Skip to main content

Quantum Probability Theory and the Foundations of Quantum Mechanics

  • Chapter
The Message of Quantum Science

Part of the book series: Lecture Notes in Physics ((LNP,volume 899))

Abstract

By and large, people are better at coining expressions than at filling them with interesting, concrete contents. Thus, it may not be very surprising that there are many professional probabilists who may have heard the expression but do not appear to be aware of the need to develop “quantum probability theory” into a thriving, rich, useful field featured at meetings and conferences on probability theory. Although our aim, in this essay, is not to contribute new results on quantum probability theory, we hope to be able to let the reader feel the enormous potential and richness of this field. What we intend to do, in the following, is to contribute some novel points of view to the “foundations of quantum mechanics”, using mathematical tools from “quantum probability theory” (such as the theory of operator algebras).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This story is purely fictional, but quite plausible.

  2. 2.

    And that Heisenberg’s 1925 paper [46] cannot be understood.

  3. 3.

    “dévisser les problèmes” (in reference to A. Grothendieck).

  4. 4.

    “The one thing to say about art is that it is one thing. Art is art-as-art and everything else is everything else.” Ad Reinhardt, [63].

  5. 5.

    A result of the form of Eq. (7.21) was conjectured by J.F. in the 1990s. But the proof remained elusive.

References

  1. Adler, S.L., Brody, D.C., Brun, T.A., Hughston, L.P.: Martingale models for quantum state reduction. J. Phys. A 34(42), 8795 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: Predictions and primitive ontology in quantum foundations: a study of examples. Br. J. Philos. Sci. (2013)

    Google Scholar 

  3. Araki, H.: Multiple time analyticity of a quantum statistical state satisfying the KMS boundary condition. Publ. Res. I. Math. Sci. 4(2), 361–371 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bannier, U.: Intrinsic algebraic characterization of space-time structure. Int. J. Theor. Phys. 33(9), 1797–1809 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barchielli, A., Paganoni, A.: On the asymptotic behaviour of some stochastic differential equations for quantum states. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 6(02), 223–243 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bauer, M., Bernard, D.: Convergence of repeated quantum non-demolition measurements and wave-function collapse. Phys. Rev. A 84(4), 44103 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1(3), 195–200 (1964)

    Google Scholar 

  8. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3), 447–452 (1966)

    Article  ADS  MATH  Google Scholar 

  9. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  10. Blanchard, P., Olkiewicz, R.: Decoherence induced transition from quantum to classical dynamics. Rev. Math. Phys. 15(3), 217–244 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Born, M.: Quantenmechanik der Stoßvorgänge. Z. Phys. 38(11–12), 803–827 (1926)

    Article  ADS  Google Scholar 

  12. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1–2. Springer, New York (2003)

    Google Scholar 

  13. Brunetti, R., Fredenhagen, K.: When does a detector click? Phys. Rev. A 66, 044101 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  14. Buchholz, D.: Collision theory for massless bosons. Commun. Math. Phys. 52(2), 147–173 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  15. Buchholz, D., Grundling, H.: Lie algebras of derivations and resolvent algebras. Commun. Math. Phys. 320(2), 455–467 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Buchholz, D., Grundling, H.: Quantum systems and resolvent algebras (2013). arXiv preprint arXiv:1306.0860

    Google Scholar 

  17. Buchholz, D., Roberts, J.E.: New light on infrared problems: sectors, statistics, symmetries and spectrum (2013). arXiv preprint arXiv:1304.2794

    Google Scholar 

  18. Colbeck, R., Renner, R.: Quantum theory cannot be extended. Bull. Am. Phys. Soc. 56(1), 513 (2011)

    Google Scholar 

  19. Connes, A.: Une classification des facteurs de type III. Ann. Sci. École Norm. Sup. 6(2), 133–252 (1973)

    MATH  MathSciNet  Google Scholar 

  20. Connes, A., Narnhofer, H., Thirring, W.: Dynamical entropy of C*algebras and von Neumann algebras. Commun. Math. Phys. 112(4), 691–719 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. De Roeck, W., Fröhlich, J.: Diffusion of a massive quantum particle coupled to a quasi-free thermal medium. Commun. Math. Phys. 303(3), 613–707 (2011)

    Article  ADS  MATH  Google Scholar 

  22. De Roeck, W., Kupiainen, A.: Approach to ground state and time-independent photon bound for massless spin-boson models. Ann. Henri Poincaré 14(2), 253–311 (2013)

    Article  ADS  MATH  Google Scholar 

  23. Dirac, P.A.M.: The Lagrangian in quantum mechanics. Phys. Z. 3(1), 64–72 (1933)

    Google Scholar 

  24. Dowker, F., Johnston, S., Sorkin, R.D.: Hilbert spaces from path integrals. J. Phys. A 43(27), 275–302 (2010)

    Article  MathSciNet  Google Scholar 

  25. Dürr, D., Teufel, S.: Bohmian Mechanics. Springer, New York (2009)

    MATH  Google Scholar 

  26. Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys.-Berlin 322(6), 132–148 (1905)

    Article  ADS  Google Scholar 

  27. Einstein, A.: Zur Quantentheorie der Strahlung. Phys. Z. 18, 121–128 (1917)

    Google Scholar 

  28. Everett, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  29. Faupin, J., Fröhlich, J., Schubnel, B.: On the probabilistic nature of quantum mechanics and the notion of closed systems to appear in Commun. Math. Phys. (2014, submitted)

    Google Scholar 

  30. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals: Emended Edition. Dover, Mineola (2012)

    Google Scholar 

  31. Fröhlich, J.: Abschied von Determinismus und Realismus in der Physik des 20. Jahrhunderts. Akademie der Wissenschaften und der Literatur zu Mainz, Abhandlungen der Mathematisch-naturwissenschaftlichen Klasse 1, 1–22 (2011)

    Google Scholar 

  32. Fröhlich, J., Schubnel, B.: Do we understand quantum mechanics—finally? In: Wolfgang Reiter et al.(eds.), Erwin Schrödinger50 years after, Zrich: European Mathematical Society Publ., 2013, pages 37–84.

    Chapter  Google Scholar 

  33. Fröhlich, J., Schubnel, B.: Paper in preparation

    Google Scholar 

  34. Fröhlich, J., Schubnel, B.: On the preparation of states in quantum mechanics. J. Math. Phys. (to appear)

    Google Scholar 

  35. Fröhlich, J., Griesemer, M., Schlein, B.: Asymptotic completeness for Rayleigh scattering. Ann. Henri Poincaré 3(1), 107–170 (2002)

    Article  ADS  MATH  Google Scholar 

  36. Fuchs, C.A.: Qbism, the perimeter of quantum Bayesianism (2010). arXiv preprint arXiv:1003.5209

    Google Scholar 

  37. Gell-Mann, M., Hartle, J.B.: Classical equations for quantum systems. Phys. Rev. D 47(8), 3345–3382 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  38. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6(6), 885–893 (1957)

    MATH  MathSciNet  Google Scholar 

  40. Glimm, J.: Type I C*-algebras. Ann. Math. 73(3), 572–612 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  41. Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1), 219–272 (1984)

    Article  ADS  MATH  Google Scholar 

  42. Guerlin, C., Bernu, J., Deleglise, S., Sayrin, C., Gleyzes, S., Kuhr, S., Brune, M., Raimond, J.M., Haroche, S.: Progressive field-state collapse and quantum non-demolition photon counting. Nature 448(7156), 889–893 (2007)

    Article  ADS  Google Scholar 

  43. Haag, R.: Local Quantum Physics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  44. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5(7), 848–861 (1964)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Haagerup, U.: Connes bicentralizer problem and uniqueness of the injective factor of type III1. Acta Math. 158(1), 95–148 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  46. Heisenberg, W.: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. In: Original Scientific Papers, pp. 382–396. Springer, Berlin (1985)

    Google Scholar 

  47. Hepp, K.: Quantum theory of measurement and macroscopic observables. Helv. Phys. Acta 45(2), 237–248 (1972)

    Google Scholar 

  48. Isham, C.J., Linden, N., Schreckenberg, S.: The classification of decoherence functionals: an analog of Gleason’s theorem. J. Math. Phys. 35, 6360 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Janssens, B., Maassen, H.: Information transfer implies state collapse. J. Phys. A 39(31), 9845 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Kochen, S.: A reconstruction of Quantum Mechanics (to be published)

    Google Scholar 

  51. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17(1), 59–87 (1967)

    MATH  MathSciNet  Google Scholar 

  52. Kolmogorov, A.N.: Entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 124, 754–755 (1959)

    MATH  MathSciNet  Google Scholar 

  53. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Lüders, G.: Über die Zustandsänderung durch den Meßprozeß. Ann. Phys.-Leipzig 443(5–8), 322–328 (1950)

    Article  ADS  Google Scholar 

  55. Maassen, H.: Quantum probability and quantum information theory. In: Quantum Information, Computation and Cryptography, pp. 65–108. Springer, New York (2010)

    Google Scholar 

  56. Maassen, H., Kümmerer, B.: Purification of Quantum Trajectories. Lecture Notes-Monograph Series, pp. 252–261 (2006)

    Google Scholar 

  57. Mott, N.F.: The wave mechanics of alpha-ray tracks. Proc. R. Soc. Lond. Ser. A 126(800), 79–84 (1929)

    Article  ADS  MATH  Google Scholar 

  58. Neveu, J.: Martingales à Temps Discret. Masson, Paris (1972)

    Google Scholar 

  59. Omnès, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  60. Penrose, R.: Wavefunction collapse as a real gravitational effect. In: Mathematical Physics, 2000, pp. 266–282. Imperial College Press, London (2000)

    Google Scholar 

  61. Peres, A.: Quantum Theory: Concepts and Methods. Springer, New York (1995)

    MATH  Google Scholar 

  62. Roepstorff, G.: Quantum dynamical entropy. In: Chaos-the Interplay Between Stochastic and Deterministic Behaviour, pp. 305–312. Springer, New York (1995)

    Google Scholar 

  63. Rose, B.: Ad Reinhardt: Art as Art, The Selected Writings of Ad Reinhardt. University of California Press, Los Angeles (1991)

    Google Scholar 

  64. Schwinger, J.: The algebra of microscopic measurement. Proc. Natl. Acad. Sci. USA 45(10), 1542–1553 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. Sinai, Ya.G.: On the concept of entropy of a dynamical system. Dokl. Akad. Nauk SSSR 124, 768–771 (1959)

    Google Scholar 

  66. Styer, D.F., Balkin, M.S., Becker, K.M., Burns, M.R., Dudley, C.E., Forth, S.T., Gaumer, J.S., Kramer, M.A., Oertel, D.C., Park, L.H., et al.: Nine formulations of quantum mechanics. Am. J. Phys. 70(3), 288–297 (2002)

    Article  ADS  Google Scholar 

  67. Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and Its Applications. Springer, Berlin/Heidelberg/New York (1970)

    MATH  Google Scholar 

  68. Takesaki, M.: Conditional expectations in von Neumann algebras. J. Funct. Anal. 9(3), 306–321 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  69. Takesaki, M.: Theory of Operator Algebras, vol. 1. Springer, Berlin (2002)

    MATH  Google Scholar 

  70. Takesaki, M.: Theory of Operator Algebras, vol. 2. Springer, Berlin (2003)

    Google Scholar 

  71. Tsirelson, B.S.: Some results and problems on quantum Bell-type inequalities. Hadronic J. Suppl. 8(4), 329–345 (1993)

    MATH  MathSciNet  Google Scholar 

  72. von Baeyer, H.C.: Quantum weirdness? It’s all in your mind. Sci. Am. 308(6), 46–51 (2013)

    Article  Google Scholar 

  73. Werner, R.: Arrival time observables in quantum mechanics. Ann. I. H. Poincaré-Phy. 47(4), 429–449 (1987)

    MATH  Google Scholar 

  74. Werner, R., et al.: http://tjoresearchnotes.wordpress.com/2013/05/13/guest-post-on-bohmian-mechanics-by-reinhard-f-werner/#comment-3374 (2012)

  75. Wheeler, J.A., Zurek, W.H.: Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Book  Google Scholar 

  76. Wigner, E.P.: The Collected Works of Eugene Paul Wigner. Springer, New York (1993)

    Google Scholar 

Download references

Acknowledgements

A rough first draft of this paper has been written during J.F.’s stay at the School of Mathematics of the Institute for Advanced Study (Princeton), 2012/2013. His stay has been supported by the ‘Fund for Math’ and the ‘Monell Foundation’. He is deeply grateful to Thomas C. Spencer for his most generous hospitality. He acknowledges useful discussions with Ph. Blanchard, P. Deift, S. Kochen and S. Lomonaco. He thanks D.Bernard for drawing his attention to [6] and W. Faris for correspondence. He is grateful to D. Buchholz, D. Dürr, S. Goldstein, J. Yngvason and N. Zanghi for numerous friendly and instructive discussions, encouragement and for the privilege to occasionally disagree in mutual respect and friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Fröhlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fröhlich, J., Schubnel, B. (2015). Quantum Probability Theory and the Foundations of Quantum Mechanics. In: Blanchard, P., Fröhlich, J. (eds) The Message of Quantum Science. Lecture Notes in Physics, vol 899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46422-9_7

Download citation

Publish with us

Policies and ethics