Skip to main content
  • 536 Accesses

Abstract

This chapter gives a well-rounded presentation of the continuous synthesis of UNCD via laser shock processing (LSP) of graphite particles suspended in water by a Nd:YAG laser system with high power density (109 W/cm2) and short pulse width at room temperature and normal pressure, which yielded the ultra-nano-crystalline diamond in size of about 5 nm. X-ray diffraction, high-resolution transmission electron microscopy, and laser Raman spectroscopy were used to characterize the nano-crystals. The method studied is helpful in understanding the formation mechanism and enhancing the yield rate of nano-diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitazawa S et al (2005) Formation of nanostructured solid-state carbon particles by laser ablation of graphite in isopropyl alcohol. Solids 66:555

    Article  Google Scholar 

  2. Abbaschian R et al (2005) High pressure-high temperature growth of diamond crystals using split sphere apparatus. Diamond Relat Mater 14:1916

    Article  Google Scholar 

  3. Chen PW et al (2000) Spherical nanometer-sized diamond obtained from detonation. Diamond Relat Mater 9:1722

    Article  Google Scholar 

  4. Wang WL et al (2000) Nucleation and growth of diamond films on aluminum nitride by hot filament chemical vapor deposition. Diamond Relat Mater 9:1660

    Article  Google Scholar 

  5. Yang GW (2007) Pulsed laser ablation and deposition of thin films. Prog Mater Sci 52:648

    Article  Google Scholar 

  6. Sun J et al (2006) Distribution of interleukin-1 receptors in term human fetal membranes and decidua. J Mater Res 20:33

    Google Scholar 

  7. Gao N (2007) Effects of graphite nodules on crack growth behaviour of austempered ductile iron. Powder Metall Thch 25:203

    Google Scholar 

  8. Shen L, Chen Z (2009) A numerical study of the imperfection effect on ultrananocrystalline diamond properties under different loading paths and temperatures. Compos Sci Technol 69:2075

    Article  Google Scholar 

  9. Na C et al (2009) Advanced deposition characteristics of kinetic sprayed bronze/diamond composite by tailoring feedstock properties. Compos Sci Technol 69:463

    Article  Google Scholar 

  10. Ren XD et al (2014) A conversion model of graphite to ultrananocrystalline diamond via laser processing at ambient temperature and normal pressure. Appl Phys Lett 105:021908

    Article  Google Scholar 

  11. Prawer et al (2000) The raman spectrum of nanocrystalline diamond. Chem Phys Lett 332:93

    Article  Google Scholar 

  12. Obraztsova ED et al (1998) Raman-spectroscopy of low-dimensional semiconductors. Carbon 36:821

    Article  Google Scholar 

  13. Fauchet PM, Campbell IH (1988) Raman-spectroscopy of low-dimensional semiconductors. Crit Rev Solid State Mater Sci 14:S79

    Article  Google Scholar 

  14. Richter H et al (1981) Measurements of the melting point of graphite and the properties of liquid carbon. Solid State Commun 39:625

    Article  Google Scholar 

  15. Savvatimskiy AI (2005) Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon 43:1115

    Article  Google Scholar 

  16. Wang JB, Yang GW (1999) Phase transformation between diamond and graphite in preparation of diamonds by pulsed-laser induced liquid-solid interface reaction. J Phys Condens Matter 11:7089

    Article  Google Scholar 

  17. Wang CX et al (2005) Relaxorlike dielectric behavior in Ba0.7Sr0.3TiO3 thin films. J Appl Phys 97:066104

    Article  Google Scholar 

  18. Wang CX, Yang GW (2005) Thermodynamics of metastable phase nucleation on nanoscale. Mater Sci Eng R 49:157

    Article  Google Scholar 

  19. Sun J et al (2006) Ultrafine diamond synthesized by long-pulse-width laser. Appl Phys Lett 89:1831151

    Google Scholar 

  20. Wang CX et al (2005) Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Appl Phys Lett 87:201913

    Article  Google Scholar 

  21. Tian F, Sun J (2009) Time amplifying techniques towards atomic time resolution. Chin J Lasers 1:3039

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, X. (2015). Conversion Model of Graphite. In: Laser Shocking Nano-Crystallization and High-Temperature Modification Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46444-1_5

Download citation

Publish with us

Policies and ethics