Advertisement

The Pharmacology of Nociceptor Priming

  • Ram Kandasamy
  • Theodore J. PriceEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 227)

Abstract

Nociceptors and neurons in the central nervous system (CNS) that receive nociceptive input show remarkable plasticity in response to injury. This plasticity is thought to underlie the development of chronic pain states. Hence, further understanding of the molecular mechanisms driving and maintaining this plasticity has the potential to lead to novel therapeutic approaches for the treatment of chronic pain states. An important concept in pain plasticity is the presence and persistence of “hyperalgesic priming.” This priming arises from an initial injury and results in a remarkable susceptibility to normally subthreshold noxious inputs causing a prolonged pain state in primed animals. Here we describe our current understanding of how this priming is manifested through changes in signaling in the primary nociceptor as well as through memory like alterations at CNS synapses. Moreover, we discuss how commonly utilized analgesics, such as opioids, enhance priming therefore potentially contributing to the development of persistent pain states. Finally we highlight where these priming models draw parallels to common human chronic pain conditions. Collectively, these advances in our understanding of pain plasticity reveal a variety of targets for therapeutic intervention with the potential to reverse rather than palliate chronic pain states.

Keywords

Atypical PKC AMPA NMDA mTORC1 PKC Epac Hyperalgesic priming Prostaglandins NGF Interleukin 6 

Notes

Acknowledgments

This work was supported by NIH grants NS065926 and GM102575 to T.J.P.

References

  1. Abraham WC, Williams JM (2008) LTP maintenance and its protein synthesis-dependence. Neurobiol Learn Mem 89:260–268CrossRefPubMedGoogle Scholar
  2. Aley KO, Levine JD (1999) Role of protein kinase A in the maintenance of inflammatory pain. J Neurosci 19:2181–2186PubMedGoogle Scholar
  3. Aley KO, Messing RO, Mochly-Rosen D, Levine JD (2000) Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C. J Neurosci 20:4680–4685PubMedGoogle Scholar
  4. Althaus A, Hinrichs-Rocker A, Chapman R, Arranz Becker O, Lefering R, Simanski C, Weber F, Moser KH, Joppich R, Trojan S, Gutzeit N, Neugebauer E (2012) Development of a risk index for the prediction of chronic post-surgical pain. Eur J Pain 16:901–910CrossRefPubMedGoogle Scholar
  5. Andersson GB (1999) Epidemiological features of chronic low-back pain. Lancet 354:581–585CrossRefPubMedGoogle Scholar
  6. Asiedu MN, Tillu DV, Melemedjian OK, Shy A, Sanoja R, Bodell B, Ghosh S, Porreca F, Price TJ (2011) Spinal protein kinase M zeta underlies the maintenance mechanism of persistent nociceptive sensitization. J Neurosci 31:6646–6653CrossRefPubMedCentralPubMedGoogle Scholar
  7. Atkins CM, Davare MA, Oh MC, Derkach V, Soderling TR (2005) Bidirectional regulation of cytoplasmic polyadenylation element-binding protein phosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein phosphatase 1 during hippocampal long-term potentiation. J Neurosci 25:5604–5610CrossRefPubMedGoogle Scholar
  8. Balkowiec A, Katz DM (2000) Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J Neurosci 20:7417–7423PubMedGoogle Scholar
  9. Bartleson JD (2001) Low back pain. Curr Treat Options Neurol 3:159–168CrossRefPubMedGoogle Scholar
  10. Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60:201–214CrossRefPubMedCentralPubMedGoogle Scholar
  11. Bigal ME, Lipton RB (2008) Clinical course in migraine: conceptualizing migraine transformation. Neurology 71:848–855CrossRefPubMedGoogle Scholar
  12. Bogen O, Alessandri-Haber N, Chu C, Gear RW, Levine JD (2012) Generation of a pain memory in the primary afferent nociceptor triggered by PKCε activation of CPEB. J Neurosci 32:2018–2026CrossRefPubMedCentralPubMedGoogle Scholar
  13. Cabanero D, Campillo A, Celerier E, Romero A, Puig MM (2009a) Pronociceptive effects of remifentanil in a mouse model of postsurgical pain: effect of a second surgery. Anesthesiology 111:1334–1345CrossRefPubMedGoogle Scholar
  14. Cabanero D, Celerier E, Garcia-Nogales P, Mata M, Roques BP, Maldonado R, Puig MM (2009b) The pro-nociceptive effects of remifentanil or surgical injury in mice are associated with a decrease in delta-opioid receptor mRNA levels: prevention of the nociceptive response by on-site delivery of enkephalins. Pain 141:88–96CrossRefPubMedGoogle Scholar
  15. Carey TS, Garrett JM, Jackman A, Hadler N (1999) Recurrence and care seeking after acute back pain: results of a long-term follow-up study. North Carolina Back Pain Project. Med Care 37:157–164CrossRefPubMedGoogle Scholar
  16. Carling D, Thornton C, Woods A, Sanders MJ (2012) AMP-activated protein kinase: new regulation, new roles? Biochem J 445:11–27CrossRefPubMedGoogle Scholar
  17. Cassidy JD, Cote P, Carroll LJ, Kristman V (2005) Incidence and course of low back pain episodes in the general population. Spine (Phila Pa 1976) 30:2817–2823CrossRefGoogle Scholar
  18. Cazorla M, Premont J, Mann A, Girard N, Kellendonk C, Rognan D (2011) Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 121:1846–1857CrossRefPubMedCentralPubMedGoogle Scholar
  19. Celerier E, Rivat C, Jun Y, Laulin JP, Larcher A, Reynier P, Simonnet G (2000) Long-lasting hyperalgesia induced by fentanyl in rats: preventive effect of ketamine. Anesthesiology 92:465–472CrossRefPubMedGoogle Scholar
  20. Celerier E, Laulin JP, Corcuff JB, Le Moal M, Simonnet G (2001) Progressive enhancement of delayed hyperalgesia induced by repeated heroin administration: a sensitization process. J Neurosci 21:4074–4080PubMedGoogle Scholar
  21. Corder G, Doolen S, Donahue RR, Winter MK, Jutras BL, He Y, Hu X, Wieskopf JS, Mogil JS, Storm DR, Wang ZJ, McCarson KE, Taylor BK (2013) Constitutive mu-opioid receptor activity leads to long-term endogenous analgesia and dependence. Science 341:1394–1399CrossRefPubMedGoogle Scholar
  22. Croft PR, Lewis M, Papageorgiou AC, Thomas E, Jayson MI, Macfarlane GJ, Silman AJ (2001) Risk factors for neck pain: a longitudinal study in the general population. Pain 93:317–325CrossRefPubMedGoogle Scholar
  23. Dina OA, Khasar SG, Gear RW, Levine JD (2009) Activation of Gi induces mechanical hyperalgesia poststress or inflammation. Neuroscience 160:501–507CrossRefPubMedCentralPubMedGoogle Scholar
  24. Drdla R, Gassner M, Gingl E, Sandkuhler J (2009) Induction of synaptic long-term potentiation after opioid withdrawal. Science 325:207–210CrossRefPubMedGoogle Scholar
  25. Drdla-Schutting R, Benrath J, Wunderbaldinger G, Sandkuhler J (2012) Erasure of a spinal memory trace of pain by a brief, high-dose opioid administration. Science 335:235–238CrossRefPubMedGoogle Scholar
  26. Eijkelkamp N, Wang H, Garza-Carbajal A, Willemen HL, Zwartkruis FJ, Wood JN, Dantzer R, Kelley KW, Heijnen CJ, Kavelaars A (2010) Low nociceptor GRK2 prolongs prostaglandin E2 hyperalgesia via biased cAMP signaling to Epac/Rap1, protein kinase Cepsilon, and MEK/ERK. J Neurosci 30:12806–12815CrossRefPubMedGoogle Scholar
  27. Ferrari LF, Bogen O, Alessandri-Haber N, Levine E, Gear RW, Levine JD (2012) Transient decrease in nociceptor GRK2 expression produces long-term enhancement in inflammatory pain. Neuroscience 222:392–403CrossRefPubMedCentralPubMedGoogle Scholar
  28. Ferrari LF, Bogen O, Levine JD (2013a) Role of nociceptor alphaCaMKII in transition from acute to chronic pain (hyperalgesic priming) in male and female rats. J Neurosci 33:11002–11011CrossRefPubMedCentralPubMedGoogle Scholar
  29. Ferrari LF, Bogen O, Chu C, Levine JD (2013b) Peripheral administration of translation inhibitors reverses increased hyperalgesia in a model of chronic pain in the rat. J Pain 14:731–738CrossRefPubMedCentralPubMedGoogle Scholar
  30. Gardell LR, Wang R, Burgess SE, Ossipov MH, Vanderah TW, Malan TP Jr, Lai J, Porreca F (2002) Sustained morphine exposure induces a spinal dynorphin-dependent enhancement of excitatory transmitter release from primary afferent fibers. J Neurosci 22:6747–6755PubMedGoogle Scholar
  31. Gardell LR, King T, Ossipov MH, Rice KC, Lai J, Vanderah TW, Porreca F (2006) Opioid receptor-mediated hyperalgesia and antinociceptive tolerance induced by sustained opiate delivery. Neurosci Lett 396:44–49CrossRefPubMedGoogle Scholar
  32. Garraway SM, Petruska JC, Mendell LM (2003) BDNF sensitizes the response of lamina II neurons to high threshold primary afferent inputs. Eur J Neurosci 18:2467–2476CrossRefPubMedGoogle Scholar
  33. Harris W (1921) Persistent pain in lesions of the peripheral and central nervous system. Br Med J 2:896–900CrossRefPubMedCentralPubMedGoogle Scholar
  34. Herdy B et al (2012) Translational control of the activation of transcription factor NF-kappaB and production of type I interferon by phosphorylation of the translation factor eIF4E. Nat Immunol 13:543–550CrossRefPubMedCentralPubMedGoogle Scholar
  35. Hucho TB, Dina OA, Levine JD (2005) Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism. J Neurosci 25:6119–6126CrossRefPubMedGoogle Scholar
  36. Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80:704–717CrossRefPubMedCentralPubMedGoogle Scholar
  37. Joseph EK, Levine JD (2010) Hyperalgesic priming is restricted to isolectin B4-positive nociceptors. Neuroscience 169:431–435CrossRefPubMedCentralPubMedGoogle Scholar
  38. Joseph EK, Parada CA, Levine JD (2003) Hyperalgesic priming in the rat demonstrates marked sexual dimorphism. Pain 105:143–150CrossRefPubMedGoogle Scholar
  39. Joseph EK, Bogen O, Alessandri-Haber N, Levine JD (2007) PLC-beta 3 signals upstream of PKC epsilon in acute and chronic inflammatory hyperalgesia. Pain 132:67–73CrossRefPubMedGoogle Scholar
  40. Joseph EK, Reichling DB, Levine JD (2010) Shared mechanisms for opioid tolerance and a transition to chronic pain. J Neurosci 30:4660–4666CrossRefPubMedCentralPubMedGoogle Scholar
  41. Kerr BJ, Bradbury EJ, Bennett DL, Trivedi PM, Dassan P, French J, Shelton DB, McMahon SB, Thompson SW (1999) Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci 19:5138–5148PubMedGoogle Scholar
  42. Khasar SG, Burkham J, Dina OA, Brown AS, Bogen O, Alessandri-Haber N, Green PG, Reichling DB, Levine JD (2008) Stress induces a switch of intracellular signaling in sensory neurons in a model of generalized pain. J Neurosci 28:5721–5730CrossRefPubMedCentralPubMedGoogle Scholar
  43. Klein T, Stahn S, Magerl W, Treede RD (2008) The role of heterosynaptic facilitation in long-term potentiation (LTP) of human pain sensation. Pain 139:507–519CrossRefPubMedGoogle Scholar
  44. Kolb E, Canjuga M, Bauer GF, Laubli T (2011) Course of back pain across 5 years: a retrospective cohort study in the general population of Switzerland. Spine (Phila Pa 1976) 36:E268–E273CrossRefGoogle Scholar
  45. Laferriere A, Pitcher MH, Haldane A, Huang Y, Cornea V, Kumar N, Sacktor TC, Cervero F, Coderre TJ (2011) PKMzeta is essential for spinal plasticity underlying the maintenance of persistent pain. Mol Pain 7:99CrossRefPubMedCentralPubMedGoogle Scholar
  46. Lee AM, Kanter BR, Wang D, Lim JP, Zou ME, Qiu C, McMahon T, Dadgar J, Fischbach-Weiss SC, Messing RO (2013) Prkcz null mice show normal learning and memory. Nature 493:416–419CrossRefPubMedCentralPubMedGoogle Scholar
  47. Lipton RB (2009) Tracing transformation: chronic migraine classification, progression, and epidemiology. Neurology 72:S3–S7CrossRefPubMedGoogle Scholar
  48. Lu Y, Christian K, Lu B (2008) BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89:312–323CrossRefPubMedCentralPubMedGoogle Scholar
  49. Ma W, Ribeiro-da-Silva A, De Koninck Y, Radhakrishnan V, Cuello AC, Henry JL (1997) Substance P and enkephalin immunoreactivities in axonal boutons presynaptic to physiologically identified dorsal horn neurons. An ultrastructural multiple-labelling study in the cat. Neuroscience 77:793–811CrossRefPubMedGoogle Scholar
  50. Macrae WA (2001) Chronic pain after surgery. Br J Anaesth 87:88–98CrossRefPubMedGoogle Scholar
  51. Mannion RJ, Costigan M, Decosterd I, Amaya F, Ma QP, Holstege JC, Ji RR, Acheson A, Lindsay RM, Wilkinson GA, Woolf CJ (1999) Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A 96:9385–9390CrossRefPubMedCentralPubMedGoogle Scholar
  52. Mao J, Price DD, Mayer DJ (1995) Mechanisms of hyperalgesia and morphine tolerance: a current view of their possible interactions. Pain 62:259–274CrossRefPubMedGoogle Scholar
  53. Matayoshi S, Jiang N, Katafuchi T, Koga K, Furue H, Yasaka T, Nakatsuka T, Zhou XF, Kawasaki Y, Tanaka N, Yoshimura M (2005) Actions of brain-derived neurotrophic factor on spinal nociceptive transmission during inflammation in the rat. J Physiol 569:685–695CrossRefPubMedCentralPubMedGoogle Scholar
  54. Melemedjian OK, Asiedu MN, Tillu DV, Peebles KA, Yan J, Ertz N, Dussor GO, Price TJ (2010) IL-6- and NGF-induced rapid control of protein synthesis and nociceptive plasticity via convergent signaling to the eIF4F complex. J Neurosci 30:15113–15123CrossRefPubMedCentralPubMedGoogle Scholar
  55. Melemedjian OK, Asiedu MN, Tillu DV, Sanoja R, Yan J, Lark A, Khoutorsky A, Johnson J, Peebles KA, Lepow T, Sonenberg N, Dussor G, Price TJ (2011) Targeting adenosine monophosphate-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain. Mol Pain 7:70CrossRefPubMedCentralPubMedGoogle Scholar
  56. Melemedjian OK, Tillu DV, Asiedu MN, Mandell EK, Moy JK, Blute VM, Taylor CJ, Ghosh S, Price TJ (2013a) BDNF regulates atypical PKC at spinal synapses to initiate and maintain a centralized chronic pain state. Mol Pain 9:12CrossRefPubMedCentralPubMedGoogle Scholar
  57. Melemedjian OK, Khoutorsky A, Sorge RE, Yan J, Asiedu MN, Valdez A, Ghosh S, Dussor G, Mogil JS, Sonenberg N, Price TJ (2013b) mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK. Pain 154(7):1080–1091CrossRefPubMedCentralPubMedGoogle Scholar
  58. Melemedjian OK, Mejia GL, Lepow TS, Zoph OK, Price TJ (2014) Bidirectional regulation of P body formation mediated by eIF4F complex formation in sensory neurons. Neurosci Lett 563:169–174CrossRefPubMedCentralPubMedGoogle Scholar
  59. Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, Richter JD (2000) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404:302–307CrossRefPubMedGoogle Scholar
  60. Migues PV, Hardt O, Wu DC, Gamache K, Sacktor TC, Wang YT, Nader K (2010) PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nat Neurosci 13:630–634CrossRefPubMedGoogle Scholar
  61. Misra UK, Pizzo SV (2009) Epac1-induced cellular proliferation in prostate cancer cells is mediated by B-Raf/ERK and mTOR signaling cascades. J Cell Biochem 108:998–1011CrossRefPubMedCentralPubMedGoogle Scholar
  62. Nicoll RA, Roche KW (2013) Long-term potentiation: peeling the onion. Neuropharmacology 74:18–22CrossRefPubMedCentralPubMedGoogle Scholar
  63. Nolet PS, Cote P, Cassidy JD, Carroll LJ (2010) The association between a lifetime history of a neck injury in a motor vehicle collision and future neck pain: a population-based cohort study. Eur Spine J 19:972–981CrossRefPubMedCentralPubMedGoogle Scholar
  64. Parada CA, Yeh JJ, Reichling DB, Levine JD (2003) Transient attenuation of protein kinase Cepsilon can terminate a chronic hyperalgesic state in the rat. Neuroscience 120:219–226CrossRefPubMedGoogle Scholar
  65. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144CrossRefPubMedGoogle Scholar
  66. Pezet S, Malcangio M, Lever IJ, Perkinton MS, Thompson SW, Williams RJ, McMahon SB (2002) Noxious stimulation induces Trk receptor and downstream ERK phosphorylation in spinal dorsal horn. Mol Cell Neurosci 21:684–695CrossRefPubMedGoogle Scholar
  67. Pinto PR, McIntyre T, Ferrero R, Almeida A, Araujo-Soares V (2013) Risk factors for moderate and severe persistent pain in patients undergoing total knee and hip arthroplasty: a prospective predictive study. PLoS One 8:e73917CrossRefPubMedCentralPubMedGoogle Scholar
  68. Price TJ, Dussor G (2013) AMPK: an emerging target for modification of injury-induced pain plasticity. Neurosci Lett 557(Pt A):9–18CrossRefPubMedGoogle Scholar
  69. Price TJ, Ghosh S (2013) ZIPping to pain relief: the role (or not) of PKMzeta in chronic pain. Mol Pain 9:6CrossRefPubMedCentralPubMedGoogle Scholar
  70. Price TJ, Melemedjian OK (2012) Fragile X mental retardation protein (FMRP) and the spinal sensory system. Results Probl Cell Differ 54:41–59CrossRefPubMedCentralPubMedGoogle Scholar
  71. Price TJ, Rashid MH, Millecamps M, Sanoja R, Entrena JM, Cervero F (2007) Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR. J Neurosci 27:13958–13967CrossRefPubMedCentralPubMedGoogle Scholar
  72. Reichling DB, Levine JD (2009) Critical role of nociceptor plasticity in chronic pain. Trends Neurosci 32:611–618CrossRefPubMedCentralPubMedGoogle Scholar
  73. Reichling DB, Green PG, Levine JD (2013) The fundamental unit of pain is the cell. Pain 154(Suppl 1):S2–S9CrossRefPubMedGoogle Scholar
  74. Ribeiro-da-Silva A, De Koninck Y, Cuello AC, Henry JL (1992) Enkephalin-immunoreactive nociceptive neurons in the cat spinal cord. Neuroreport 3:25–28CrossRefPubMedGoogle Scholar
  75. Richter JD (2007) CPEB: a life in translation. Trends Biochem Sci 32:279–285CrossRefPubMedGoogle Scholar
  76. Rivat C, Laulin JP, Corcuff JB, Celerier E, Pain L, Simonnet G (2002) Fentanyl enhancement of carrageenan-induced long-lasting hyperalgesia in rats: prevention by the N-methyl-D-aspartate receptor antagonist ketamine. Anesthesiology 96:381–391CrossRefPubMedGoogle Scholar
  77. Rivat C, Laboureyras E, Laulin J-P, Le Roy C, Richebé P, Simonnet G (2007) Non-nociceptive environmental stress induces hyperalgesia, not analgesia, in pain and opioid-experienced rats. Neuropsychopharmacology 32:2217–2228CrossRefPubMedGoogle Scholar
  78. Rivat C, Bollag L, Richebe P (2013) Mechanisms of regional anaesthesia protection against hyperalgesia and pain chronicization. Curr Opin Anaesthesiol 26(5):621–625Google Scholar
  79. Russe OQ, Moser CV, Kynast KL, King TS, Stephan H, Geisslinger G, Niederberger E (2013) Activation of the AMP-activated protein kinase reduces inflammatory nociception. J Pain 14:1330–1340CrossRefPubMedGoogle Scholar
  80. Sacktor TC (2011) How does PKMzeta maintain long-term memory? Nat Rev Neurosci 12:9–15CrossRefPubMedGoogle Scholar
  81. Sandkuhler J (2007) Understanding LTP in pain pathways. Mol Pain 3:9CrossRefPubMedCentralPubMedGoogle Scholar
  82. Schroeder JE, McCleskey EW (1993) Inhibition of Ca2+ currents by a mu-opioid in a defined subset of rat sensory neurons. J Neurosci 13:867–873PubMedGoogle Scholar
  83. Schroeder JE, Fischbach PS, Zheng D, McCleskey EW (1991) Activation of mu opioid receptors inhibits transient high- and low-threshold Ca2+ currents, but spares a sustained current. Neuron 6:13–20CrossRefPubMedGoogle Scholar
  84. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646CrossRefPubMedCentralPubMedGoogle Scholar
  85. Shen CH, Yuan P, Perez-Lorenzo R, Zhang Y, Lee SX, Ou Y, Asara JM, Cantley LC, Zheng B (2013) Phosphorylation of BRAF by AMPK impairs BRAF-KSR1 association and cell proliferation. Mol Cell 52:161–172CrossRefPubMedCentralPubMedGoogle Scholar
  86. Si K, Lindquist S, Kandel ER (2003a) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115:879–891CrossRefPubMedGoogle Scholar
  87. Si K, Giustetto M, Etkin A, Hsu R, Janisiewicz AM, Miniaci MC, Kim JH, Zhu H, Kandel ER (2003b) A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in aplysia. Cell 115:893–904CrossRefPubMedGoogle Scholar
  88. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745CrossRefPubMedCentralPubMedGoogle Scholar
  89. Tamcan O, Mannion AF, Eisenring C, Horisberger B, Elfering A, Muller U (2010) The course of chronic and recurrent low back pain in the general population. Pain 150:451–457CrossRefPubMedGoogle Scholar
  90. Tao YX (2012) AMPA receptor trafficking in inflammation-induced dorsal horn central sensitization. Neurosci Bull 28:111–120CrossRefPubMedCentralPubMedGoogle Scholar
  91. Tillu DV, Melemedjian OK, Asiedu MN, Qu N, De Felice M, Dussor G, Price TJ (2012) Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain. Mol Pain 8:5CrossRefPubMedCentralPubMedGoogle Scholar
  92. Udagawa T, Swanger SA, Takeuchi K, Kim JH, Nalavadi V, Shin J, Lorenz LJ, Zukin RS, Bassell GJ, Richter JD (2012) Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol Cell 47:253–266CrossRefPubMedCentralPubMedGoogle Scholar
  93. Ueda T, Sasaki M, Elia AJ, Chio II, Hamada K, Fukunaga R, Mak TW (2010) Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci U S A 107:13984–13990CrossRefPubMedCentralPubMedGoogle Scholar
  94. Vanderah TW, Suenaga NM, Ossipov MH, Malan TP Jr, Lai J, Porreca F (2001) Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J Neurosci 21:279–286PubMedGoogle Scholar
  95. Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL (2013) PKM-zeta is not required for hippocampal synaptic plasticity, learning and memory. Nature 493:420–423CrossRefPubMedGoogle Scholar
  96. Von Korff M, Saunders K (1996) The course of back pain in primary care. Spine (Phila Pa 1976) 21:2833–2837, discussion 2838–2839CrossRefGoogle Scholar
  97. Wang X, Flynn A, Waskiewicz AJ, Webb BL, Vries RG, Baines IA, Cooper JA, Proud CG (1998) The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J Biol Chem 273:9373–9377CrossRefPubMedGoogle Scholar
  98. Wang H, Heijnen CJ, van Velthoven CT, Willemen HL, Ishikawa Y, Zhang X, Sood AK, Vroon A, Eijkelkamp N, Kavelaars A (2013) Balancing GRK2 and EPAC1 levels prevents and relieves chronic pain. J Clin Invest 123(12):5023–5034CrossRefPubMedCentralPubMedGoogle Scholar
  99. Wu C, Guo Y, Su Y, Zhang X, Luan H, Zhang X, Zhu H, He H, Wang X, Sun G, Sun X, Guo P, Zhu P (2014) Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the gamma1 subunit. J Cell Mol Med 18(2):293–304CrossRefPubMedCentralPubMedGoogle Scholar
  100. Zhao J, Seereeram A, Nassar MA, Levato A, Pezet S, Hathaway G, Morenilla-Palao C, Stirling C, Fitzgerald M, McMahon SB, Rios M, Wood JN (2006) Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Mol Cell Neurosci 31:539–548CrossRefPubMedGoogle Scholar
  101. Zhou LJ, Zhong Y, Ren WJ, Li YY, Zhang T, Liu XG (2008) BDNF induces late-phase LTP of C-fiber evoked field potentials in rat spinal dorsal horn. Exp Neurol 212:507–514CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PharmacologyThe University of ArizonaTucsonUSA
  2. 2.Bio5 InstituteThe University of ArizonaTucsonUSA
  3. 3.Graduate Interdisciplinary Program in NeuroscienceThe University of ArizonaTucsonUSA
  4. 4.School of Brain and Behavioral Sciences, The University of Texas at DallasRichardsonUSA

Personalised recommendations