Skip to main content

Immunology and Immunotherapy of Ovarian Cancer

  • Chapter
Cancer Immunology

Abstract

Despite the nondisputable progress in treatment of ovarian cancer, it still brings serious challenge to the doctors and poor prognosis to the majority of patients. The most important processes which shape the cancer development are neoangiogenesis and chronic inflammation. Mediators engaged in their regulation have a deep impact on the ovarian cancer proliferation, peritoneal spread, and distant metastases. The regulatory network which contributes to cancer escape from host immunosurveillance is very complex and still needs to be fully uncovered: however, its so far understanding has brought some improvements in ovarian cancer therapy. One of them is an introduction of bevacizumab into routine treatment, based on its clinical efficacy. It is hoped that information presented in this chapter will help to summarize the present knowledge about immunology of ovarian cancer and to fertilize the reader’s mind with new ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol. 2002;3(11):999–1005.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.

    CAS  PubMed  Google Scholar 

  3. Whiteside TL. Immune responses to malignancies. J Allergy Clin Immunol. 2010;125(2):S272–83.

    PubMed Central  PubMed  Google Scholar 

  4. Wilczyński JR, Duechler M. How do tumors actively escape from host immunosurveillance? Arch Immunol Ther Exp (Warsz). 2010;58(6):435–48.

    Google Scholar 

  5. McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist. 2000;5 Suppl 1:3–10.

    CAS  PubMed  Google Scholar 

  6. Cao Y. Tumor angiogenesis and therapy. Biomed Pharmacother. 2005;59:S340–3.

    CAS  PubMed  Google Scholar 

  7. Ferrara N. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev. 2010;21(1):21–6.

    CAS  PubMed  Google Scholar 

  8. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Hicklin DJ, et al. Synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in murine hepatocellular carcinoma. Hepatology. 2002;35(4):834–42.

    CAS  PubMed  Google Scholar 

  9. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88(2):277–85.

    PubMed  Google Scholar 

  10. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Meyer M, Clauss M, Lepple-Wienhues A, Waltenberger J, Augustin HG, Ziche M, et al. A novel vascular endothelial growth factor encoded by Orf virus, VEGF‐E, mediates angiogenesis via signalling through VEGFR‐2 (KDR) but not VEGFR‐1 (Flt‐1) receptor tyrosine kinases. EMBO J. 1999;18(2):363–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Sullivan LA, Brekken RA. The VEGF family in cancer and antibody-based strategies for their inhibition. MAbs. 2010;2(2):165–75.

    PubMed Central  PubMed  Google Scholar 

  13. Majewski S, Marczak M, Szmurlo A, Jablonska S, Bollag W. Interleukin-12 inhibits angiogenesis induced by human tumor cell lines in vivo. J Invest Dermatol. 1996;106(5):1114–8.

    CAS  PubMed  Google Scholar 

  14. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30(3):377–86.

    CAS  PubMed  Google Scholar 

  15. Cao D, Hou M, Guan Y-s, Jiang M, Yang Y, Gou H-f. Expression of HIF-1alpha and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications. BMC Cancer. 2009;9(1):432.

    PubMed Central  PubMed  Google Scholar 

  16. Fang J, Ding M, Yang L, Liu L-Z, Jiang B-H. PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal. 2007;19(12):2487–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Moeller BJ, Cao Y, Vujaskovic Z, Li CY, Haroon ZA, Dewhirst MW. The relationship between hypoxia and angiogenesis. Semin Radiat Oncol. 2004;14(3):215–21.

    PubMed  Google Scholar 

  18. Chlenski A, Liu S, Cohn SL. The regulation of angiogenesis in neuroblastoma. Cancer Lett. 2003;197(1):47–52.

    CAS  PubMed  Google Scholar 

  19. Bamberger E, Perrett C. Angiogenesis in epithelian ovarian cancer. Mol Pathol. 2002;55(6):348.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096–103.

    CAS  PubMed  Google Scholar 

  21. Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol. 1998;160(3):1224–32.

    CAS  PubMed  Google Scholar 

  22. Ostrand-Rosenberg S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev. 2008;18(1):11–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Sica A, Allavena P, Mantovani A. Cancer related inflammation: the macrophage connection. Cancer Lett. 2008;267(2):204–15.

    CAS  PubMed  Google Scholar 

  24. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood. 2006;107(5):2112–22.

    CAS  PubMed  Google Scholar 

  25. Raghunand N, Gatenby R, Gillies R. Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol. 2003;76(1):S11–22.

    PubMed  Google Scholar 

  26. Grimshaw MJ, Naylor S, Balkwill FR. Endothelin-2 is a hypoxia-induced autocrine survival factor for breast tumor cells 1 supported, in part, by Oxford BioMedica United Kingdom Ltd.(to MJG). 1. Mol Cancer Ther. 2002;1(14):1273–81.

    CAS  PubMed  Google Scholar 

  27. Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, et al. HIF-1a is essential for myeloid cell-mediated inflammation. Cell. 2003;112:645–57.

    CAS  PubMed  Google Scholar 

  28. Duechler M, Wilczynski JR. Hypoxia inducible factor-1 in cancer immune suppression. Curr Immunol Rev. 2010;6(3):260–71.

    CAS  Google Scholar 

  29. Bennaceur K, Chapman JA, Touraine J-l, Portoukalian J. RETRACTED: immunosuppressive networks in the tumour environment and their effect in dendritic cells. Biochi Biophys Acta (BBA)-Rev Cancer. 2009;1795(1):16–24.

    CAS  Google Scholar 

  30. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.

    CAS  PubMed  Google Scholar 

  31. Östman A, Heldin CH. PDGF receptors as targets in tumor treatment. Adv Cancer Res. 2007;97:247–74.

    PubMed  Google Scholar 

  32. Kammertoens T, Schüler T, Blankenstein T. Immunotherapy: target the stroma to hit the tumor. Trends Mol Med. 2005;11(5):225–31.

    CAS  PubMed  Google Scholar 

  33. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.

    CAS  PubMed  Google Scholar 

  34. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.

    CAS  PubMed  Google Scholar 

  35. Blankenstein T. The role of tumor stroma in the interaction between tumor and immune system. Curr Opin Immunol. 2005;17(2):180–6.

    CAS  PubMed  Google Scholar 

  36. Ramakrishnan S, Subramanian I, Yokoyama Y, Geller M. Angiogenesis in normal and neoplastic ovaries. Angiogenesis. 2005;8(2):169–82.

    CAS  PubMed  Google Scholar 

  37. Chechlinska M, Kaminska J, Markowska J, Kramar A, Steffen J. Peritoneal fluid cytokines and the differential diagnosis of benign and malignant ovarian tumors and residual/recurrent disease examination. Int J Biol Markers. 2006;22(3):172–80.

    Google Scholar 

  38. Schumacher JJ, Dings RP, Cosin J, Subramanian IV, Auersperg N, Ramakrishnan S. Modulation of angiogenic phenotype alters tumorigenicity in rat ovarian epithelial cells. Cancer Res. 2007;67(8):3683–90.

    CAS  PubMed  Google Scholar 

  39. Abu-Jawdeh GM, Faix JD, Niloff J, Tognazzi K, Manseau E, Dvorak HF, et al. Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms. Lab Invest. 1996;74(6):1105–15.

    CAS  PubMed  Google Scholar 

  40. Wong Te Fong L, Gammell S, Bamberger E. Quantification of VEGF-A and PD-ECGF/TP in normal, benign and malignant ovarian lesions. Rev Oncol. 2002;4 suppl 1:122.

    Google Scholar 

  41. Wong Te Fong LF, Kini M, Morris R. Angiogenesis in primary epithelial ovarian carcinomas. Anticancer Res. 2001;21:1662–8.

    Google Scholar 

  42. Fasciani A, D’Ambrogio G, Bocci G, Luisi S, Artini P, Genazzani A. Vascular endothelial growth factor and interleukin-8 in ovarian cystic pathology. Fertil Steril. 2001;75(6):1218–21.

    CAS  PubMed  Google Scholar 

  43. Roszkowski P, Wronkowski Z, Szamborski J, Romejko M. Evaluation of selected prognostic factors in ovarian cancer. Eur J Gynaecol Oncol. 1992;14:140–5.

    Google Scholar 

  44. Zang R, Harter P, Chi D, Sehouli J, Jiang R, Trope C, et al. Predictors of survival in patients with recurrent ovarian cancer undergoing secondary cytoreductive surgery based on the pooled analysis of an international collaborative cohort. Br J Cancer. 2011;105(7):890–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Ghosh S, Maity P. Isolation and purification of vascular endothelial growth factor (VEGF) from ascitic fluid of ovarian cancer patients. Pathol Oncol Res. 2004;10(2):104–8.

    CAS  PubMed  Google Scholar 

  46. Cooper BC, Ritchie JM, Broghammer CL, Coffin J, Sorosky JI, Buller RE, et al. Preoperative serum vascular endothelial growth factor levels significance in ovarian cancer. Clin Cancer Res. 2002;8(10):3193–7.

    CAS  PubMed  Google Scholar 

  47. Tempfer C, Obermair A, Hefler L, Haeusler G, Gitsch G, Kainz C. Vascular endothelial growth factor serum concentrations in ovarian cancer. Obstet Gynecol. 1998;92(3):360–3.

    CAS  PubMed  Google Scholar 

  48. Hefler LA, Mustea A, Könsgen D, Concin N, Tanner B, Strick R, et al. Vascular endothelial growth factor gene polymorphisms are associated with prognosis in ovarian cancer. Clin Cancer Res. 2007;13(3):898–901.

    CAS  PubMed  Google Scholar 

  49. Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, Hogan M, et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 2005;65(2):465–72.

    CAS  PubMed  Google Scholar 

  50. Cao R, Björndahl MA, Religa P, Clasper S, Garvin S, Galter D, et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell. 2004;6(4):333–45.

    CAS  PubMed  Google Scholar 

  51. Liu LZ, Hu XW, Xia C, He J, Zhou Q, Shi X, et al. Reactive reactive oxygen species regulate epidermal growth factor induced vascular endothelial growth factor and hypoxia-inducible factor-1a expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med. 2006;41:1521–33.

    CAS  PubMed  Google Scholar 

  52. Matei D, Kelich S, Cao L, Menning N, Emerson RE, Rao J, et al. PDGF BB induces VEGF secretion in ovarian cancer. Cancer Biol Ther. 2007;6(12):1951–9.

    CAS  PubMed  Google Scholar 

  53. Liao S, Liu J, Lin P, Shi T, Jain RK, Xu L. TGFbeta blockade controls ascites by preventing abnormalization of lymphatic vessels in orthotopic human ovarian carcinoma models. Cancer Res. 2011;17:1415–24.

    CAS  Google Scholar 

  54. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, et al. The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res. 2007;67(2):585–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA, et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res. 2011;17(18):6083–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Yokoyama Y, Xin B, Shigeto T, Mizunuma H. Combination of ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, and cisplatin enhances the inhibition of growth of human ovarian cancers. J Cancer Res Clin Oncol. 2011;137(8):1219–28.

    CAS  PubMed  Google Scholar 

  57. Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S, Taraboletti G, et al. Matrix Metalloproteinases (MMP9 and MMP2) induce the release of Vascular Endothelial Growth Factor (VEGF) by ovarian carcinoma cells implications for ascites formation. Cancer Res. 2003;63(17):5224–9.

    CAS  PubMed  Google Scholar 

  58. Gupta RA, Tejada LV, Tong BJ, Das SK, Morrow JD, Dey SK, et al. Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Res. 2003;63(5):906–11.

    CAS  PubMed  Google Scholar 

  59. Yang G, Cai KQ, Thompson-Lanza JA, Bast RC, Liu J. Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem. 2004;279(6):4339–45.

    CAS  PubMed  Google Scholar 

  60. Mesiano S, Ferrara N, Jaffe RB. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol. 1998;153(4):1249–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Olson TA, Mohanraj D, Carson LF, Ramakrishnan S. Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res. 1994;54(1):276–80.

    CAS  PubMed  Google Scholar 

  62. Boocock CA, Charnock-Jones DS, Sharkey AM, McLaren J, Barker PJ, Wright KA, et al. Expression of vascular endothelial growth factor and its receptors fit and KDR in ovarian carcinoma. J Natl Cancer Inst. 1995;87(7):506–16.

    CAS  PubMed  Google Scholar 

  63. Paley PJ, Staskus KA, Gebhard K, Mohanraj D, Twiggs LB, Carson LF, et al. Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer. 1997;80(1):98–106.

    CAS  PubMed  Google Scholar 

  64. Sowter H, Corps A, Evans A, Clark D, Charnock-Jones D, Smith S. Expression and localization of the vascular endothelial growth factor family in ovarian epithelial tumors. Lab Invest. 1997;77(6):607–14.

    CAS  PubMed  Google Scholar 

  65. Fujimoto J, Sakaguchi H, Hirose R, Ichigo S, Tamaya T. Biologic implications of the expression of vascular endothelial growth factor subtypes in ovarian carcinoma. Cancer. 1998;83(12):2528–33.

    CAS  PubMed  Google Scholar 

  66. Zhang L, Yang N, Park J-W, Katsaros D, Fracchioli S, Cao G, et al. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res. 2003;63(12):3403–12.

    CAS  PubMed  Google Scholar 

  67. Mattern J, Stammler G, Koomagi R, Wallwiener D, Kaufmann M, Volm M. Association of vascular endothelial growth factor expression with tumor cell proliferation in ovarian carcinoma. Anticancer Res. 1996;17(1B):621–4.

    Google Scholar 

  68. Chen H, Ye D, Xie X, Chen B, Lu W. VEGF, VEGFRs expressions and activated STATs in ovarian epithelial carcinoma. Gynecol Oncol. 2004;94(3):630–5.

    CAS  PubMed  Google Scholar 

  69. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer. 2005;5(5):355–66.

    CAS  PubMed  Google Scholar 

  71. Ziogas AC, Gavalas NG, Tsiatas M, Tsitsilonis O, Politi E, Terpos E, et al. VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor type 2. Int J Cancer. 2012;130(4):857–64.

    CAS  PubMed  Google Scholar 

  72. Weis S, Cui J, Barnes L, Cheresh D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol. 2004;167(2):223–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Wang J-M, Ko C-Y, Chen L-C, Wang W-L, Chang W-C. Functional role of NF-IL6β and its sumoylation and acetylation modifications in promoter activation of cyclooxygenase 2 gene. Nucl Acids Res. 2006;34(1):217–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Belotti D, Calcagno C, Garofalo A, Caronia D, Riccardi E, Giavazzi R, et al. Vascular endothelial growth factor stimulates organ-specific host matrix metalloproteinase-9 expression and ovarian cancer invasion. Mol Cancer Res. 2008;6(4):525–34.

    CAS  PubMed  Google Scholar 

  75. Zhang L, Yang N, Conejo Garcia J-R, Mohamed A, Benencia F, Rubin SC, et al. Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. Am J Pathol. 2002;161(6):2295–309.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T, et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood. 2001;97(3):785–91.

    CAS  PubMed  Google Scholar 

  77. Mu J, Abe Y, Tsutsui T, Yamamoto N, Tai XG, Niwa O, et al. Inhibition of growth and metastasis of ovarian carcinoma by administering a drug capable of interfering with vascular endothelial growth factor activity. Cancer Sci. 1996;87(9):963–71.

    CAS  Google Scholar 

  78. Byrne AT, Ross L, Holash J, Nakanishi M, Hu L, Hofmann JI, et al. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin Cancer Res. 2003;9(15):5721–8.

    CAS  PubMed  Google Scholar 

  79. Pourgholami MH, Cai ZY, Lu Y, Wang L, Morris DL. Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice. Clin Cancer Res. 2006;12(6):1928–35.

    PubMed  Google Scholar 

  80. Senger DR, Perruzzi CA, Feder J, Dvorak HF. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 1986;46(11):5629–32.

    CAS  PubMed  Google Scholar 

  81. Yeo K-T, Wang HH, Nagy JA, Sioussat TM, Ledbetter SR, Hoogewerf AJ, et al. Vascular permeability factor (vascular endothelial growth factor) in guinea pig and human tumor and inflammatory effusions. Cancer Res. 1993;53(12):2912–8.

    CAS  PubMed  Google Scholar 

  82. Luo JC, Yamaguchi S, Shinkai A, Shitara K, Shibuya M. Significant expression of vascular endothelial growth factor/vascular permeability factor in mouse ascites tumors. Cancer Res. 1998;58(12):2652–60.

    CAS  PubMed  Google Scholar 

  83. Hampl M, Tanaka T, Albert PS, Lee J, Ferrari N, Fine HA. Therapeutic effects of viral vector-mediated antiangiogenic gene transfer in malignant ascites. Hum Gene Ther. 2001;12(14):1713–29.

    CAS  PubMed  Google Scholar 

  84. Stadlmann SAA, Pollheimer J, Gastl G, Offner FA, Margreiter R, et al. Ovarian carcinoma cells and IL1beta-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions. Gynecol Oncol. 2005;97:784–9.

    CAS  PubMed  Google Scholar 

  85. Siddiqui GK, Wong TFL, Rolfe KJ. The expression of VEGF-A in metastatic epithelian ovarian cancer is of prognostic significance. Br J Obstet Gynaecol. 2001;108:549.

    Google Scholar 

  86. Xu L, Fidler IJ. Interleukin 8: an autocrine growth factor for human ovarian cancer. Oncol Res Feature Preclin Clin Cancer Therapeut. 2001;12(2):97–106.

    Google Scholar 

  87. Hasumi Y, Mizukami H, Urabe M, Kohno T, Takeuchi K, Kume A, et al. Soluble FLT-1 expression suppresses carcinomatous ascites in nude mice bearing ovarian cancer. Cancer Res. 2002;62(7):2019–23.

    CAS  PubMed  Google Scholar 

  88. Liao S, Liu J, Lin P, Shi T, Jain RK, Xu L. TGF-β blockade controls ascites by preventing abnormalization of lymphatic vessels in orthotopic human ovarian carcinoma models. Clin Cancer Res. 2011;17(6):1415–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Huang K-J, Sui L-H. The relevance and role of vascular endothelial growth factor C, matrix metalloproteinase-2 and E-cadherin in epithelial ovarian cancer. Med Oncol. 2012;29(1):318–23.

    CAS  PubMed  Google Scholar 

  90. Nakanishi Y, Kodama J, Yoshinouchi M, Tokumo K, Kamimura S, Okuda H, et al. The expression of vascular endothelial growth factor and transforming growth factor-[beta] associates with angiogenesis in epithelial ovarian cancer. Int J Gynecol Pathol. 1997;16(3):256–62.

    CAS  PubMed  Google Scholar 

  91. Orre M, Rogers PA. VEGF, VEGFR‐1, VEGFR‐2, microvessel density and endothelial cell proliferation in tumours of the ovary. Int J Cancer. 1999;84(2):101–8.

    CAS  PubMed  Google Scholar 

  92. Shen G, Ghazizadeh M, Kawanami O, Shimizu H, Jin E, Araki T, et al. Prognostic significance of vascular endothelial growth factor expression in human ovarian carcinoma. Br J Cancer. 2000;83(2):196.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.

    CAS  PubMed  Google Scholar 

  95. Lin W-W, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007;117(5):1175–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3(4):276–85.

    CAS  PubMed  Google Scholar 

  97. Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Mol Cancer Res. 2006;4(4):221–33.

    PubMed  Google Scholar 

  98. Jaiswal M, LaRusso NF, Burgart LJ, Gores GJ. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res. 2000;60(1):184–90.

    CAS  PubMed  Google Scholar 

  99. Ben-Baruch A. Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol. 2006;16:38–52. Elsevier.

    CAS  PubMed  Google Scholar 

  100. Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y. Cytokines in cancer immunity and immunotherapy. Immunol Rev. 2004;202(1):275–93.

    CAS  PubMed  Google Scholar 

  101. Luo JL, Maeda S, Hsu LC, Yagita H, Karin M. Inhibition of NF-κB in cancer cells converts inflammation-induced tumor growth mediated by TNF-α to TRAIL-mediated tumor regression. Cancer Cell. 2004;6:297–305.

    CAS  PubMed  Google Scholar 

  102. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135–45.

    CAS  PubMed  Google Scholar 

  103. Jego G, Bataille R, Geffroy-Luseau A, Descamps G, Pellat-Deceunynck C. Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia. 2006;20(6):1130–7.

    CAS  PubMed  Google Scholar 

  104. Sun JWF, Hsu FC, Bälter K, Zheng SL, Johansson JE, et al. Interactions of sequence variants in interleukin-1 receptor-associated kinase 4 and the toll-cell receptor 6-1-10 gene cluster increase prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2006;15:480–5.

    CAS  PubMed  Google Scholar 

  105. Harmey JH, Bucana CD, Lu W, Byrne AM, McDonnell S, Lynch C, et al. Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer. 2002;101:415–22.

    CAS  PubMed  Google Scholar 

  106. Elgert KD, Alleva DG, Mullins DW. Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol. 1998;64(3):275–90.

    CAS  PubMed  Google Scholar 

  107. Mocellin S, Rossi CR, Pilati P, Nitti D. Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 2005;16(1):35–53.

    CAS  PubMed  Google Scholar 

  108. Arnott CH, Scott KA, Moore RJ, Robinson SC, Thompson RG, Balkwill FR. Expression of both TNF-α receptor subtypes is essential for optimal skin tumour development. Oncogene. 2003;23(10):1902–10.

    Google Scholar 

  109. Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 2002;13(2):135–41.

    CAS  PubMed  Google Scholar 

  110. Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, et al. Critical role for tumor necrosis factor–related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med. 2002;195(2):161–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Xu J, Zhou J-Y, Wei W-Z, Wu GS. Activation of the Akt survival pathway contributes to TRAIL resistance in cancer cells. PLoS One. 2010;5(4):e10226.

    PubMed Central  PubMed  Google Scholar 

  112. Wang S, El-Deiry WS. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene. 2003;22(53):8628–33.

    CAS  PubMed  Google Scholar 

  113. Haura EB, Turkson J, Jove R. Mechanisms of disease: insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Clin Pract Oncol. 2005;2(6):315–24.

    CAS  PubMed  Google Scholar 

  114. Berger FG. The interleukin-6 gene: a susceptibility factor that may contribute to racial and ethnic disparities in breast cancer mortality. Breast Cancer Res Treat. 2004;88(3):281–5.

    CAS  PubMed  Google Scholar 

  115. Schneider MR, Hoeflich A, Fischer JR, Wolf E, Sordat B, Lahm H. Interleukin-6 stimulates clonogenic growth of primary and metastatic human colon carcinoma cells. Cancer Lett. 2000;151(1):31–8.

    CAS  PubMed  Google Scholar 

  116. Chung YC, Chang YF. Serum interleukin‐6 levels reflect the disease status of colorectal cancer. J Surg Oncol. 2003;83(4):222–6.

    PubMed  Google Scholar 

  117. Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, et al. TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity. 2004;21(4):491–501.

    Google Scholar 

  118. Fujiwaki R, Iida K, Kanasaki H, Ozaki T, Hata K, Miyazaki K. Cyclooxygenase-2 expression in endometrial cancer: correlation with microvessel count and expression of vascular endothelial growth factor and thymidine phosphorylase. Hum Pathol. 2002;33(2):213–9.

    CAS  PubMed  Google Scholar 

  119. Gallo O, Masini E, Bianchi B, Bruschini L, Paglierani M, Franchi A. Prognostic significance of cyclooxygenase-2 pathway and angiogenesis in head and neck squamous cell carcinoma. Hum Pathol. 2002;33(7):708–14.

    CAS  PubMed  Google Scholar 

  120. Zhang H, Sun X-F. Overexpression of cyclooxygenase-2 correlates with advanced stages of colorectal cancer. Am J Gastroenterol. 2002;97(4):1037–41.

    CAS  PubMed  Google Scholar 

  121. Bennaceur K, Chapman JA, Touraine JL, Portoukalian J. Immunosuppressive networks in the tumour environment and their effect in dendritic cells. Biochim Biophys Acta. 2009;1795:16–24.

    CAS  PubMed  Google Scholar 

  122. Parham C, Chirika M, Timans J, Vaisberg E, Travis M, Cheung J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rb1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168:5699–708.

    CAS  PubMed  Google Scholar 

  123. Langowski JL, Kastelein RA, Oft M. Swords into plowshares: IL-23 repurposes tumor immune surveillance. Trends Immunol. 2007;28:207–12.

    CAS  PubMed  Google Scholar 

  124. Huang S, Ullrich SE, Bar-Eli M. Regulation of tumor growth and metastasis by interleukin-10: the melanoma experience. J Interferon Cytokine Res. 1999;19(7):697–703.

    CAS  PubMed  Google Scholar 

  125. Kundu N, Fulton AM. Interleukin-10 inhibits tumor metastasis, downregulates MHC class I, and enhances NK lysis. Cell Immunol. 1997;180(1):55–61.

    CAS  PubMed  Google Scholar 

  126. Erdman SE, Rao VP, Olipitz W, Taylor CL, Jackson EA, Levkovich T, et al. Unifying roles for regulatory T cells and inflammation in cancer. Int J Cancer. 2010;126(7):1651–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Sredni B, Weil M, Khomenok G, Lebenthal I, Teitz S, Mardor Y, et al. Ammonium trichloro (dioxoethylene-o, o’) tellurate (AS101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res. 2004;64(5):1843–52.

    CAS  PubMed  Google Scholar 

  128. Urosevic M, Dummer R. Human leukocyte antigen–G and cancer immunoediting. Cancer Res. 2008;68(3):627–30.

    CAS  PubMed  Google Scholar 

  129. Link AA, Kino T, Worth JA, McGuire JL, Crane ML, Chrousos GP, et al. Ligand-activation of the adenosine A2a receptors inhibits IL-12 production by human monocytes. J Immunol. 2000;164(1):436–42.

    CAS  PubMed  Google Scholar 

  130. Zhang JG, Hepburn L, Cruz G, Borman RA, Clark KL. The role of adenosine A2A and A2B receptors in the regulation of TNF-α production by human monocytes. Biochem Pharmacol. 2005;69(6):883–9.

    CAS  PubMed  Google Scholar 

  131. Spaner DE. Amplifying cancer vaccine responses by modifying pathogenic gene programs in tumor cells. J Leukoc Biol. 2004;76(2):338–51.

    CAS  PubMed  Google Scholar 

  132. Moutsopoulos NM, Wen J, Wahl SM. TGF-β and tumors—an ill-fated alliance. Curr Opin Immunol. 2008;20(2):234–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Seo N, Hayakawa S, Tokura Y. Mechanisms of immune privilege for tumor cells by regulatory cytokines produced by innate and acquired immune cells. Semin Cancer Biol. 2002;12(4):291–300.

    CAS  PubMed  Google Scholar 

  134. Yu P, Rowley DA, Fu Y-X, Schreiber H. The role of stroma in immune recognition and destruction of well-established solid tumors. Curr Opin Immunol. 2006;18(2):226–31.

    CAS  PubMed  Google Scholar 

  135. Smyth MJ, Crowe NY, Godfrey DI. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol. 2001;13(4):459–63.

    CAS  PubMed  Google Scholar 

  136. Mainou-Fowler T, Taylor P, Miller S, Dickinson AM, Proctor SJ. Intracellular cytokine profiles by peripheral blood CD3+ T-cells in patients with classical Hodgkin lymphoma. Leuk Lymphoma. 2003;44(8):1325–31.

    CAS  PubMed  Google Scholar 

  137. Agarwal A, Rani M, Saha G, Valarmathi T, Bahadur S, Mohanti B, et al. Disregulated expression of the Th2 cytokine gene in patients with intraoral squamous cell carcinoma. Immunol Investig. 2003;32(1–2):17–30.

    CAS  Google Scholar 

  138. Dummer W, Bastian BC, Ernst N, Schänzle C, Schwaaf A, Bröcker EB. Interleukin‐10 production in malignant melanoma: Preferential detection of IL‐10‐secreting tumor cells in metastatic lesions. Int J Cancer. 1996;66(5):607–10.

    CAS  PubMed  Google Scholar 

  139. Becker C, Fantini MC, Neurath MF. TGF-beta as a T cell regulator in colitis and colon cancer. Cytokine Growth Factor Rev. 2006;17(1):97–106.

    CAS  PubMed  Google Scholar 

  140. Jarnicki AG, Lysaght J, Todryk S, Mills KH. Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol. 2006;177:896–904.

    CAS  PubMed  Google Scholar 

  141. Ness RB, Cottreau C. Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst. 1999;91(17):1459–67.

    CAS  PubMed  Google Scholar 

  142. Risch HA, Marrett LD, Howe GR. Parity, contraception, infertility, and the risk of epithelial ovarian cancer. Am J Epidemiol. 1994;140(7):585–97.

    CAS  PubMed  Google Scholar 

  143. Booth M, Beral V, Smith P. Risk factors for ovarian cancer: a case-control study. Br J Cancer. 1989;60(4):592.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Whittmore AS, Harris R, Itnyre J. Characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies II. Invasive epithelial ovarian cancers in white women. Am J Epidemiol. 1992;136(10):1184–203.

    Google Scholar 

  145. Graham J, Graham R. Ovarian cancer and asbestos. Environ Res. 1967;1(2):115–28.

    CAS  PubMed  Google Scholar 

  146. Cook LS, Kamb ML, Weiss NS. Perineal powder exposure and the risk of ovarian cancer. Am J Epidemiol. 1997;145(5):459–65.

    CAS  PubMed  Google Scholar 

  147. Risch HA, Howe GR. Pelvic inflammatory disease and the risk of epithelial ovarian cancer. Cancer Epidemiol Biomark Prev. 1995;4(5):447–51.

    CAS  Google Scholar 

  148. Green A, Purdie D, Bain C, Siskind V, Russell P, Quinn M, et al. Tubal sterilisation, hysterectomy and decreased risk of ovarian cancer. Survey of Women’s Health Study Group. Int J Cancer. 1997;71:948–51.

    CAS  PubMed  Google Scholar 

  149. Altinoz M, Korkmaz R. NF-kappaB, macrophage migration inhibitory factor and cyclooxygenase-inhibitions as likely mechanisms behind the acetaminophen-and NSAID-prevention of the ovarian cancer. Neoplasma. 2003;51(4):239–47.

    Google Scholar 

  150. Murdoch WJ, McDonnel AC. Roles of the ovarian surface epithelium in ovulation and carcinogenesis. Reproduction. 2002;123(6):743–50.

    CAS  PubMed  Google Scholar 

  151. Liu Z, Shimada M, Richards JS. The involvement of the Toll-like receptor family in ovulation. J Assist Reprod Genet. 2008;25(6):223–8.

    PubMed Central  PubMed  Google Scholar 

  152. Jabbour HN, Sales KJ, Catalano RD, Norman JE. Focus on vascular function in female reproduction. Inflammatory pathways in female reproductive health and disease. Reproduction. 2009;138:903–19.

    CAS  PubMed  Google Scholar 

  153. Fleming JS, Beaugié CR, Haviv I, Chenevix-Trench G, Tan OL. Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: revisiting old hypotheses. Mol Cell Endocrinol. 2006;247(1):4–21.

    CAS  PubMed  Google Scholar 

  154. Cramer DW, Welch WR. Determinants of ovarian cancer risk. II. Inferences regarding pathogenesis. J Natl Cancer Inst. 1983;71(4):717–21.

    CAS  PubMed  Google Scholar 

  155. Friedlander M, Dembo A. Prognostic factors in ovarian cancer. Semin Oncol. 1991;18(3):205–12.

    CAS  PubMed  Google Scholar 

  156. Brinton LA, Gridley G, Persson I, Baron J, Bergqvist A. Cancer risk after a hospital discharge diagnosis of endometriosis. Am J Obstet Gynecol. 1997;176(3):572–9.

    CAS  PubMed  Google Scholar 

  157. Kyama CM, Debrock S, Mwenda JM, D’Hooghe TM. Potential involvement of the immune system in the development of endometriosis. Reprod Biol Endocrinol. 2003;1(1):123.

    PubMed Central  PubMed  Google Scholar 

  158. Styer AK, Sullivan BT, Puder M, Arsenault D, Petrozza JC, Serikawa T, et al. Ablation of leptin signaling disrupts the establishment, development, and maintenance of endometriosis-like lesions in a murine model. Endocrinology. 2008;149(2):506–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Machado DE, Berardo PT, Palmero CY, Nasciutti LE. Higher expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 (Flk-1) and metalloproteinase-9 (MMP-9) in a rat model of peritoneal endometriosis is similar to cancer diseases. Development. 2010;7:8.

    Google Scholar 

  160. Tariverdian N, Theoharides TC, Siedentopf F, Gutiérrez G, Jeschke U, Rabinovich GA, et al. Neuroendocrine–immune disequilibrium and endometriosis: an interdisciplinary approach. Semin Immunopathol. 2007;29(2):193–210.

    PubMed Central  PubMed  Google Scholar 

  161. Kurman RJ, Shih I-M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer—shifting the paradigm. Hum Pathol. 2011;42(7):918–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Demopoulos RI, Aronov R, Mesia A. Clues to the pathogenesis of fallopian tube carcinoma: a morphological and immunohistochemical case control study. Int J Gynecol Pathol. 2001;20(2):128–32.

    CAS  PubMed  Google Scholar 

  163. Cooper MD, Rapp J, Jeffery-Wiseman C, Barnes RC, Stephens DS. Chlamydia trachomatis infection of human fallopian tube organ cultures. J Gen Microbiol. 1990;136(6):1109–15.

    CAS  PubMed  Google Scholar 

  164. Maisey K, Nardocci G, Imarai M, Cardenas H, Rios M, Croxatto HB, et al. Expression of proinflammatory cytokines and receptors by human fallopian tubes in organ culture following challenge with Neisseria gonorrhoeae. Infect Immun. 2003;71(1):527–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Strandell A, Thorburn J, Wallin A. The presence of cytokines and growth factors in hydrosalpingeal fluid. J Assist Reprod Genet. 2004;21(7):241–7.

    PubMed Central  PubMed  Google Scholar 

  166. Macciò A, Madeddu C. Inflammation and ovarian cancer. Cytokine. 2012;58(2):133–47.

    PubMed  Google Scholar 

  167. Kim J, Coffey DM, Creighton CJ, Yu Z, Hawkins SM, Matzuk MM. High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc Natl Acad Sci. 2012;109(10):3921–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Landen CN, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol. 2008;26(6):995–1005.

    PubMed  Google Scholar 

  169. Ali‐Fehmi R, Semaan A, Sethi S, Arabi H, Bandyopadhyay S, Hussein YR, et al. Molecular typing of epithelial ovarian carcinomas using inflammatory markers. Cancer. 2011;117(2):301–9.

    PubMed  Google Scholar 

  170. Mor G, Yin G, Chefetz I, Yang Y, Alvero A. Ovarian cancer stem cells and inflammation. Cancer Biol Ther. 2011;11(8):708.

    PubMed Central  PubMed  Google Scholar 

  171. Kim KH, Xie Y, Tytler EM, Woessner R, Mor G, Alvero AB. KSP inhibitor ARRY-520 as a substitute for Paclitaxel in Type I ovarian cancer cells. J Transl Med. 2009;7(1):63.

    PubMed Central  PubMed  Google Scholar 

  172. Kelly MG, Alvero AB, Chen R, Silasi D-A, Abrahams VM, Chan S, et al. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 2006;66(7):3859–68.

    CAS  PubMed  Google Scholar 

  173. Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF. Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother. 2009;58(9):1375–85.

    CAS  PubMed  Google Scholar 

  174. Muccioli M, Sprague L, Nandigam H, Pate M, Benencia F. Toll-like receptors as novel therapeutic targets for ovarian cancer. ISRN Oncol. 2012;2012:642141.

    PubMed Central  PubMed  Google Scholar 

  175. Berger R, Fiegl H, Goebel G, Obexer P, Ausserlechner M, Doppler W, et al. Toll‐like receptor 9 expression in breast and ovarian cancer is associated with poorly differentiated tumors. Cancer Sci. 2010;101(4):1059–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Shan W, Liu J. A hidden path to breaking the spell of ovarian cancer. Cell Cycle. 2009;8(19):3107–11.

    CAS  PubMed  Google Scholar 

  177. Coppé J-P, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):e301.

    PubMed Central  Google Scholar 

  178. Yang G, Rosen DG, Zhang Z, Bast RC, Mills GB, Colacino JA, et al. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci. 2006;103(44):16472–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Lane D, Matte I, Rancourt C, Piché A. Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer. 2011;11(1):210.

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Kulbe H, Chakravarty P, Leinster DA, Charles KA, Kwong J, Thompson RG, et al. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res. 2012;72(1):66–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Nash M, Ferrandina G, Gordinier M, Loercher A, Freedman R. The role of cytokines in both the normal and malignant ovary. Endocrinol Relat Cancer. 1999;6(1):93–107.

    CAS  Google Scholar 

  182. Asschert JG, Vellenga E, Hollema H, van der Zee AG, de Vries ED. Expression of macrophage colony-stimulating factor (M-CSF), interleukin-6 (IL-6), interleukin-1 beta (IL-1 beta), interleukin-11 (IL-11) and tumor necrosis factor-alpha (TNFalpha) in p53-characterised human ovarian carcinomas. Eur J Cancer. 1997;33:2246–51.

    CAS  PubMed  Google Scholar 

  183. Hefler LA, Grimm C, Ackermann S, Malur S, Radjabi-Rahat AR, Leodolter S, et al. An interleukin-6 gene promoter polymorphism influences the biological phenotype of ovarian cancer. Cancer Res. 2003;63(12):3066–8.

    CAS  PubMed  Google Scholar 

  184. Garg R, Wollan M, Galic V, Garcia R, Goff BA, Gray HJ, et al. Common polymorphism in interleukin 6 influences survival of women with ovarian and peritoneal carcinoma. Gynecol Oncol. 2006;103(3):793–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  185. Clendenen TV, Lundin E, Zeleniuch-Jacquotte A, Koenig KL, Berrino F, Lukanova A, et al. Circulating inflammation markers and risk of epithelial ovarian cancer. Cancer Epidemiol Biomark Prev. 2011;20:799–810. cebp. 1180.2010.

    CAS  Google Scholar 

  186. Nowak M, Glowacka E, Szpakowski M, Szyllo K, Malinowski A, Kulig A, et al. Proinflammatory and immunosuppressive serum, ascites and cyst fluid cytokines in patients with early and advanced ovarian cancer and benign ovarian tumors. Neuro Endocrinol Lett. 2010;31(3):375–83.

    CAS  PubMed  Google Scholar 

  187. Gorelik E, Landsittel DP, Marrangoni AM, Modugno F, Velikokhatnaya L, Winans MT, et al. Multiplexed immunobead-based cytokine profiling for early detection of ovarian cancer. Cancer Epidemiol Biomark Prev. 2005;14(4):981–7.

    CAS  Google Scholar 

  188. Nowak M, Klink M, Glowacka E, Sulowska Z, Kulig A, Szpakowski M, et al. Production of cytokines during interaction of peripheral blood mononuclear cells with autologous ovarian cancer cells or benign ovarian tumour cells. Scand J Immunol. 2010;71(2):91–8.

    CAS  PubMed  Google Scholar 

  189. Wang X, Wang E, Kavanagh JJ, Freedman RS. Ovarian cancer, the coagulation pathway, and inflammation. J Transl Med. 2005;3(1):25.

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Lo C-W, Chen M-W, Hsiao M, Wang S, Chen C-A, Hsiao S-M, et al. IL-6 trans-signaling in formation and progression of malignant ascites in ovarian cancer. Cancer Res. 2011;71(2):424–34.

    CAS  PubMed  Google Scholar 

  191. Rath KS, Funk HM, Bowling MC, Richards WE, Drew AF. Expression of soluble interleukin-6 receptor in malignant ovarian tissue. Am J Obstet Gynecol. 2010;203(3):230. e1–e8.

    CAS  Google Scholar 

  192. Rabinovich A, Medina L, Piura B, Segal S, Huleihel M. Regulation of ovarian carcinoma SKOV-3 cell proliferation and secretion of MMPs by autocrine IL-6. Anticancer Res. 2007;27(1A):267–72.

    CAS  PubMed  Google Scholar 

  193. Min H, Wei‐hong Z. Constitutive activation of signal transducer and activator of transcription 3 in epithelial ovarian carcinoma. J Obstet Gynaecol Res. 2009;35(5):918–25.

    PubMed  Google Scholar 

  194. Zhang X, Liu P, Zhang B, Wang A, Yang M. Role of STAT3 decoy oligodeoxynucleotides on cell invasion and chemosensitivity in human epithelial ovarian cancer cells. Cancer Genet Cytogenet. 2010;197(1):46–53.

    CAS  PubMed  Google Scholar 

  195. Colomiere M, Ward A, Riley C, Trenerry M, Cameron-Smith D, Findlay J, et al. Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial–mesenchymal transition in ovarian carcinomas. Br J Cancer. 2008;100(1):134–44.

    PubMed Central  PubMed  Google Scholar 

  196. Macciò A, Lai P, Santona MC, Pagliara L, Melis GB, Mantovani G. High serum levels of soluble IL-2 receptor, cytokines, and C reactive protein correlate with impairment of T cell response in patients with advanced epithelial ovarian cancer. Gynecol Oncol. 1998;69(3):248–52.

    PubMed  Google Scholar 

  197. Giuntoli RL, Webb TJ, Zoso A, ROGERS O, Diaz-Montes TP, Bristow RE, et al. Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Res. 2009;29(8):2875–84.

    CAS  PubMed  Google Scholar 

  198. Klink M, Kielbik M, Nowak M, Bednarska K, Sulowska Z. JAK3, STAT3 and CD3-zeta signaling proteins status in regard to the lymphocytes function in patients with ovarian cancer. Immunol Invest. 2012;41(4):382–98.

    CAS  PubMed  Google Scholar 

  199. Mantovani G, Macciò A, Melis G, Mura L, Massa E, Mudu MC. Restoration of functional defects in peripheral blood mononuclear cells isolated from cancer patients by thiol antioxidants alpha‐lipoic acid and N‐acetyl cysteine. Int J Cancer. 2000;86(6):842–7.

    CAS  PubMed  Google Scholar 

  200. Mantovani G, Macciò A, Madeddu C, Mura L, Gramignano G, Lusso MR, et al. Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: assessment of the most important laboratory indexes of cachexia and oxidative stress. J Mol Med. 2003;81(10):664–73.

    CAS  PubMed  Google Scholar 

  201. Jeannin P, Duluc D, Delneste Y. IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-γ. Immunotherapy. 2011;3(4s):23–6.

    CAS  PubMed  Google Scholar 

  202. Argilés JM, López-Soriano FJ. The role of cytokines in cancer cachexia. Med Res Rev. 1999;19:223–48.

    PubMed  Google Scholar 

  203. Delano MJ, Moldawer LL. The origins of cachexia in acute and chronic inflammatory diseases*. Nutr Clin Prac. 2006;21(1):68–81.

    Google Scholar 

  204. Macciò A, Madeddu C, Massa D, Astara G, Farci D, Melis GB, et al. Interleukin‐6 and leptin as markers of energy metabolic changes in advanced ovarian cancer patients. J Cell Mol Med. 2009;13(9b):3951–9.

    PubMed  Google Scholar 

  205. Mantovani G, Macciò A, Massa E, Madeddu C. Managing cancer-related anorexia/cachexia. Drugs. 2001;61(4):499–514.

    CAS  PubMed  Google Scholar 

  206. Macciò A, Madeddu C, Massa D, Mudu MC, Lusso MR, Gramignano G, et al. Hemoglobin levels correlate with interleukin-6 levels in patients with advanced untreated epithelial ovarian cancer: role of inflammation in cancer-related anemia. Blood. 2005;106(1):362–7.

    PubMed  Google Scholar 

  207. Van Der Zee AG, De Cuyper EM, Limburg PC, De Bruijn HW, Hollema H, Bijzet J, et al. Higher levels of interleukin-6 in cystic fluids from patients with malignant versus benign ovarian tumors correlate with decreased hemoglobin levels and increased platelet counts. Cancer-Philadelphia. 1995;75:1004.

    Google Scholar 

  208. Lutgendorf SK, Weinrib AZ, Penedo F, Russell D, DeGeest K, Costanzo ES, et al. Interleukin-6, cortisol, and depressive symptoms in ovarian cancer patients. J Clin Oncol. 2008;26(29):4820–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Matsumura N, Huang Z, Mori S, Baba T, Fujii S, Konishi I, et al. Epigenetic suppression of the TGF-beta pathway revealed by transcriptome profiling in ovarian cancer. Genome Res. 2011;21(1):74–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Wang N, Zhang H, Yao Q, Wang Y, Dai S, Yang X. TGFBI promoter hypermethylation correlating with paclitaxel chemoresistance in ovarian cancer. J Exp Clin Cancer Res. 2012;31:6.

    PubMed Central  PubMed  Google Scholar 

  211. Wang D, Kanuma T, Mizunuma H, Takama F, Ibuki Y, Wake N, et al. Analysis of specific gene mutations in the transforming growth factor-β signal transduction pathway in human ovarian cancer. Cancer Res. 2000;60(16):4507–12.

    CAS  PubMed  Google Scholar 

  212. Yin J, Lu K, Lin J, Wu L, Hildebrandt MA, Chang DW, et al. Genetic variants in TGF-β pathway are associated with ovarian cancer risk. PLoS One. 2011;6(9):e25559.

    PubMed Central  CAS  PubMed  Google Scholar 

  213. Toutirais O, Chartier P, Dubois D, Bouet F, Lévêque J, Catros-Quemener V, et al. Constitutive expression of TGF-beta1, interleukin-6 and interleukin-8 by tumor cells as a major component of immune escape in human ovarian carcinoma. Eur Cytokine Netw. 2003;14:246–55.

    CAS  PubMed  Google Scholar 

  214. Do TV, Kubba LA, Du H, Sturgis CD, Woodruff TK. Transforming growth factor-ß1, transforming growth factor ß2, and transforming growth factor-ß3 enhance ovarian cancer metastatic potential by inducing a Smad3-dependent epithelial-to-mesenchymal transition. Mol Cancer Res. 2008;6:695–705.

    PubMed Central  CAS  PubMed  Google Scholar 

  215. Santin AD, Bellone S, Ravaggi A, Roman J, Smith CV, Pecorelli S, et al. Increased levels of interleukin‐10 and transforming growth factor‐β in the plasma and ascitic fluid of patients with advanced ovarian cancer. BJOG. 2001;108(8):804–8.

    CAS  PubMed  Google Scholar 

  216. Gordinier ME, Zhang H-Z, Patenia R, Levy LB, Atkinson EN, Nash MA, et al. Quantitative analysis of transforming growth factor β1 and 2 in ovarian carcinoma. Clin Cancer Res. 1999;5(9):2498–505.

    CAS  PubMed  Google Scholar 

  217. Bartlett J, Langdon S, Scott W, Love S, Miller E, Katsaros D, et al. Transforming growth factor-[beta] isoform expression in human ovarian tumours. Eur J Cancer. 1997;33(14):2397–403.

    CAS  PubMed  Google Scholar 

  218. Hirashima Y, Kobayashi H, Suzuki M, Tanaka Y, Kanayama N, Terao T. Transforming growth factor-β1 produced by ovarian cancer cell line HRA stimulates attachment and invasion through an up-regulation of plasminogen activator inhibitor type-1 in human peritoneal mesothelial cells. J Biol Chem. 2003;278(29):26793–802.

    CAS  PubMed  Google Scholar 

  219. Vánky F, Nagy N, Hising C, Sjövall K, Klein E. Human ex vivo carcinoma cells produce transforming growth factor β and thereby can inhibit lymphocyte functions in vitro. Cancer Immunol Immunother. 1997;43(6):317–23.

    PubMed  Google Scholar 

  220. Gavalas NG, Karadimou A, Dimopoulos MA, Bamias A. Immune response in ovarian cancer: how is the immune system involved in prognosis and therapy: potential for treatment utilization. Clin Dev Immunol. 2011;2010:791603.

    PubMed Central  Google Scholar 

  221. Pepper MS. Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev. 1997;8(1):21–43.

    CAS  PubMed  Google Scholar 

  222. Labidi-Galy SI, Sisirak V, Meeus P, Gobert M, Treilleux I, Bajard A, et al. Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer. Cancer Res. 2011;71(16):5423–34.

    CAS  PubMed  Google Scholar 

  223. Daraï E, Detchev R, Hugol D, Quang NT. Serum and cyst fluid levels of interleukin (IL)‐6, IL‐8 and tumour necrosis factor‐alpha in women with endometriomas and benign and malignant cystic ovarian tumours. Hum Reprod. 2003;18(8):1681–5.

    PubMed  Google Scholar 

  224. DeJaco P, Asselain B, Orlandi C, Fridman WH, Teillaud JL. Evaluation of circulating tumor necrosis factor-alpha in patients with gynecological malignancies. Int J Cancer. 1991;48:375–8.

    CAS  Google Scholar 

  225. Takeyama H, Wakamiya N, O’Hara C, Arthur K, Niloff J, Kufe D, et al. Tumor necrosis factor expression by human ovarian carcinoma in vivo. Cancer Res. 1991;51(16):4476–80.

    CAS  PubMed  Google Scholar 

  226. Dobrzycka B, Terlikowski SJ, Garbowicz M, Niklińska W, Bernaczyk PS, Nikliński J, et al. Tumor necrosis factor-alpha and its receptors in epithelial ovarian cancer. Folia Histochem Cytobiol. 2010;47(4):609–13.

    Google Scholar 

  227. Wu S, Boyer C, Whitaker R, Berchuck A, Wiener J, Weinberg J, et al. Tumor necrosis factor α as an autocrine and paracrine growth factor for ovarian cancer: monokine induction of tumor cell proliferation and tumor necrosis factor α expression. Cancer Res. 1993;53(8):1939–44.

    CAS  PubMed  Google Scholar 

  228. Naylor M, Stamp GW, Foulkes WD, Eccles D, Balkwill FR. Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. J Clin Invest. 1993;91(5):2194.

    PubMed Central  CAS  PubMed  Google Scholar 

  229. Goldstein I, Ben-Horin S, Koltakov A, Chermoshnuk H, Polevoy V, Berkun Y, et al. α1ß1 integrin+ and regulatory Foxp3+ T cells constitute two functionally distinct human CD4+ T cell subsets oppositely modulated by TNFa blockade. J Immunol. 2007;178:201–10.

    CAS  PubMed  Google Scholar 

  230. Malik S, Griffin D, Fiers W, Balkwill F. Paradoxical effects of tumour necrosis factor in experimental ovarian cancer. Int J Cancer. 1989;44(5):918–25.

    CAS  PubMed  Google Scholar 

  231. Kulbe H, Hagemann T, Szlosarek PW, Balkwill FR, Wilson JL. The inflammatory cytokine tumor necrosis factor-a regulates chemokine receptor expression on ovarian cancer cells. Cancer Res. 2005;65:10355–65.

    CAS  PubMed  Google Scholar 

  232. Lancaster JM, Sayer R, Blanchette C, Calingaert B, Whitaker R, Schildkraut J, et al. High expression of tumor necrosis factor-related apoptosis-inducing ligand is associated with favorable ovarian cancer survival. Clin Cancer Res. 2003;9(2):762–6.

    CAS  PubMed  Google Scholar 

  233. Schummer M, Ng WV, Bumgarner RE, Nelson PS, Schummer B, Bednarski DW, et al. Comparative hybridization of an array of 21 500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. Gene. 1999;238(2):375–85.

    CAS  PubMed  Google Scholar 

  234. Cuello M, Ettenberg SA, Nau MM, Lipkowitz S. Synergistic induction of apoptosis by the combination of trail and chemotherapy in chemoresistant ovarian cancer cells. Gynecol Oncol. 2001;81(3):380–90.

    CAS  PubMed  Google Scholar 

  235. Yousef GM, Polymeris M-E, Yacoub GM, Scorilas A, Soosaipillai A, Popalis C, et al. Parallel overexpression of seven kallikrein genes in ovarian cancer. Cancer Res. 2003;63(9):2223–7.

    CAS  PubMed  Google Scholar 

  236. Fang J, Wei W, Xia L, Song S. Study of the effect of TF/FVIIa complex on the expression of u-PAR mRNA in human ovarian cancer. Zhonghua xue ye xue za zhi Zhonghua xueyexue zazhi. 2004;25(3):143–6.

    CAS  PubMed  Google Scholar 

  237. Cheng T, Liu D, Griffin JH, Fernández JA, Castellino F, Rosen ED, et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med. 2003;9(3):338–42.

    CAS  PubMed  Google Scholar 

  238. Conway EM, Rosenberg RD. Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells. Mol Cell Biol. 1988;8(12):5588–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  239. Yousef GM, Polymeris M-E, Grass L, Soosaipillai A, Chan P-C, Scorilas A, et al. Human kallikrein 5 a potential novel serum biomarker for breast and ovarian cancer. Cancer Res. 2003;63(14):3958–65.

    CAS  PubMed  Google Scholar 

  240. Werling R, Zacharski L, Kisiel W, Bajaj S, Memoli V, Rousseau S. Distribution of tissue factor pathway inhibitor in normal and malignant human tissues. Thromb Haemost. 1993;69(4):366–9.

    CAS  PubMed  Google Scholar 

  241. Hembrough TA, Swartz GM, Papathanassiu A, et al. Tissue factor/factor VIIi inhibitors block angiogenesis and tumor growth through a non-hemostatic mechanism. Cancer Res. 2003;63:2997–3000.

    CAS  PubMed  Google Scholar 

  242. Naschitz JE, Yeshurun D, Lev LM. Thromboembolism in cancer. Chang Trends Cancer. 1993;71(4):1384–90.

    CAS  Google Scholar 

  243. Schmeidler-Sapiro KT, Ratnoff OD, Gordon EM. Mitogenic effects of coagulation factor XII and factor XIIa on HepG2 cells. Proc Natl Acad Sci. 1991;88(10):4382–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  244. Loercher AE, Nash MA, Kavanagh JJ, Platsoucas CD, Freedman RS. Identification of an IL-10-producing HLA-DR-negative monocyte subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J Immunol. 1999;163(11):6251–60.

    CAS  PubMed  Google Scholar 

  245. Kim J, Modlin RL, Moy RL, Dubinett S, McHugh T, Nickoloff BJ, et al. IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response. J Immunol. 1995;155(4):2240–7.

    CAS  PubMed  Google Scholar 

  246. Rabinovich A, Medina L, Piura B, Huleihel M. Expression of IL-10 in human normal and cancerous ovarian tissues and cells. Eur Cytokine Netw. 2010;21(2):122–8.

    CAS  PubMed  Google Scholar 

  247. Berger S, Siegert A, Denkert C, Köbel M, Hauptmann S. Interleukin-10 in serous ovarian carcinoma cell lines. Cancer Immunol Immunother. 2001;50(6):328–33.

    CAS  PubMed  Google Scholar 

  248. Mocellin S, Wang E, Marincola FM. Cytokines and immune response in the tumor microenvironment. J Immunother. 2001;24(5):392–407.

    CAS  Google Scholar 

  249. Vicari AP, Trinchieri G. Interleukin‐10 in viral diseases and cancer: exiting the labyrinth? Immunol Rev. 2004;202(1):223–36.

    CAS  PubMed  Google Scholar 

  250. Cervenak L, Morbidelli L, Donati D, Donnini S, Kambayashi T, Wilson JL, et al. Abolished angiogenicity and tumorigenicity of Burkitt lymphoma by interleukin-10. Blood. 2000;96(7):2568–73.

    CAS  PubMed  Google Scholar 

  251. Stearns ME, Rhim J, Wang M. Interleukin 10 (IL-10) inhibition of primary human prostate cell-induced angiogenesis IL-10 stimulation of tissue inhibitor of metalloproteinase-1 and inhibition of Matrix Metalloproteinase (MMP)-2/MMP-9 secretion. Clin Cancer Res. 1999;5(1):189–96.

    CAS  PubMed  Google Scholar 

  252. Mustea A, KÖnsgen D, Braicu E, Pirvulescu C, Sun P, Sofroni DO, et al. Expression of IL-10 in patients with ovarian carcinoma. Anticancer Res. 2006;26(2C):1715–8.

    CAS  PubMed  Google Scholar 

  253. Gotlieb WH, Abrams JS, Watson JM, Velu TJ, Berek JS, Martínez-Maza O. Presence of interleukin 10 (IL-10) in the ascites of patients with ovarian and other intra-abdominal cancers. Cytokine. 1992;4(5):385–90.

    CAS  PubMed  Google Scholar 

  254. C-z L, Zhang L, Chang X-h, Cheng Y-x, Cheng H-y, Ye X, et al. Overexpression and immunosuppressive functions of transforming growth factor 1, vascular endothelial growth factor and interleukin-10 in epithelial ovarian cancer. Chin J Cancer Res. 2012;24(2):130–7.

    Google Scholar 

  255. Matte I, Lane D, Laplante C, Rancourt C, Piché A. Profiling of cytokines in human epithelial ovarian cancer ascites. Am J Cancer Res. 2012;2(5):566.

    PubMed Central  CAS  PubMed  Google Scholar 

  256. Kohno T, Mizukami H, Suzuki M, Saga Y, Takei Y, Shimpo M, et al. Interleukin-10-mediated inhibition of angiogenesis and tumor growth in mice bearing VEGF-producing ovarian cancer. Cancer Res. 2003;63(16):5091–4.

    CAS  PubMed  Google Scholar 

  257. Daikoku T, Tranguch S, Trofimova IN, Dinulescu DM, Jacks T, Nikitin AY, et al. Cyclooxygenase-1 is overexpressed in multiple genetically engineered mouse models of epithelial ovarian cancer. Cancer Res. 2006;66(5):2527–31.

    CAS  PubMed  Google Scholar 

  258. Rodríguez-Burford C, Barnes MN, Oelschlager DK, Myers RB, Talley LI, Partridge EE, et al. Effects of Nonsteroidal Anti-Inflammatory Agents (NSAIDs) on ovarian carcinoma cell lines preclinical evaluation of NSAIDs as chemopreventive agents. Clin Cancer Res. 2002;8(1):202–9.

    PubMed  Google Scholar 

  259. Symowicz J, Adley BP, Woo MM, Auersperg N, Hudson LG, Stack MS. Cyclooxygenase-2 functions as a downstream mediator of lysophosphatidic acid to promote aggressive behavior in ovarian carcinoma cells. Cancer Res. 2005;65(6):2234–42.

    CAS  PubMed  Google Scholar 

  260. Prizment AE, Folsom AR, Anderson KE. Nonsteroidal anti-inflammatory drugs and risk for ovarian and endometrial cancers in the Iowa Women’s Health Study. Cancer Epidemiol Biomark Prev. 2010;19(2):435–42.

    CAS  Google Scholar 

  261. Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem. 1996;271:33157–60.

    CAS  PubMed  Google Scholar 

  262. Li J-Y, Wang X-Z, Chen F-L, Yu J-P, Luo H-S. Nimesulide inhibits proliferation via induction of apoptosis and cell cycle arrest in human gastric adenocarcinoma cell line. World J Gastroenterol. 2003;9(5):915–20.

    CAS  PubMed  Google Scholar 

  263. Li W, Zhang H-h, Xu R-j, Zhuo G-c, Hu Y-q, Li J. Effects of a selective cyclooxygenase-2 inhibitor, nimesulide, on the growth of ovarian carcinoma in vivo. Med Oncol. 2008;25(2):172–7.

    PubMed  Google Scholar 

  264. Vane J, Bakhle Y, Botting R. Cyclooxygenases 1 and 2. Ann Rev Pharmacol Toxicol. 1998;38(1):97–120.

    CAS  Google Scholar 

  265. Rask K, Zhu Y, Wang W, Hedin L, Sundfeldt K. Ovarian epithelial cancer: a role for PGE 2 -synthesis and signalling in malignant transformation and progression. Mol Cancer. 2006;5:62–74.

    PubMed Central  PubMed  Google Scholar 

  266. Auersperg N, Wong AS, Choi K-C, Kang SK, Leung PC. Ovarian surface epithelium: biology, endocrinology, and pathology 1. Endocr Rev. 2001;22(2):255–88.

    CAS  PubMed  Google Scholar 

  267. Sundfeldt K, Ivarsson K, Carlsson M, Enerbäck S, Janson PO, Brännström M, et al. The expression of CCAAT/enhancer binding protein (C/EBP) in the human ovary in vivo: specific increase in C/EBPbeta during epithelial tumour progression. Br J Cancer. 1999;79:1240–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  268. Casado E, Gomez-Navarro J, Yamamoto M, Adachi Y, Coolidge CJ, Arafat WO, et al. Strategies to accomplish targeted expression of transgenes in ovarian cancer for molecular therapeutic applications. Clin Cancer Res. 2001;7(8):2496–504.

    CAS  PubMed  Google Scholar 

  269. Roland IH, Yang WL, Yang DH, Daly MB, Ozols RF, Hamilton TC, et al. Loss of surface and cyst epithelial basement membranes and preneoplastic morphologic changes in prophylactic oophorectomies. Cancer. 2003;98(12):2607–23.

    PubMed  Google Scholar 

  270. Daikoku T, Wang D, Tranguch S, Morrow JD, Orsulic S, DuBois RN, et al. Cyclooxygenase-1 is a potential target for prevention and treatment of ovarian epithelial cancer. Cancer Res. 2005;65(9):3735–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  271. Ferrandina G, Ranelletti FO, Martinelli E, Paglia A, Zannoni GF, Scambia G. Cyclo-oxygenase-2 (Cox-2) expression and resistance to platinum versus platinum/paclitaxel containing chemotherapy in advanced ovarian cancer. BMC Cancer. 2006;6(1):182.

    PubMed Central  PubMed  Google Scholar 

  272. Ferrandina G, Lauriola L, Zannoni G, Fagotti A, Fanfani F, Legge F, et al. Increased cyclooxygenase-2 (COX-2) expression is associated with chemotherapy resistance and outcome in ovarian cancer patients. Ann Oncol. 2002;13(8):1205–11.

    CAS  PubMed  Google Scholar 

  273. Raspollini MR, Amunni G, Villanucci A, Boddi V, Baroni G, Taddei A, et al. COX-2 status in relation to tumor microvessel density and VEGF expression: analysis in ovarian carcinoma patients with low versus high survival rates. Oncol Rep. 2004;11(2):309–14.

    CAS  PubMed  Google Scholar 

  274. Denkert C, Köbel M, Pest S, Koch I, Berger S, Schwabe M, et al. Expression of cyclooxygenase 2 is an independent prognostic factor in human ovarian carcinoma. Am J Pathol. 2002;160(3):893–903.

    PubMed Central  CAS  PubMed  Google Scholar 

  275. Erkinheimo T-L, Lassus H, Finne P, van Rees BP, Leminen A, Ylikorkala O, et al. Elevated cyclooxygenase-2 expression is associated with altered expression of p53 and SMAD4, amplification of HER-2/neu, and poor outcome in serous ovarian carcinoma. Clin Cancer Res. 2004;10(2):538–45.

    CAS  PubMed  Google Scholar 

  276. Khunnarong J, Tangjitgamol S, Manusirivithaya S, Suekwattana P, Leelahakorn S. Expression of cyclooxygenase-1 in epithelial ovarian cancer: a clinicopathological study. Asian Pac J Cancer Prev. 2008;9:757–62.

    PubMed  Google Scholar 

  277. Liu M, Matsumura N, Mandai M, Li K, Yagi H, Baba T, et al. Classification using hierarchical clustering of tumor-infiltrating immune cells identifies poor prognostic ovarian cancers with high levels of COX expression. Mod Pathol. 2008;22(3):373–84.

    PubMed  Google Scholar 

  278. Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. Neuro-Oncol. 2012;14(8):958–78.

    PubMed Central  CAS  PubMed  Google Scholar 

  279. Li W, Wang J, Jiang H-R, Xu X-L, Zhang J, Liu M-L, et al. Combined effects of cyclooxygenase-1 and cyclooxygenase-2 selective inhibitors on ovarian carcinoma in vivo. Int J Mol Sci. 2011;12(1):668–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  280. Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, et al. Differentiation and reversal of malignant changes in colon cancer through PPAR&ggr. Nat Med. 1998;4(9):1046–52.

    CAS  PubMed  Google Scholar 

  281. Sakamoto A, Yokoyama Y, Umemoto M, Futagami M, Sakamoto T, Bing X, et al. Clinical implication of expression of cyclooxygenase-2 and peroxisome proliferator activated-receptor γ in epithelial ovarian tumours. Br J Cancer. 2004;91(4):633–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  282. Xin B, Yokoyama Y, Shigeto T, Futagami M, Mizunuma H. Inhibitory effect of meloxicam, a selective cyclooxygenase‐2 inhibitor, and ciglitazone, a peroxisome proliferator‐activated receptor gamma ligand, on the growth of human ovarian cancers. Cancer. 2007;110(4):791–800.

    CAS  PubMed  Google Scholar 

  283. Daikoku T, Tranguch S, Chakrabarty A, Wang D, Khabele D, Orsulic S, et al. Extracellular signal-regulated kinase is a target of cyclooxygenase-1-peroxisome proliferator-activated receptor-δ signaling in epithelial ovarian cancer. Cancer Res. 2007;67(11):5285–92.

    CAS  PubMed  Google Scholar 

  284. Beck EP, Russo P, Gliozzo B, Jaeger W, Papa V, Wildt L, et al. Identification of insulin and insulin-like growth factor I (IGF I) receptors in ovarian cancer tissue. Gynecol Oncol. 1994;53(2):196–201.

    CAS  PubMed  Google Scholar 

  285. Foekens JA, van Putten WLJ, Portengen H, Rodenburg CJ, Reubi JC, Berns PM, et al. Prognostic value of pS2 protein and receptors for epidermal growth factor (EGF-R), insulin-like growth factor-I (IGF-IR) and somatostatin (SS-R) in patients with breast and ovarian cancer. J Steroid Biochem Mol Biol. 1990;37:815–21.

    CAS  PubMed  Google Scholar 

  286. Foekens JA, van Putten WLJ, Portengen H, Rodenburg CJ, Reubi JC, Berns PM, et al. Prognostic value of receptors for epidermal growth factor (EGF-r), insulin-like growth factor-I (IGF-I-r) and somatostatin (SSTr) and of pS2 protein, in patients with breast and ovarian cancer. Eur J Cancer. 1990;26:154–8.

    Google Scholar 

  287. Van Dam P, Vergote I, Lowe D, Watson J, Van Damme P, Van der Auwera J, et al. Expression of c-erbB-2, c-myc, and c-ras oncoproteins, insulin-like growth factor receptor I, and epidermal growth factor receptor in ovarian carcinoma. J Clin Pathol. 1994;47(10):914–9.

    PubMed Central  PubMed  Google Scholar 

  288. Weigang B, Nap M, Bittl A, Jaeger W. Immunohistochemical localization of insulin-like growth factor 1 receptors in benign and malignant tissues of the female genital tract. Tumor Biol. 1994;15(4):236–46.

    CAS  Google Scholar 

  289. Flyvbjerg A, Mogensen O, Mogensen B, Nielsen OS. Elevated serum Insulin-Like Growth Factor-Binding Protein 2 (IGFBP-2) and decreased IGFBP-3 in epithelial ovarian cancer: correlation with cancer antigen 125 and tumor-associated trypsin inhibitor 1. J Clin Endocrinol Metab. 1997;82(7):2308–13.

    CAS  PubMed  Google Scholar 

  290. Chakrabarty S, Kondratick L. Research paper insulin-like growth factor binding protein-2 stimulates proliferation and activates multiple cascades of the mitogen-activated protein kinase pathways in NIH-OVCAR3 human epithelial ovarian cancer cells. Cancer Biol Ther. 2006;5(2):189–97.

    CAS  PubMed  Google Scholar 

  291. Cao Z, Liu L-Z, Dixon DA, Zheng JZ, Chandran B, Jiang B-H. Insulin-like growth factor-I induces cyclooxygenase-2 expression via PI3K, MAPK and PKC signaling pathways in human ovarian cancer cells. Cell Signal. 2007;19(7):1542–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  292. Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang X-J, Sharma A, et al. Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clin Cancer Res. 1995;1(10):1223–32.

    CAS  PubMed  Google Scholar 

  293. Fang X, Schummer M, Mao M, Yu S, Tabassam FH, Swaby R, et al. Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of. Lipids. 2002;1582(1):257–64.

    CAS  Google Scholar 

  294. Fang X, Gaudette D, Furui T, Mao M, Estrella V, Eder A, et al. Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann N Y Acad Sci. 2000;905(1):188–208.

    CAS  PubMed  Google Scholar 

  295. Westermann AM, Havik E, Postma FR, Beijnen JH, Dalesio O, Moolenaar WH, et al. Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann Oncol. 1998;9(4):437–42.

    CAS  PubMed  Google Scholar 

  296. Fishman DA, Liu Y, Ellerbroek SM, Stack MS. Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res. 2001;61(7):3194–9.

    CAS  PubMed  Google Scholar 

  297. Heinonen P, Metsä-Ketelä T. Prostaglandin and thromboxane production in ovarian cancer tissue. Gynecol Obstetr Invest. 1984;18(5):225–9.

    CAS  Google Scholar 

  298. Munkarah A, Morris R, Baumann P, Deppe G, Malone J, Diamond M, et al. Effects of prostaglandin E2 on proliferation and apoptosis of epithelial ovarian cancer cells. J Soc Gynecol Invest. 2002;9(3):168–73.

    CAS  Google Scholar 

  299. Spinella F, Rosanò L, Di Castro V, Natali PG, Bagnato A. Endothelin-1-induced prostaglandin E2-EP2, EP4 signaling regulates vascular endothelial growth factor production and ovarian carcinoma cell invasion. J Biol Chem. 2004;279(45):46700–5.

    CAS  PubMed  Google Scholar 

  300. Spinella F, Rosanò L, Di Castro V, Nicotra MR, Natali PG, Bagnato A. Inhibition of cyclooxygenase-1 and -2 expression by targeting the endothelin a receptor in human ovarian carcinoma cells. Clin Cancer Res. 2004;9:4670–9.

    Google Scholar 

  301. Lau M-T, Wong AS, Leung PC. Gonadotropins induce tumor cell migration and invasion by increasing cyclooxygenases expression and prostaglandin E2 production in human ovarian cancer cells. Endocrinology. 2010;151(7):2985–93.

    CAS  PubMed  Google Scholar 

  302. Charles KA, Kulbe KH, Soper R, Escorcio-Correia M, Lawrence T, Schultheis A, et al. The tumor-promoting actions of TNF-ainvolve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest. 2009;119:311–23.

    Google Scholar 

  303. Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J, Wang R-F. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci. 2008;105(40):15505–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  304. Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G. Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol. 2010;184(3):1630–41.

    CAS  PubMed  Google Scholar 

  305. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood. 2009;114(6):1141–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  306. Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science. 1966;153(3731):80–2.

    CAS  PubMed  Google Scholar 

  307. Calandra T, Echtenacher B, Le Roy D, Pugin J, Metz CN, Hültner L, et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med. 2000;6(2):164–70.

    CAS  PubMed  Google Scholar 

  308. Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M, et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res. 2005;11(4):1462–66.

    CAS  PubMed  Google Scholar 

  309. Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med. 1999;190(10):1375–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  310. Mitchell RA, Liao H, Chesney J, Fingerle-Rowson G, Baugh J, David J, et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl Acad Sci. 2002;99(1):345–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  311. Hagemann T, Robinson SC, Thompson RG, Charles K, Kulbe H, Balkwill FR. Ovarian cancer cell–derived migration inhibitory factor enhances tumor growth, progression, and angiogenesis. Mol Cancer Ther. 2007;6(7):1993–2002.

    CAS  PubMed  Google Scholar 

  312. Krockenberger M, Dombrowski Y, Weidler C, Ossadnik M, Hönig A, Häusler S, et al. Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. J Immunol. 2008;180(11):7338–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  313. Chambers SK. Role of CSF-1 in progression of epithelial ovarian cancer. Future Oncol. 2009;5(9):1429–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  314. Cecchini M, Hofstetter W, Halasy J, Wetterwald A, Felix R. Role of CSF‐1 in bone and bone marrow development. Mol Reprod Dev. 1997;46(1):75–84.

    CAS  PubMed  Google Scholar 

  315. Chambers SK, Kacinski BM, Ivins CM, Carcangiu ML. Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect of stromal CSF-1. Clin Cancer Res. 1997;3(6):999–1007.

    CAS  PubMed  Google Scholar 

  316. Kacinski BM, Carter D, Mittal K, Yee LD, Scata KA, Donofrio L, et al. Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with coexpression of CSF-1. Am J Pathol. 1990;137(1):135.

    PubMed Central  CAS  PubMed  Google Scholar 

  317. Kacinski BM, Richard Stanley E, Carter D, Chambers JT, Chambers SK, Kohorn EI, et al. Circulating levels of CSF-1 (M-CSF) a lymphohematopoietic cytokine may be a useful marker of disease status in patients with malignant ovarian neoplasms. Int J Radiat Oncol Biol Phys. 1989;17(1):159–64.

    CAS  PubMed  Google Scholar 

  318. Price FV, Chambers SK, Chambers JT, Carcangiu ML, Schwartz PE, Kohorn EI, et al. Colony-stimulating factor-1 in primary ascites of ovarian cancer is a significant predictor of survival. Am J Obstet Gynecol. 1993;168(2):520–7.

    CAS  PubMed  Google Scholar 

  319. Scholl S, Bascou C, Mosseri V, Olivares R, Magdelenat H, Dorval T, et al. Circulating levels of colony-stimulating factor 1 as a prognostic indicator in 82 patients with epithelial ovarian cancer. Br J Cancer. 1994;69(2):342.

    PubMed Central  CAS  PubMed  Google Scholar 

  320. Chambers SK, Wang Y, Gertz RE, Kacinski BM. Macrophage colony-stimulating factor mediates invasion of ovarian cancer cells through urokinase. Cancer Res. 1995;55(7):1578–85.

    CAS  PubMed  Google Scholar 

  321. Chambers S, Ivins C, Carcangiu M. Urokinase-type plasminogen activator in epithelial ovarian cancer: a poor prognostic factor, associated with advanced stage. Int J Gynecol Cancer. 1998;8(3):242–50.

    Google Scholar 

  322. Kuhn W, Schmalfeldt B, Reuning U, Pache L, Berger U, Ulm K, et al. Prognostic significance of urokinase (uPA) and its inhibitor PAI-1 for survival in advanced ovarian carcinoma stage FIGO IIIc. Br J Cancer. 1999;79(11–12):1746.

    PubMed Central  CAS  PubMed  Google Scholar 

  323. van der Burg ME, Henzen‐Logmans SC, Berns EM, Van Putten WL, Klijn JG, Foekens JA. Expression of urokinase‐type plasminogen activator (uPA) and its inhibitor PAI‐1 in benign, borderline, malignant primary and metastatic ovarian tumors. Int J Cancer. 1996;69(6):475–9.

    PubMed  Google Scholar 

  324. Toy EP, Azodi M, Folk NL, Zito CM, Zeiss CJ, Chambers SK. Enhanced ovarian cancer tumorigenesis and metastasis by the macrophage colony-stimulating factor. Neoplasia. 2009;11(2):136–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  325. Gordon IO, Freedman RS. Defective antitumor function of monocyte-derived macrophages from epithelial ovarian cancer patients. Clin Cancer Res. 2006;12(5):1515–24.

    CAS  PubMed  Google Scholar 

  326. Walz A, Peveri P, Aschauer H, Baggiolini M. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun. 1987;149(2):755–61.

    CAS  PubMed  Google Scholar 

  327. Murdoch C, Monk PN, Finn A. Cxc chemokine receptor expression on human endothelial cells. Cytokine. 1999;11(9):704–12.

    CAS  PubMed  Google Scholar 

  328. Ivarsson K, Runesson E, Sundfeldt K, Haeger M, Hedin L, Janson PO, et al. The chemotactic cytokine interleukin-8—a cyst fluid marker for malignant epithelial ovarian cancer? Gynecol Oncol. 1998;71(3):420–3.

    CAS  PubMed  Google Scholar 

  329. Herrera CA, Xu L, Bucana CD, Silva EG, Hess KR, Gershenson DM, et al. Expression of metastasis-related genes in human epithelial ovarian tumors. Int J Oncol. 2002;20(1):5–14.

    CAS  PubMed  Google Scholar 

  330. Mayerhofer K, Bodner K, Bodner‐Adler B, Schindl M, Kaider A, Hefler L, et al. Interleukin‐8 serum level shift in patients with ovarian carcinoma undergoing paclitaxel‐containing chemotherapy. Cancer. 2001;91(2):388–93.

    CAS  PubMed  Google Scholar 

  331. Uslu R, Sanli U, Dikmen Y, Karabulut B, Ozsaran A, Sezgin C, et al. Predictive value of serum interleukin‐8 levels in ovarian cancer patients treated with paclitaxel‐containing regimens. Int J Gynecol Cancer. 2005;15(2):240–5.

    CAS  PubMed  Google Scholar 

  332. Merritt WM, Lin YG, Spannuth WA, Fletcher MS, Kamat AA, Han LY, et al. Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J Natl Cancer Inst. 2008;100(5):359–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  333. Liu J, Yang G, Thompson-Lanza JA, Glassman A, Hayes K, Patterson A, et al. A genetically defined model for human ovarian cancer. Cancer Res. 2004;64(5):1655–63.

    CAS  PubMed  Google Scholar 

  334. Xu L, Xie K, Mukaida N, Matsushima K, Fidler IJ. Hypoxia-induced elevation in interleukin-8 expression by human ovarian carcinoma cells. Cancer Res. 1999;59(22):5822–9.

    CAS  PubMed  Google Scholar 

  335. Xu L, Pathak PS, Fukumura D. Hypoxia-induced activation of p38 mitogen-activated protein kinase and phosphatidylinositol 3′-kinase signaling pathways contributes to expression of interleukin 8 in human ovarian carcinoma cells. Clin Cancer Res. 2004;10(2):701–7.

    CAS  PubMed  Google Scholar 

  336. Huang S, Robinson JB, DeGuzman A, Bucana CD, Fidler IJ. Blockade of nuclear factor-κB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res. 2000;60(19):5334–9.

    CAS  PubMed  Google Scholar 

  337. Agarwal A, Tressel SL, Kaimal R, Balla M, Lam FH, Covic L, et al. Identification of a metalloprotease-chemokine signaling system in the ovarian cancer microenvironment: implications for antiangiogenic therapy. Cancer Res. 2010;70(14):5880–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  338. Curiel TJ, Cheng P, Mottram P, Alvarez X, Moons L, Evdemon-Hogan M, et al. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res. 2004;64(16):5535–8.

    CAS  PubMed  Google Scholar 

  339. Yang G, Rosen DG, Liu G, Yang F, Guo X, Xiao X, et al. CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis. Clin Cancer Res. 2010;16(15):3875–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  340. Abdollahi T, Robertson NM, Abdollahi A, Litwack G. Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3. Cancer Res. 2003;63(15):4521–6.

    CAS  PubMed  Google Scholar 

  341. Duan Z, Feller AJ, Penson RT, Chabner BA, Seiden MV. Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin Cancer Res. 1999;5(11):3445–53.

    CAS  PubMed  Google Scholar 

  342. Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR. Epithelial cancer cell migration a role for chemokine receptors? Cancer Res. 2001;61(13):4961–5.

    CAS  PubMed  Google Scholar 

  343. Kajiyama H, Shibata K, Terauchi M, Ino K, Nawa A, Kikkawa F. Involvement of SDF-1a/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. Int J Cancer. 2008;122:91–9.

    CAS  PubMed  Google Scholar 

  344. Miyanishi N, Suzuki Y, Simizu S, Kuwabara Y, Banno K, Umezawa K. Involvement of autocrine CXCL12/CXCR4 system in the regulation of ovarian carcinoma cell invasion. Biochem Biophys Res Commun. 2010;403(1):154–9.

    CAS  PubMed  Google Scholar 

  345. Jiang Y-p, Wu X-h, Shi B, Wu W-x, Yin G-r. Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: an independent prognostic factor for tumor progression. Gynecol Oncol. 2006;103(1):226–33.

    CAS  PubMed  Google Scholar 

  346. Jiang Y-p, Wu X-h, Xing H-y, X-y D. Role of CXCL12 in metastasis of human ovarian cancer. Chin Med J. 2007;120(14):1251.

    CAS  PubMed  Google Scholar 

  347. Zou W, Machelon V, Coulomb-L’Hermin A, Borvak J, Nome F, Isaeva T, et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med. 2001;7(12):1339–46.

    CAS  PubMed  Google Scholar 

  348. Righi E, Kashiwagi S, Yuan J, Santosuosso M, Leblanc P, Ingraham R, et al. CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res. 2011;71(16):5522–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  349. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.

    CAS  PubMed  Google Scholar 

  350. Guo L, Cui Z-M, Zhang J, Huang Y. Chemokine axes CXCL14/CXCR4 and CXCL16/CXCR6 correlate with lymph node metastasis in epithelial ovarian carcinoma. Chin Med J. 2011;30:336–43.

    CAS  Google Scholar 

  351. Rainczuk A, Rao J, Gathercole J, Stephens AN. The emerging role of CXC chemokines in epithelial ovarian cancer. Reproduction. 2012;144(3):303–17.

    CAS  PubMed  Google Scholar 

  352. Clark-Lewis I, Mattioli I, Gong J-H, Loetscher P. Structure-function relationship between the human chemokine receptor CXCR3 and its ligands. J Biol Chem. 2003;278(1):289–95.

    CAS  PubMed  Google Scholar 

  353. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102(51):18538–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  354. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.

    CAS  PubMed  Google Scholar 

  355. Johnson EL, Singh R, Singh S, Johnson-Holiday CM, Grizzle WE, Partridge EE, et al. CCL25-CCR9 interaction modulates ovarian cancer cell migration, metalloproteinase expression, and invasion. World J Surg Oncol. 2010;8:62.

    PubMed Central  PubMed  Google Scholar 

  356. Dellacasagrande J, Schreurs O, Hofgaard P, Omholt H, Steinsvoll S, Schenck K, et al. Liver metastasis of cancer facilitated by chemokine receptor CCR6. Scand J Immunol. 2003;57(6):534–44.

    CAS  PubMed  Google Scholar 

  357. Milliken D, Scotton C, Raju S, Balkwill F, Wilson J. Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites. Clin Cancer Res. 2002;8(4):1108–14.

    CAS  PubMed  Google Scholar 

  358. Nelson BH. The impact of T‐cell immunity on ovarian cancer outcomes. Immunol Rev. 2008;222(1):101–16.

    CAS  PubMed  Google Scholar 

  359. Raspollini M, Castiglione F, Degl’Innocenti DR, Amunni G, Villanucci A, Garbini F, et al. Tumour-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma. Ann Oncol. 2005;16(4):590–6.

    CAS  PubMed  Google Scholar 

  360. Halapi E, Yamamoto Y, Juhlin C, Jeddi-Tehrani M, Grunewald J, Andersson R, et al. Restricted T cell receptor V-beta and J-beta usage in T cells from interleukin-2-cultured lymphocytes of ovarian and renal carcinomas. Cancer immunology, immunotherapy: CII, Cancer Immunol Immunother. 1993;36(3):191–7.

    CAS  Google Scholar 

  361. Bamias A, Koutsoukou V, Terpos E, Tsiatas ML, Liakos C, Tsitsilonis O, et al. Correlation of NKT-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNF alpha in ascites from advanced ovarian cancer: association with platinum resistance and prognosis in patients receiving first-line platinum based chemotherapy. Gynecol Oncol. 2008;108:421–7.

    CAS  PubMed  Google Scholar 

  362. Negus R, Stamp G, Hadley J, Balkwill FR. Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of CC chemokines. Am J Pathol. 1997;150(5):1723.

    PubMed Central  CAS  PubMed  Google Scholar 

  363. Santin A, Bellone S, Palmieri M, Bossini B, Cane S, Bignotti E, et al. Restoration of tumor specific human leukocyte antigens class I‐restricted cytotoxicity by dendritic cell stimulation of tumor infiltrating lymphocytes in patients with advanced ovarian cancer. Int J Gynecol Cancer. 2004;14(1):64–75.

    CAS  PubMed  Google Scholar 

  364. Freedman RS, Deavers M, Liu J, Wang E. Peritoneal inflammation–a microenvironment for epithelial ovarian cancer (EOC). J Transl Med. 2004;2(1):23.

    PubMed Central  PubMed  Google Scholar 

  365. Kooi S, Freedman RS, Rodriguez-Villanueva J, Platsoucas CD. Cytokine production by T-cell lines derived from tumor-infiltrating lymphocytes from patients with ovarian carcinoma: tumor-specific immune responses and inhibition of antigen-independent cytokine production by ovarian tumor cells. Lymphokine Cytokine Res. 1993;12(6):429–37.

    CAS  PubMed  Google Scholar 

  366. Melichar B, Nash M, Lenzi R, Platsoucas C, Freedman R. Expression of costimulatory molecules CD80 and CD86 and their receptors CD28, CTLA‐4 on malignant ascites CD3+ tumour‐infiltrating lymphocytes (TIL) from patients with ovarian and other types of peritoneal carcinomatosis. Clin Exp Immunol. 2000;119(1):19–27.

    PubMed Central  CAS  PubMed  Google Scholar 

  367. Lockhart DC, Chan AK, Mak S, Joo H-G, Daust HA, Carritte A, et al. Loss of T-cell receptor-CD3ζ and T-cell function in tumor-infiltrating lymphocytes but not in tumor-associated lymphocytes in ovarian carcinoma. Surgery. 2001;129(6):749–56.

    CAS  PubMed  Google Scholar 

  368. Chen C, Wu M, Chao K, Ho H, Sheu B, Huang S. T lymphocytes and cytokine production in ascitic fluid of ovarian malignancies. J Formos Med Assoc Taiwan Yi Zhi. 1999;98(1):24–30.

    CAS  Google Scholar 

  369. Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, et al. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother. 2004;53(2):64–72.

    CAS  PubMed  Google Scholar 

  370. Kryczek I, Wei S, Zhu G, Myers L, Mottram P, Cheng P, et al. Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res. 2007;67(18):8900–5.

    CAS  PubMed  Google Scholar 

  371. Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med. 2006;203(4):871–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  372. Piver MS, Mettlin CJ, Tsukada Y, Nasca P, Greenwald P, McPhee ME. Familial ovarian cancer registry. Obstet Gynecol. 1984;64(2):195–9.

    CAS  PubMed  Google Scholar 

  373. Cannon MJ, Goyne H, Stone PJ, Chiriva-Internati M. Dendritic cell vaccination against ovarian cancer-tipping the Treg/TH17 balance to therapeutic advantage? Expert Opin Biol Ther. 2011;11(4):441–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  374. Sharma MD, Hou D-Y, Liu Y, Koni PA, Metz R, Chandler P, et al. Indoleamine 2, 3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood. 2009;113(24):6102–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  375. Chung DJ, Rossi M, Romano E, Ghith J, Yuan J, Munn DH, et al. Indoleamine 2, 3-dioxygenase–expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood. 2009;114(3):555–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  376. Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y, et al. Indoleamine 2, 3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res. 2005;11(16):6030–9.

    CAS  PubMed  Google Scholar 

  377. Inaba T, Ino K, Kajiyama H, Yamamoto E, Shibata K, Nawa A, et al. Role of the immunosuppressive enzyme indoleamine 2, 3-dioxygenase in the progression of ovarian carcinoma. Gynecol Oncol. 2009;115(2):185–92.

    CAS  PubMed  Google Scholar 

  378. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, et al. Regulatory CD4+ CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001;61(12):4766–72.

    CAS  PubMed  Google Scholar 

  379. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci. 2007;104(9):3360–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  380. Mhawech-Fauceglia P, Wang D, Ali L, Lele S, Huba MA, Liu S, et al. Intraepithelial T cells and tumor-associated macrophages in ovarian cancer patients. Cancer Immun. 2013;13.

    Google Scholar 

  381. Shah CA, Allison KH, Garcia RL, Gray HJ, Goff BA, Swisher EM. Intratumoral T cells, tumor-associated macrophages, and regulatory T cells: association with p53 mutations, circulating tumor DNA and survival in women with ovarian cancer. Gynecol Oncol. 2008;109(2):215–9.

    CAS  PubMed  Google Scholar 

  382. Lewis J, Lee J, Underwood J, Harris A, Lewis C. Macrophage responses to hypoxia: relevance to disease mechanisms. J Leukoc Biol. 1999;66(6):889–900.

    CAS  PubMed  Google Scholar 

  383. Thanaa El-A H, Alla AEK, Laban MA, Fahmy RM. Immunophenotyping of tumor-infiltrating mononuclear cells in ovarian carcinoma. Pathol Oncol Res. 2004;10(2):80–4.

    Google Scholar 

  384. Negus R, Stamp G, Relf M, Burke F, Malik S, Bernasconi S, et al. The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest. 1995;95(5):2391.

    PubMed Central  CAS  PubMed  Google Scholar 

  385. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.

    CAS  PubMed  Google Scholar 

  386. Turner L, Scotton C, Negus R, Balkwill F. Hypoxia inhibits macrophage migration. Eur J Immunol. 1999;29(7):2280–7.

    CAS  PubMed  Google Scholar 

  387. Sica A, Saccani A, Bottazzi B, Bernasconi S, Allavena P, Gaetano B, et al. Defective expression of the monocyte chemotactic protein-1 receptor CCR2 in macrophages associated with human ovarian carcinoma. J Immunol. 2000;164(2):733–8.

    CAS  PubMed  Google Scholar 

  388. Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Plüddemann A, et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol. 2006;176(8):5023–32.

    CAS  PubMed  Google Scholar 

  389. Hagemann T, Wilson J, Kulbe H, Li NF, Leinster DA, Charles K, et al. Macrophages induce invasiveness of epithelial cancer cells via NF-nB and JNK. J Immunol. 2005;175:1197–205.

    CAS  PubMed  Google Scholar 

  390. Robinson-Smith TM, Isaacsohn I, Mercer CA, Zhou M, Van Rooijen N, Husseinzadeh N, et al. Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res. 2007;67(12):5708–16.

    CAS  PubMed  Google Scholar 

  391. Klimp AH, Hollema H, Kempinga C, van der Zee AG, de Vries EG, Daemen T. Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages. Cancer Res. 2001;61(19):7305–9.

    CAS  PubMed  Google Scholar 

  392. Krempski J, Karyampudi L, Behrens MD, Erskine CL, Hartmann L, Dong H, et al. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol. 2011;186(12):6905–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  393. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, et al. Blockade of B7-H1 improves myeloid dendritic cell–mediated antitumor immunity. Nat Med. 2003;9(5):562–7.

    CAS  PubMed  Google Scholar 

  394. Scarlett UK, Rutkowski MR, Rauwerdink AM, Fields J, Escovar-Fadul X, Baird J, et al. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med. 2012;209(3):495–506.

    PubMed Central  CAS  PubMed  Google Scholar 

  395. Wertel I, Polak G, Bednarek W, Barczyński B, Roliński J, Kotarski J. Dendritic cell subsets in the peritoneal fluid and peripheral blood of women suffering from ovarian cancer. Cytom Part B Clin Cytom. 2008;74(4):251–8.

    CAS  Google Scholar 

  396. Wei S, Kryczek I, Zou L, Daniel B, Cheng P, Mottram P, et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res. 2005;65(12):5020–6.

    CAS  PubMed  Google Scholar 

  397. Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 2006;16(1):53–65.

    CAS  PubMed  Google Scholar 

  398. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 2007;67(20):10019–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  399. Sinha P, Clements VK, Ostrand-Rosenberg S. Interleukin-13–regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res. 2005;65(24):11743–51.

    CAS  PubMed  Google Scholar 

  400. Yanagisawa K, Exley MA, Jiang X, Ohkochi N, Taniguchi M, Seino K. Hyporesponsiveness to natural killer T-cell ligand alpha-galactosylceramide in cancer-bearing state mediated by CD11b+ Gr-1+ cells producing nitric oxide. Cancer Res. 2006;66:11441–6.

    CAS  PubMed  Google Scholar 

  401. Hart KM, Byrne KT, Molloy MJ, Usherwood EM, Berwin B. IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer. Front Immunol. 2011;2.

    Google Scholar 

  402. Peter S, Bak G, Hart K, Berwin B. Ovarian tumor-induced T cell suppression is alleviated by vascular leukocyte depletion. Transl Oncol. 2009;2(4):291–9.

    CAS  PubMed  Google Scholar 

  403. Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P. PGE2-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res. 2011;71(24):7463–70.

    CAS  PubMed  Google Scholar 

  404. Lokshin AE, Winans M, Landsittel D, Marrangoni AM, Velikokhatnaya L, Modugno F, et al. Circulating IL-8 and anti-IL-8 autoantibody in patients with ovarian cancer. Gynecol Oncol. 2006;102(2):244–51.

    CAS  PubMed  Google Scholar 

  405. Lambeck AJ, Crijns AP, Leffers N, Sluiter WJ, Klaske A, Braid M, et al. Serum cytokine profiling as a diagnostic and prognostic tool in ovarian cancer: a potential role for interleukin 7. Clin Cancer Res. 2007;13(8):2385–91.

    CAS  PubMed  Google Scholar 

  406. Bertenshaw GP, Yip P, Seshaiah P, Zhao J, Chen T-H, Wiggins WS, et al. Multianalyte profiling of serum antigens and autoimmune and infectious disease molecules to identify biomarkers dysregulated in epithelial ovarian cancer. Cancer Epidemiol Biomark Prev. 2008;17(10):2872–81.

    CAS  Google Scholar 

  407. Scambia G, Testa U, Panici PB, Foti E, Martucci R, Gadducci A, et al. Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. Br J Cancer. 1995;71(2):354.

    PubMed Central  CAS  PubMed  Google Scholar 

  408. Mustea A, Pirvulescu C, Könsgen D, Braicu E, Yuan S, Sun P, et al. Decreased IL-1 RA concentration in ascites is associated with a significant improvement in overall survival in ovarian cancer. Cytokine. 2008;42(1):77–84.

    CAS  PubMed  Google Scholar 

  409. Hefler LA, Zeillinger R, Grimm C, Sood AK, Cheng WF, Gadducci A, et al. Preoperative serum vascular endothelial growth factor as a prognostic parameter in ovarian cancer. Gynecol Oncol. 2006;103(2):512–7.

    CAS  PubMed  Google Scholar 

  410. Bamias A, Tsiatas M, Kafantari E, Liakou C, Rodolakis A, Voulgaris Z, et al. Significant differences of lymphocytes isolated from ascites of patients with ovarian cancer compared to blood and tumor lymphocytes. Association of CD3+ CD56+ cells with platinum resistance. Gynecol Oncol. 2007;106(1):75–81.

    CAS  PubMed  Google Scholar 

  411. Jaszczynska-Nowinka K, Markowska A. New cytokine: stromal derived factor-1. Eur J Gynaecol Oncol. 2008;30(2):124–7.

    Google Scholar 

  412. Dehaghani AS, Shahriary K, Kashef MA, Naeimi S, Fattahi MJ, Mojtahedi Z, et al. Interleukin-18 gene promoter and serum level in women with ovarian cancer. Mol Biol Rep. 2009;36(8):2393–7.

    Google Scholar 

  413. Bozkurt N, Yuce K, Basaran M, Gariboglu S, Kose F, Ayhan A. Correlation of serum and ascitic IL‐12 levels with second‐look laparotomy results and disease progression in advanced epithelial ovarian cancer patients. Int J Gynecol Cancer. 2006;16(1):83–6.

    CAS  PubMed  Google Scholar 

  414. Kusuda T, Shigemasa K, Arihiro K, Fujii T, Nagai N, Ohama K. Relative expression levels of Th1 and Th2 cytokine mRNA are independent prognostic factors in patients with ovarian cancer. Oncol Rep. 2005;13(6):1153–8.

    CAS  PubMed  Google Scholar 

  415. Marth C, Fiegl H, Zeimet AG, Müller-Holzner E, Deibl M, Doppler W, et al. Interferon-γ expression is an independent prognostic factor in ovarian cancer. Am J Obstet Gynecol. 2004;191(5):1598–605.

    CAS  PubMed  Google Scholar 

  416. Chu CS, Kim SH, June CH, Coukos G. Immunotherapy opportunities in ovarian cancer. Expert review of anticancer therapy, Expert Rev Anticancer Ther. 2008;8(2):243–57.

    CAS  Google Scholar 

  417. Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci. 1996;93(1):136–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  418. Coliva A, Zacchetti A, Luison E, Tomassetti A, Seregni E, Bombardieri E, et al. 90Y Labeling of monoclonal antibody MOv18 and preclinical validation for radioimmunotherapy of human ovarian carcinomas. Cancer Immunol Immunother. 2005;54(12):1200–13.

    CAS  PubMed  Google Scholar 

  419. Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, et al. Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide–based vaccines. J Clin Oncol. 2002;20(11):2624–32.

    CAS  PubMed  Google Scholar 

  420. Disis ML, Goodell V, Schiffman K, Knutson KL. Humoral epitope-spreading following immunization with a HER-2/neu peptide based vaccine in cancer patients. J Clin Immunol. 2004;24(5):571–8.

    CAS  PubMed  Google Scholar 

  421. Kenemans P. CA 125 and OA 3 as target antigens for immunodiagnosis and immunotherapy in ovarian cancer. Eur J Obstet Gynecol Reprod Biol. 1990;36(3):221–8.

    CAS  PubMed  Google Scholar 

  422. Odunsi K, Jungbluth AA, Stockert E, Qian F, Gnjatic S, Tammela J, et al. NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res. 2003;63(18):6076–83.

    CAS  PubMed  Google Scholar 

  423. Resenblum MG, Verschraegen CF, Murray JL, Kudelka AP, Gano J, Cheung L, et al. Phase I study of 90Y-labelled B72.3 intraperitoneal administration in patients with ovarian cancer: effect of dose and EDTA coadministration on pharmacokinetics and toxicity. Clin Cancer Res. 1999;5:953–61.

    Google Scholar 

  424. Sandmaier BM, Oparin DV, Holmberg LA, Reddish MA, MacLean GD, Longenecker BM. Evidence of a cellular immune response against sialyl-Tn in breast and ovarian cancer patients after high-dose chemotherapy, stem cell rescue, and immunization with Theratope STn-KLH cancer vaccine. J Immunother. 1999;22(1):54–66.

    CAS  PubMed  Google Scholar 

  425. Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ. MUC1 immunobiology: from discovery to clinical applications. Adv Immunol. 2004;82:249–94.

    CAS  PubMed  Google Scholar 

  426. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 2004;10(1):48–54.

    PubMed  Google Scholar 

  427. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362(6423):841–4.

    CAS  PubMed  Google Scholar 

  428. Mabuchi S, Kawase C, Altomare DA, Morishige K, Hayashi M, Sawada K, et al. Vascular endothelial growth factor is a promising therapeutic target for the treatment of clear cell carcinoma of the ovary. Mol Cancer Ther. 2010;9(8):2411–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  429. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.

    CAS  PubMed  Google Scholar 

  430. Burger RA, Sill MW, Monk BJ, Greer BE, Sorosky JI. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J Clin Oncol. 2007;25(33):5165–71.

    CAS  PubMed  Google Scholar 

  431. Cannistra SA, Matulonis UA, Penson RT, Hambleton J, Dupont J, Mackey H, et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol. 2007;25(33):5180–6.

    CAS  PubMed  Google Scholar 

  432. Chura JC, Van Iseghem K, Downs Jr LS, Carson LF, Judson PL. Bevacizumab plus cyclophosphamide in heavily pretreated patients with recurrent ovarian cancer. Gynecol Oncol. 2007;107(2):326–30.

    CAS  PubMed  Google Scholar 

  433. Garcia AA, Hirte H, Fleming G, Yang D, Tsao-Wei DD, Roman L, et al. Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J Clin Oncol. 2008;26(1):76–82.

    CAS  PubMed  Google Scholar 

  434. McGonigle KF, Muntz HG, Vuky J, Paley PJ, Veljovich DS, Greer BE, et al. Combined weekly topotecan and biweekly bevacizumab in women with platinum‐resistant ovarian, peritoneal, or fallopian tube cancer. Cancer. 2011;117(16):3731–40.

    CAS  PubMed  Google Scholar 

  435. Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365(26):2484–96.

    CAS  PubMed  Google Scholar 

  436. Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med. 2011;365(26):2473–83.

    CAS  PubMed  Google Scholar 

  437. Stark D, Nankivell M, Pujade-Lauraine E, Kristensen G, Elit L, Stockler M, et al. Standard chemotherapy with or without bevacizumab in advanced ovarian cancer: quality-of-life outcomes from the International Collaboration on Ovarian Neoplasms (ICON7) phase 3 randomised trial. Lancet Oncol. 2013;14(3):236–43.

    PubMed Central  PubMed  Google Scholar 

  438. Aghajanian C, Blank SV, Goff BA, Judson PL, Teneriello MG, Husain A, et al. OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J Clin Oncol. 2012;30(17):2039–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  439. Ranpura V, Hapani S, Wu S. Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA. 2011;305(5):487–94.

    CAS  PubMed  Google Scholar 

  440. Ayantunde A, Parsons S. Pattern and prognostic factors in patients with malignant ascites: a retrospective study. Ann Oncol. 2007;18(5):945–9.

    CAS  PubMed  Google Scholar 

  441. Schmitt M, Schmitt A, Reinhardt P, Thess B, Manfras B, Lindhofer H, et al. Opsonization with a trifunctional bispecific (alphaCD3 x alphaEpCAM) antibody results in efficient lysis in vitro and in vivo of EpCAM positive tumor cells by cytotoxic T lymphocytes. Int J Oncol. 2004;25:841–8.

    CAS  PubMed  Google Scholar 

  442. Ruf P, Gires O, Jäger M, Fellinger K, Atz J, Lindhofer H. Characterisation of the new EpCAM-specific antibody HO-3: implications for trifunctional antibody immunotherapy of cancer. Br J Cancer. 2007;97(3):315–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  443. Zeidler R, Mysliwietz J, Csanady M, Walz A, Ziegler I, Schmitt B, et al. The Fc-region of a new class of intact bispecific antibody mediates activation of accessory cells and NK cells and induces direct phagocytosis of tumour cells. Br J Cancer. 2000;83(2):261.

    PubMed Central  CAS  PubMed  Google Scholar 

  444. Zeidler R, Reisbach G, Wollenberg B, Lang S, Chaubal S, Schmitt B, et al. Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing. J Immunol. 1999;163(3):1246–52.

    CAS  PubMed  Google Scholar 

  445. Balzar M, Winter M, De Boer C, Litvinov S. The biology of the 17–1A antigen (Ep-CAM). J Mol Med. 1999;77(10):699–712.

    CAS  PubMed  Google Scholar 

  446. Litvinov SV, Balzar M, Winter MJ, Bakker HA, Briaire-de Bruijn IH, Prins F, et al. Epithelial cell adhesion molecule (Ep-CAM) modulates cell–cell interactions mediated by classic cadherins. J Cell Biol. 1997;139(5):1337–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  447. Bokemeyer C, Heiss M, Gamperl H, Linke R, Schulze E, Friccius-Quecke H, et al. Safety of catumaxomab: cytokine-release-related symptoms as a possible predictive factor for efficacy in a pivotal phase II/III trial in malignant ascites. ASCO Ann Meet Proc. 2009;27:3036.

    Google Scholar 

  448. Heiss MM, Murawa P, Koralewski P, Kutarska E, Kolesnik OO, Ivanchenko VV, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127(9):2209–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  449. Jäger M, Schoberth A, Ruf P, Hess J, Hennig M, Schmalfeldt B, et al. Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM× anti-CD3). Cancer Res. 2012;72(1):24–32.

    PubMed  Google Scholar 

  450. Ott MG, Marmé F, Moldenhauer G, Lindhofer H, Hennig M, Spannagl R, et al. Humoral response to catumaxomab correlates with clinical outcome: results of the pivotal phase II/III study in patients with malignant ascites. Int J Cancer. 2012;130(9):2195–203.

    PubMed Central  CAS  PubMed  Google Scholar 

  451. Schmidt-Rimpler C SE, Seimetz D. Clinical development of the trifunctional antibody catumaxomab in malignant ascites. International symposium on targeted anticancer therapies. International symposium on targeted anticancer therapies. 7–9 Mar 2011;Paris, abstract no. 39.

    Google Scholar 

  452. Gordon MS, Matei D, Aghajanian C, Matulonis UA, Brewer M, Fleming GF, et al. Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J Clin Oncol. 2006;24(26):4324–32.

    CAS  PubMed  Google Scholar 

  453. Noujaim AA, Schultes BC, Baum RP, Madiyalakan R. Induction of CA125-specific B and T cell responses in patients injected with MAb-B43. 13-evidence for antibody-mediated antigen-processing and presentation of CA125 in vivo. Cancer Biother Radiopharm. 2001;16(3):187–203.

    CAS  PubMed  Google Scholar 

  454. Ehlen T, Hoskins P, Miller D, Whiteside T, Nicodemus C, Schultes B, et al. A pilot phase 2 study of oregovomab murine monoclonal antibody to CA125 as an immunotherapeutic agent for recurrent ovarian cancer. Int J Gynecol Cancer. 2005;15(6):1023–34.

    CAS  PubMed  Google Scholar 

  455. Berek JS, Taylor PT, Nicodemus CF. CA125 velocity at relapse is a highly significant predictor of survival post relapse: results of a 5-year follow-up survey to a randomized placebo-controlled study of maintenance oregovomab immunotherapy in advanced ovarian cancer. J Immunother. 2008;31(2):207–14.

    PubMed  Google Scholar 

  456. Berek J, Taylor P, McGuire W, Smith LM, Schultes B, Nicodemus CF. Oregovomab maintenance monoimmunotherapy does not improve outcomes in advanced ovarian cancer. J Clin Oncol. 2009;27(3):418–25.

    CAS  PubMed  Google Scholar 

  457. Reinartz S, Köhler S, Schlebusch H, Krista K, Giffels P, Renke K, et al. Vaccination of patients with advanced ovarian carcinoma with the anti-idiotype ACA125 immunological response and survival (phase Ib/II). Clin Cancer Res. 2004;10(5):1580–7.

    CAS  PubMed  Google Scholar 

  458. Sabbatini P, Berek J, Casada A. Abagovomab maintenance therapy in patients with epithelial ovarian cancer after complete response (CR) post-first-line chemotherapy (FLCT): preliminary results of the randomized, double-blind, placebo-controlled, multicenter MIMOSA trial. ASCO Meeting Abstracts; 2010.

    Google Scholar 

  459. Sabbatini P, Harter P, Scambia G, Sehouli J, Meier W, Wimberger P, et al. Abagovomab as maintenance therapy in patients with epithelial ovarian cancer: a phase III trial of the AGO OVAR, COGI, GINECO, and GEICO—the MIMOSA study. J Clin Oncol. 2013;31(12):1554–61.

    CAS  PubMed  Google Scholar 

  460. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003;21(14):2787–99.

    CAS  PubMed  Google Scholar 

  461. Bookman MA, Darcy KM, Clarke-Pearson D, Boothby RA, Horowitz IR. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J Clin Oncol. 2003;21(2):283–90.

    CAS  PubMed  Google Scholar 

  462. Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell. 2002;2(2):127–37.

    CAS  PubMed  Google Scholar 

  463. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5(4):317–28.

    CAS  PubMed  Google Scholar 

  464. Amler L, Makhija S, Januario T, Matulonis U, Strauss A, Dizon D, et al. HER pathway gene expression analysis in a phase II study of pertuzumab+ gemcitabine vs. gemcitabine+ placebo in patients with platinum-resistant epithelial ovarian cancer. J Clin Oncol. 2008;26:5552.

    Google Scholar 

  465. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem. 2005;338(2):284–93.

    CAS  PubMed  Google Scholar 

  466. Markman M, Blessing J, Rubin SC, Connor J, Hanjani P, Waggoner S. Phase II trial of weekly paclitaxel (80 mg/m2) in platinum and paclitaxel-resistant ovarian and primary peritoneal cancers: an Gynecologic Oncology Group study. Gynecol Oncol. 2006;101(3):436–40.

    CAS  PubMed  Google Scholar 

  467. Pujade-Lauraine E, Wagner U, Aavall-Lundqvist E, Gebski V, Heywood M, Vasey PA, et al. Pegylated liposomal doxorubicin and carboplatin compared with paclitaxel and carboplatin for patients with platinum-sensitive ovarian cancer in late relapse. J Clin Oncol. 2010;28(20):3323–9.

    CAS  PubMed  Google Scholar 

  468. Armstrong DK, White AJ, Weil SC, Phillips M, Coleman RL. Farletuzumab (a monoclonal antibody against folate receptor alpha) in relapsed platinum-sensitive ovarian cancer. Gynecol Oncol. 2013;129(3):452–8.

    CAS  PubMed  Google Scholar 

  469. Epstein LB, Shen JT, Abele JS, Reese CC. Sensitivity of human ovarian carcinoma cells to interferon and other antitumor agents as assessed by an in vitro semi-solid agar technique. Ann NY Acad Sci. 1980;350(1):228–44.

    CAS  PubMed  Google Scholar 

  470. Einhorn N, Cantell K, Einhorn S, Strander H. Human leukocyte interferon therapy for advanced ovarian carcinoma. Am J Clin Oncol. 1982;5(2):167–72.

    CAS  PubMed  Google Scholar 

  471. Alberts DS, Hannigan EV, Liu P-Y, Jiang C, Wilczynski S, Copeland L, et al. Randomized trial of adjuvant intraperitoneal alpha-interferon in stage III ovarian cancer patients who have no evidence of disease after primary surgery and chemotherapy: an intergroup study. Gynecol Oncol. 2006;100(1):133–8.

    CAS  PubMed  Google Scholar 

  472. Berek JS, Hacker NF, Lichtenstein A, Jung T, Spina C, Knox RM, et al. Intraperitoneal recombinant α-interferon for “salvage” immunotherapy in stage III epithelial ovarian cancer: a Gynecologic Oncology Group Study. Cancer Res. 1985;45(9):4447–53.

    CAS  PubMed  Google Scholar 

  473. Berek JS, Markman M, Blessing JA, Kucera PR, Nelson BE, Anderson B, et al. Intraperitoneal α-interferon alternating with cisplatin in residual ovarian carcinoma: a phase II Gynecologic Oncology Group study. Gynecol Oncol. 1999;74(1):48–52.

    CAS  PubMed  Google Scholar 

  474. Bruzzone M, Rubagotti A, Gadducci A, Catsafados E, Foglia G, Brunetti I, et al. Intraperitoneal carboplatin with or without interferon-α in advanced ovarian cancer patients with minimal residual disease at second look: a prospective randomized trial of 111 patients. Gynecol Oncol. 1997;65(3):499–505.

    CAS  PubMed  Google Scholar 

  475. Hall G, Brown J, Coleman R, Stead M, Metcalf K, Peel K, et al. Maintenance treatment with interferon for advanced ovarian cancer: results of the Northern and Yorkshire gynaecology group randomised phase III study. Br J Cancer. 2004;91(4):621–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  476. Marth C, Windbichler G, Hausmaninger H, Petru E, Estermann K, Pelzer A, et al. Interferon‐gamma in combination with carboplatin and paclitaxel as a safe and effective first‐line treatment option for advanced ovarian cancer: results of a phase I/II study. Int J Gynecol Cancer. 2006;16(4):1522–8.

    CAS  PubMed  Google Scholar 

  477. Willemse P, De Vries E, Mulder N, Aalders J, Bouma J, Sleijfer D. Intraperitoneal human recombinant interferon alpha-2b in minimal residual ovarian cancer. Eur J Cancer Clin Oncol. 1990;26(3):353–8.

    CAS  Google Scholar 

  478. Windbichler G, Hausmaninger H, Stummvoll W, Graf A, Kainz C, Lahodny J, et al. Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial. Br J Cancer. 2000;82(6):1138.

    PubMed Central  CAS  PubMed  Google Scholar 

  479. Parkinson DR. Interleukin-2 in cancer therapy. Semin Oncol. 1988;15:10.

    CAS  PubMed  Google Scholar 

  480. Yee C, Wallen H, Hunder N, Thompson JA, Byrd D, Reilly JZ, et al. Recent advances in the use of antigen-specific T cells for the treatment of cancer. Updat Cancer Ther. 2006;1(3):333–42.

    Google Scholar 

  481. Edwards R, Gooding W, D’Angelo G. A phase II trial of intraperitoneal interleukin-2 demonstrates extended survival in taxane platinum refractory ovarian cancer. Proc Am Soc Clin Oncol. 2010;59(2):293–301.

    Google Scholar 

  482. Freedman RS, Edwards CL, Kavanagh JJ, Kudelka AP, Katz RL, Carrasco CH, et al. Intraperitoneal adoptive immunotherapy of ovarian carcinoma with tumor-infiltrating lymphocytes and low-dose recombinant interleukin-2: a pilot trial. J Immunother. 1994;16(3):198–210.

    CAS  Google Scholar 

  483. Steinman RM. Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt Sinai J Med New York. 2001;68(3):160–6.

    CAS  Google Scholar 

  484. Steinman RM. The dendritic cell system and its role in immunogenicity. Ann Rev Immunol. 1991;9(1):271–96.

    CAS  Google Scholar 

  485. Gong J, Nikrui N, Chen D, Koido S, Wu Z, Tanaka Y, et al. Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J Immunol. 2000;165(3):1705–11.

    CAS  PubMed  Google Scholar 

  486. Koido S, Ohana M, Liu C, Nikrui N, Durfee J, Lerner A, et al. Dendritic cells fused with human cancer cells: morphology, antigen expression, and T cell stimulation. Clin Immunol. 2004;113(3):261–9.

    CAS  PubMed  Google Scholar 

  487. Hernando JJPT, Kübler K, Offergeld R, Schlebusch H, Bauknecht T. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunol Immunother. 2002;51:45–52.

    CAS  PubMed  Google Scholar 

  488. Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood. 2000;96(9):3102–8.

    CAS  PubMed  Google Scholar 

  489. Loveland BE, Zhao A, White S, Gan H, Hamilton K, Xing P-X, et al. Mannan-MUC1–pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma. Clin Cancer Res. 2006;12(3):869–77.

    CAS  PubMed  Google Scholar 

  490. Hernando JJ, Park T-W, Fischer H-P, Zivanovic O, Braun M, Pölcher M, et al. Vaccination with dendritic cells transfected with mRNA-encoded folate-receptor-α for relapsed metastatic ovarian cancer. Lancet Oncol. 2007;8(5):451–4.

    PubMed  Google Scholar 

  491. Yamada SD, Baldwin RL, Karlan BY. Ovarian carcinoma cell cultures are resistant to TGF-beta1-mediated growth inhibition despite expression of functional receptors. Gynecol Oncol. 1999;75(1):72–7.

    CAS  PubMed  Google Scholar 

  492. Huarte E, Cubillos-Ruiz JR, Nesbeth YC, Scarlett UK, Martinez DG, Buckanovich RJ, et al. Depletion of dendritic cells delays ovarian cancer progression by boosting antitumor immunity. Cancer Res. 2008;68(18):7684–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  493. Coukos G, Conejo-Garcia JR, Roden RB, Wu TC. Immunotherapy for gynaecological malignancies. Expert Opin Biol Ther. 2005;5(9):1193–210.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek R. Wilczyński MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wilczyński, J.R., Nowak, M. (2015). Immunology and Immunotherapy of Ovarian Cancer. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46410-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46410-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46409-0

  • Online ISBN: 978-3-662-46410-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics