. Wiley, HobokenGoogle Scholar
  42. Minett MS, Nassar MA et al (2012) Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat Commun 3:791CrossRefPubMedCentralPubMedGoogle Scholar
  43. Nassar MA, Stirling LC et al (2004) Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci U S A 101(34):12706–12711CrossRefPubMedCentralPubMedGoogle Scholar
  44. Nassar MA, Levato A et al (2005) Neuropathic pain develops normally in mice lacking both Nav1.7 and Nav1.8. Mol Pain 1:24CrossRefPubMedCentralPubMedGoogle Scholar
  45. Nassar MA, Baker MD et al (2006) Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol Pain 2:33CrossRefPubMedCentralPubMedGoogle Scholar
  46. Patino GA, Isom LL (2010) Electrophysiology and beyond: multiple roles of Na+ channel beta subunits in development and disease. Neurosci Lett 486(2):53–59CrossRefPubMedCentralPubMedGoogle Scholar
  47. Priest BT, Murphy BA et al (2005) Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc Natl Acad Sci U S A 102(26):9382–9387CrossRefPubMedCentralPubMedGoogle Scholar
  48. Priest BT, Blumenthal KM et al (2007) ProTx-I and ProTx-II: gating modifiers of voltage-gated sodium channels. Toxicon 49(2):194–201CrossRefPubMedGoogle Scholar
  49. Ragsdale DS, McPhee JC et al (1994) Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science 265(5179):1724–1728CrossRefPubMedGoogle Scholar
  50. Ragsdale DS, McPhee JC et al (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 93(17):9270–9275CrossRefPubMedCentralPubMedGoogle Scholar
  51. Reed KB, Davis MD (2009) Incidence of erythromelalgia: a population-based study in Olmsted County, Minnesota. J Eur Acad Dermatol Venereol 23(1):13–15CrossRefPubMedCentralPubMedGoogle Scholar
  52. Renganathan M, Cummins TR et al (2001) Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86(2):629–640PubMedGoogle Scholar
  53. Rotthier A, Baets J et al (2012) Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol 8(2):73–85CrossRefPubMedGoogle Scholar
  54. Schmalhofer WA, Calhoun J et al (2008) ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors. Mol Pharmacol 74(5):1476–1484CrossRefPubMedGoogle Scholar
  55. Theile JW, Cummins TR (2011) Recent developments regarding voltage-gated sodium channel blockers for the treatment of inherited and acquired neuropathic pain syndromes. Front Pharmacol 2:54CrossRefPubMedCentralPubMedGoogle Scholar
  56. Toledo-Aral JJ, Moss BL et al (1997) Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc Natl Acad Sci U S A 94(4):1527–1532CrossRefPubMedCentralPubMedGoogle Scholar
  57. Waxman SG, Kocsis JD et al (1994) Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol 72(1):466–470PubMedCentralPubMedGoogle Scholar
  58. Weiss J, Pyrski M et al (2011) Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472(7342):186–190CrossRefPubMedCentralPubMedGoogle Scholar
  59. Whitaker WR, Faull RL et al (2001) Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res Mol Brain Res 88(1–2):37–53CrossRefPubMedGoogle Scholar
  60. Yang Y, Wang Y et al (2004) Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 41(3):171–174CrossRefPubMedCentralPubMedGoogle Scholar
  61. Yang S, Xiao Y et al (2013) Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci U S A 110(43):17534–17539CrossRefPubMedCentralPubMedGoogle Scholar
  62. Yuan J, Matsuura E et al (2013) Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation. Neurology 80(18):1641–1649CrossRefPubMedGoogle Scholar
  63. Zhang XY, Wen J et al (2013) Gain-of-function mutations in SCN11A cause familial episodic pain. Am J Hum Genet 93(5):957–966CrossRefPubMedCentralPubMedGoogle Scholar
  64. Zimmermann K, Leffler A et al (2007) Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447(7146):855–858CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Abdella M. Habib
    • 1
  • John N. Wood
    • 1
  • James J. Cox
    • 1
    Email author
  1. 1.Molecular Nociception GroupWolfson Institute for Biomedical Research, University College LondonLondonUK

Personalised recommendations