Skip to main content

Immunology and Immunotherapy of Colorectal Cancer

  • Chapter
Book cover Cancer Immunology

Abstract

There are at least three immune hallmarks of cancer: (1) it is able to thrive in a chronically inflamed microenvironment, (2) it can evade immunorecognition, and (3) it is able to suppress immune reactivity. For colorectal cancer (CRC), there are many evidences connecting tumorigenesis and inflammation, such as the decreased incidence of tumors in individuals under nonsteroidal anti-inflammatory drug treatment. The increased incidence of tumors in overweight patients points out to adipose tissue inflammation, energy metabolism, genetic instability, and their relationship with commensal bacteria, altogether affecting inflammation both locally and systemically.

Tumor cells have developed several immunosuppressive mechanisms to avoid their elimination, such as the impairment of specialized antigen presentation cells or the recruitment of regulatory cell populations such as regulatory T lymphocytes (Treg). The present knowledge of the tumor microenvironment at the molecular and cellular levels is being used to reverse the situation in favor of the patient through targeted therapies such as the use of tyrosine kinase inhibitors or procedures that specifically activate an immune reaction directed against tumor cells, such as T-cell adoptive transfer, in some cases of genetically engineered cells. Among the multiple procedures available to stimulate the immune system, monoclonal antibodies (mAbs) can be used either to activate cytotoxic cells or to inhibit tumor cell activities by binding to certain plasma membrane receptors or their ligands. Three mAbs have been approved by the European Medicines Agency (EMEA) for the treatment of CRC, two of them blocking the epidermal growth factor receptor (EGFR) and the other one blocking the binding of vascular endothelial growth factor (VEGF) to its receptors.

Finally, another way to specifically activate an antitumoral response is related to the innate immunity and the development of therapeutic vaccines. This approach has evolved dramatically in the past years mainly due to the discovery of five families of pattern recognition receptors, including the Toll-like receptors. The first therapeutic vaccine approved by the Federal Drug Administration (FDA) in 2010 was against metastatic prostate cancer. Several experimental vaccines for colorectal cancer are still in phase I or II clinical trials and their results will undoubtedly pave the road to the development of new drugs and treatments for this cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reedy J. Galen on cancer and related diseases. Clio Med. 1975;10:227–38.

    CAS  PubMed  Google Scholar 

  2. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.

    CAS  PubMed  Google Scholar 

  3. Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol. 2012;30:677–706.

    CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  5. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    CAS  PubMed  Google Scholar 

  6. Bindea G, Mlecnik B, Fridman WH, Galon J. The prognostic impact of anti-cancer immune response: a novel classification of cancer patients. Semin Immunopathol. 2011;33:335–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17:320–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Kuper H, Adami H-O, Trichopoulos D. Infections as a major preventable cause of human cancer. J Intern Med. 2000;248:171–83.

    CAS  PubMed  Google Scholar 

  9. Wall BM, Dmochowski RR, Malecha M, et al. Inducible nitric oxide synthase in the bladder of spinal cord injured patients with a chronic indwelling urinary catheter. J Urol. 2001;165:1457–61.

    CAS  PubMed  Google Scholar 

  10. Ameille J, Brochard P, Letourneux M, et al. Asbestos-related cancer risk in patients with asbestosis or pleural plaques. Rev Mal Respir. 2011;28:e11–7.

    CAS  PubMed  Google Scholar 

  11. Rebours V, Boutron-Ruault MC, Jooste V, et al. Mortality rate and risk factors in patients with hereditary pancreatitis: uni- and multidimensional analyses. Am J Gastroenterol. 2009;104:2312–7.

    PubMed  Google Scholar 

  12. Allavena P, Garlanda C, Borrello MG, et al. Pathways connecting inflammation and cancer. Curr Opin Genet Dev. 2008;18:3–10.

    CAS  PubMed  Google Scholar 

  13. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.

    CAS  PubMed  Google Scholar 

  14. Marichal T, Ohata K, Bedoret D, et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med. 2011;17:996–1002.

    CAS  PubMed  Google Scholar 

  15. Barbalat R, Ewald SE, Mouchess ML, Barton GM. Nucleic acid recognition by the innate immune system. Annu Rev Immunol. 2011;29:185–214.

    CAS  PubMed  Google Scholar 

  16. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Tsung K, Dolan JP, Tsung YL, Norton JA. Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection. Cancer Res. 2002;62:5069–75.

    CAS  PubMed  Google Scholar 

  18. Shoppmann SF, Birner P, Stöckl J, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol. 2002;161:947–56.

    Google Scholar 

  19. Triantafillidis JK, Nasioulas G, Kosmidis PA. Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res. 2009;29:2727–37.

    PubMed  Google Scholar 

  20. Brandon JA, Jennings CD, Kaplan AM, Bryson JS. Murine syngeneic graft-versus-host disease is responsive to broad-spectrum antibiotic therapy. J Immunol. 2011;186:3726–34.

    CAS  PubMed  Google Scholar 

  21. Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455:1109–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599–609.

    CAS  PubMed  Google Scholar 

  23. Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology. 2009;136:2003–14.

    PubMed  Google Scholar 

  24. Schetter AJ, Heegaard NH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010;31:37–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Colotta F, Allavena P, Sica A, et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–81.

    CAS  PubMed  Google Scholar 

  26. Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121:2373–80.

    CAS  PubMed  Google Scholar 

  27. Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5:749–59.

    CAS  PubMed  Google Scholar 

  28. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol. 2011;12:715–23.

    CAS  PubMed  Google Scholar 

  29. Rogler G, Brand K, Vogl D, et al. Nuclear factor kB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology. 1998;115:357–69.

    CAS  PubMed  Google Scholar 

  30. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7:41–51.

    CAS  PubMed  Google Scholar 

  31. Pedersen N, Duricova D, Elkjaer M, et al. Risk of extra-intestinal cancer in inflammatory bowel disease: meta-analysis of population-based cohort studies. Am J Gastroenterol. 2010;105:1480–7.

    PubMed  Google Scholar 

  32. Bernstein CN, Blanchard JF, Rawsthorne P, Yu N. The prevalence of extraintestinal diseases in inflammatory bowel disease: a population-based study. Am J Gastroenterol. 2001;96:1116–22.

    CAS  PubMed  Google Scholar 

  33. Adami J, Gabel H, Lindelof B, et al. Cancer risk following organ transplantation: a nationwide cohort study in Sweden. Br J Cancer. 2003;89:1221–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. WCRF/AICR. Expert report: food, nutrition, physical activity and the prevention of cancer: a global perspective. Washington DC: American Institute for Cancer Research; 2007.

    Google Scholar 

  35. Saleh M, Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol. 2011;11:9–20.

    CAS  PubMed  Google Scholar 

  36. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24:2137–50.

    PubMed  Google Scholar 

  37. Tomatis L, editor. Cancer, causes, occurrence and control. Lyon: IARC Press; 1990.

    Google Scholar 

  38. Terzi’c J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–14.

    Google Scholar 

  39. Uronis JM, Muhlbauer M, Herfarth HH, et al. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One. 2009;4:e6026.

    PubMed Central  PubMed  Google Scholar 

  40. Yang L, Pei Z. Bacteria, inflammation, and colon cancer. World J Gastroenterol. 2006;12:6741–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Vannucci L, Stepankova R, Kozakova H, et al. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol. 2008;32:609–17.

    PubMed  Google Scholar 

  42. Garrett WS, Punit S, Gallini CA, et al. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell. 2009;16:208–19.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Garrett WS, Gallini CA, Yatsunenko T, et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 2010;8:292–300.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Sears CL. Enterotoxigenic bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev. 2009;22:349–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Rao VP, Poutahidis T, Ge Z, et al. Innate immune inflammatory response against enteric bacteria Helicobacter hepaticus induces mammary adenocarcinoma in mice. Cancer Res. 2006;66:7395–400.

    CAS  PubMed  Google Scholar 

  47. Fox JG, Feng Y, Theve EJ, et al. Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens. Gut. 2010;59:88–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science. 2007;317:124–7.

    CAS  PubMed  Google Scholar 

  49. Salcedo R, Worschech A, Cardone M, et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med. 2010;207:1625–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Allen IC, TeKippe EM, Woodford RM, et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 2010;207:1045–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145:745–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Maddocks OD, Short AJ, Donnenberg MS, et al. Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans. PLoS One. 2009;4:e5517.

    PubMed Central  PubMed  Google Scholar 

  53. Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–78.

    PubMed  Google Scholar 

  54. Renehan AG, Soerjomataram I, Tyson M, et al. Incident cancer burden attributable to excess body mass index in 30 European countries. Int J Cancer. 2010;126:692–702.

    CAS  PubMed  Google Scholar 

  55. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med. 2003;348:1625–38.

    PubMed  Google Scholar 

  56. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–7.

    CAS  PubMed  Google Scholar 

  57. Renehan AG, Roberts DL, Dive C. Obesity and cancer: pathophysiological and biological mechanisms. Arch Physiol Biochem. 2008;114:71–83.

    CAS  PubMed  Google Scholar 

  58. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    CAS  PubMed  Google Scholar 

  59. Wellen KE, Thompson CB. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell. 2010;40:323–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Kamp DW, Shacter E, Weitzman SA. Chronic inflammation and cancer: the role of the mitochondria. Oncology. 2011;25:400–10.

    PubMed  Google Scholar 

  61. Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011;208:417–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    PubMed  Google Scholar 

  63. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.

    PubMed Central  PubMed  Google Scholar 

  65. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.

    CAS  PubMed  Google Scholar 

  66. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11:85–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Donohoe CL, Ryan AM, Reynolds JV. Cancer cachexia: mechanisms and clinical implications. Gastroenterol Res Pract. 2011:601434.

    Google Scholar 

  68. Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10:181–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Eberhart CE, Coffey RJ, Radhika A, et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107:1183–8.

    CAS  PubMed  Google Scholar 

  70. Sinicrope FA, Lemoine M, Xi L, et al. Reduced expression of cyclooxygenase 2 proteins in hereditary nonpolyposis colorectal cancers relative to sporadic cancers. Gastroenterology. 1999;117:350–8.

    CAS  PubMed  Google Scholar 

  71. Sheehan KM, Sheahan K, O’Donoghue DP, et al. The relationship between cyclooxygenase-2 expression and colorectal cancer. JAMA. 1999;282:1254–7.

    CAS  PubMed  Google Scholar 

  72. Oshima M, Dinchuk JE, Kargman SL, et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996;87:803–9.

    CAS  PubMed  Google Scholar 

  73. Castellone MD, Teramoto H, Williams BO, et al. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-β-catenin signaling axis. Science. 2005;310:1504–10.

    CAS  PubMed  Google Scholar 

  74. Wang D, Buchanan FG, Wang H. Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Res. 2005;65:1822–9.

    CAS  PubMed  Google Scholar 

  75. Salcedo R, Zhang X, Young HA, et al. Angiogenic effects of prostaglandin E2 are mediated by up-regulation of CXCR4 on human microvascular endothelial cells. Blood. 2003;102:1966–77.

    CAS  PubMed  Google Scholar 

  76. Pai R, Szabo IL, Soreghan BA, et al. PGE(2) stimulates VEGF expression in endothelial cells viaERK2/JNK1 signaling pathways. Biochem Biophys Res Commun. 2001;86:923–8.

    Google Scholar 

  77. Sheibanie AF, Yen JH, Khayrullina T, et al. The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23–IL-17 axis. J Immunol. 2007;178:8138–47.

    CAS  PubMed  Google Scholar 

  78. Rothwell PM, Fowkes FG, Belch JF, et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41.

    CAS  PubMed  Google Scholar 

  79. McAdam BF, Catella-Lawson F, Mardini IA, et al. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci U S A. 1999;96:272–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Konstantinopoulos PA, Lehmann DF. The cardiovascular toxicity of selective and nonselective cyclooxygenase inhibitors: comparisons, contrasts, and aspirin confounding. J Clin Pharmacol. 2005;45:742–50.

    CAS  PubMed  Google Scholar 

  81. Arber N, Eagle CJ, Spicak J, et al. Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med. 2006;355:885–95.

    CAS  PubMed  Google Scholar 

  82. Bertagnolli MM, Eagle CJ, Zauber AG, et al. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med. 2006;355:873–84.

    CAS  PubMed  Google Scholar 

  83. Rostom A, Dube C, Lewin G, et al. Nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors for primary prevention of colorectal cancer: a systematic review prepared for the US Preventive Services Task Force. Ann Intern Med. 2007;146:376–89.

    PubMed  Google Scholar 

  84. Menter DG, Schilsky RL, DuBois RN. Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clin Cancer Res. 2010;16:1384–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Bertagnolli MM, Eagle CJ, Zauber AG, et al. Five-year efficacy and safety analysis of the Adenoma Prevention with Celecoxib Trial. Cancer Prev Res. 2009;2:310–21.

    CAS  Google Scholar 

  86. Rao H-L, Chen J-W, Li M, et al. Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis. PLoS One. 2012;7:e30806.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Algars A, Irjala H, Vaittinen S, et al. Typ and location of tumor-infiltrating macrophages and lymphatic vessels predict survival of colorectal cancer patients. Int J Cancer. 2012;131:864–73.

    PubMed  Google Scholar 

  88. Papanikolaou IS, Lazaris AC, Apostolopoulos P, et al. Tissue detection of natural killer cells in colorectal adenocarcinoma. BMC Gastroenterol. 2004;4:20.

    PubMed Central  PubMed  Google Scholar 

  89. Nagorsen D, Voigt S, Berg E, et al. Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med. 2007;5:62.

    PubMed Central  PubMed  Google Scholar 

  90. Koch M, Beckhove P, op den Winkel J, et al. Tumor infiltrating T lymphocytes in colorectal cancer. Tumor-selective activation and cytotoxic activity in situ. Ann Surg. 2006;244:986–93.

    PubMed Central  PubMed  Google Scholar 

  91. Naito Y, Saito K, Shiiba K, et al. CD8+ T cells infiltrated within cancer nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58:3491–4.

    CAS  PubMed  Google Scholar 

  92. Pagès F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353:2654–66.

    PubMed  Google Scholar 

  93. Diederichsen AC, Hjelmborg JB, Christensen PB, et al. Prognostic value of the CD4+/CD8+ ratio of tumour infiltrating lymphocytes in colorectal cancer and HLA-DR expression on tumour cells. Cancer Immunol Immunother. 2003;52:423–8.

    CAS  PubMed  Google Scholar 

  94. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    CAS  PubMed  Google Scholar 

  95. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Ann Rev Immunol. 2004;22:329–60.

    CAS  Google Scholar 

  96. Banerjea A, Bustin SA, Dorudi S. The immunogenicity of colorectal cancers with high- degree microsatellite instability. World J Surg Oncol. 2005;3:26.

    PubMed Central  PubMed  Google Scholar 

  97. Ropponen KM, Eskelinen MJ, Lipponen PK, et al. Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J Pathol. 1997;182:318–24.

    CAS  PubMed  Google Scholar 

  98. Heriot AG, Marriott JB, Cookson S, et al. Reduction in cytokine production in colorectal cancer patients: association with stage and reversal by resection. Br J Cancer. 2000;82:1009–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Kobayashi M, Kobayashi H, Pollard RB, Suzuki F. A pathogenic role of Th2 cells and their cytokine products on the pulmonary metastasis of murine B16 melanoma. J Immunol. 1998;160:5869–73.

    CAS  PubMed  Google Scholar 

  100. Tosolini M, Kirilovsky A, Mlecnik B, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res. 2011;71:1263–71.

    CAS  PubMed  Google Scholar 

  101. O’Hara RJ, Greenman J, MacDonald AW, et al. Advanced colorectal cancer is associated with impaired interleukin 12 and enhanced interleukin 10 production. Clin Cancer Res. 1998;4:1943–8.

    PubMed  Google Scholar 

  102. Pellegrini P, Berghella AM, Del Beato T, et al. Disregulation of Th1 and Th2 subsets of CD4+ T cells in peripheral blood of colorectal cancer patients and involvement in cancer establishment and progression. Cancer Immunol Immunother. 1996;42:1–8.

    CAS  PubMed  Google Scholar 

  103. Lahm H, Schindel M, Frikart L, et al. Selective suppression of cytokine secretion in whole blood cell cultures of patients with colorectal cancer. Br J Cancer. 1998;78:1018–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Hawinkels LJAC, Paauwe M, Verspaget HW, et al. Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene. 2014;33(1):97–107.

    CAS  PubMed  Google Scholar 

  105. Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol. 1990;6:597–641.

    PubMed  Google Scholar 

  106. Mo L, Wan YY, Sanjabi S, et al. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146.

    Google Scholar 

  107. Friedman E, Gold LI, Klimstra D, et al. High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiol Biomarkers Prev. 1995;4:549–54.

    CAS  PubMed  Google Scholar 

  108. Narai S, Watanabe M, Hasegawa H, et al. Significance of transforming growth factor β1 as a new tumor marker for colorectal cancer. Int J Cancer. 2002;97:508–11.

    CAS  PubMed  Google Scholar 

  109. Grady WM, Myeroff LL, Swindler SE, et al. Mutational inactivation of transforming growth factor b receptor type II in microsatellite stable colon cancers. Cancer Res. 1999;59:320–4.

    CAS  PubMed  Google Scholar 

  110. Yan Z, Deng X, Friedman E. Oncogenic Ki-ras confers a more aggressive colon cancer phenotype through modification of transforming growth factor-β receptor III. J Biol Chem. 2001;276:1555–63.

    CAS  PubMed  Google Scholar 

  111. Gorelik L, Flavell RA. Transforming growth factor-β in T-cell biology. Nat Rev Immunol. 2002;2:46–53.

    CAS  PubMed  Google Scholar 

  112. Hsiao YW, Liao KW, Hung SW, Chu RM. Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-beta 1 and restores the lymphokine-activated killing activity. J Immunol. 2004;172:1508–14.

    CAS  PubMed  Google Scholar 

  113. Bogdan C, Paik J, Vodovotz Y, Nathan C. Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-beta and interleukin-10. J Biol Chem. 1992;267:23301–8.

    CAS  PubMed  Google Scholar 

  114. Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol. 2004;22:1136–51.

    CAS  PubMed  Google Scholar 

  115. Gastl GA, Abrams JS, Nanus DM, et al. Interleukin-10 production by human carcinoma cell lines and its relationship to interleukin-6 expression. Int J Cancer. 1993;55:96–101.

    CAS  PubMed  Google Scholar 

  116. Kucharzik T, Lügering N, Winde G, et al. Colon carcinoma cell line stimulate monocytes and lamina propria mononuclear cells to produce IL-10. Clin Exp Immunol. 1997;110:296–302.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy – review of a new approach. Pharmacol Rev. 2003;55:241–69.

    CAS  PubMed  Google Scholar 

  118. Galizia G, Orditura M, Romano C, et al. Prognostic significance of circulating IL-10 and IL-6 serum levels in colon cancer patients undergoing surgery. Clin Immunol. 2002;102:169–78.

    CAS  PubMed  Google Scholar 

  119. Palucka K, Ueno H, Roberts L. Dendritic cells: are they relevant? Cancer J. 2010;16:318–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Annu Rev Immunol. 2000;18:245–73.

    CAS  PubMed  Google Scholar 

  121. Steinman RM, Hawiger D, Nussenzweing MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21:685–711.

    CAS  PubMed  Google Scholar 

  122. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

    CAS  PubMed  Google Scholar 

  123. Suzuki A, Masuda A, Nagata H, et al. Mature dendritic cells make clusters with T cells in the invasive margin of colrectal carcinoma. J Pathol. 2002;196:37–43.

    PubMed  Google Scholar 

  124. Dadabayev AR, Sandel MH, Menon AG, et al. Dendritic cells in colorectal cancer correlate with other tumor-infiltrating immune cells. Cancer Immunol Immunther. 2004;53:978–86.

    CAS  Google Scholar 

  125. Michielsen AJ, Hogan AE, Marry J, et al. Tumor tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS One. 2011;6:e27944.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Schwaab T, Weiss JE, Schned AR, Barth Jr RJ. Dendritic cell infiltration in colon cancer. J Immunother. 2001;24:130–7.

    CAS  Google Scholar 

  127. Hicklin DJD, Marincola FM, Ferrone S. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today. 1999;5:178–86.

    CAS  PubMed  Google Scholar 

  128. Nagorsen D, Thiel E. HLA typing for peptide-based anti-cancer vaccine. Cancer Immunol Immunother. 2008;57:1903–10.

    CAS  PubMed  Google Scholar 

  129. Browning M, Petronzelli F, Bicknell D, et al. Mechanisms of loss of HLA class I expression on colorectal tumor cells. Tissue Antigens. 1996;47:364–71.

    CAS  PubMed  Google Scholar 

  130. Kaklamanis L, Townsend A, Doussis-Anagnostopoulou IA, et al. Loss of major histocompatibility complex-encoded transporter associated with antigen presenting (TAP) in colorectal cancer. Am J Pathol. 1994;145:505–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Menon AG, Morreau H, Tollenaar RAEM, et al. Down-regulation of HLA-A expression correlates with a better prognosis in colorectal cancer patients. Lab Invest. 2002;82:1725–33.

    CAS  PubMed  Google Scholar 

  132. Koda K, Saito N, Takiguchi N, et al. Preoperative natural killer cell activity: correlation with distant metastases in curatively research colorectal carcinomas. Int Surg. 1997;82:190–3.

    CAS  PubMed  Google Scholar 

  133. Ogino S, Nosho K, Irahara N, et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin Cancer Res. 2009;15:6412–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Menon AG, Janssen-van Rihijn CM, Morreau H, et al. Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab Invest. 2004;84:493–501.

    CAS  PubMed  Google Scholar 

  135. Chiba T, Ohtani H, Mizoi T, et al. Intraepithelial CD8+ T-cell-count becomes a prognostic factor after a longer follow-up period in human colorectal carcinoma: possible association with suppression of micrometastasis. Br J Cancer. 2004;91:1711–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Deschoolmeester V, Baay M, Van Marck E, et al. Tumor infiltrating lymphocytes: an intriguing player in the survival of colorectal cancer patients. BMC Immunol. 2010;11:19.

    PubMed Central  PubMed  Google Scholar 

  137. Jäger E, Nagata Y, Gnjatic S, et al. Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci U S A. 2000;97:4760–5.

    PubMed Central  PubMed  Google Scholar 

  138. Jäger E, Gnjatic S, Nagata Y, et al. Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci U S A. 2000;97:12198–203.

    PubMed Central  PubMed  Google Scholar 

  139. Nagorsen D, Keilholz U, Rivoltini L, et al. Natural T-cell response against MHC class I epitopes of epithelial cell adhesion molecule, her-2/neu, and carcioembryonic antigen in patients with colorectal cancer. Cancer Res. 2000;60:4850–4.

    CAS  PubMed  Google Scholar 

  140. Fossum B, Olsen AC, Thorsby E, Gaudernack G. CD8 T cells from a patient with colon carcinoma, specific for a mutant p21-Ras-derived peptide (GLY13→ASP), are cytotoxic towards a carcinoma cell line harbouring the same mutation. Cancer Immunol Immunother. 1995;40:165–72.

    CAS  PubMed  Google Scholar 

  141. Somers VA, Brandwijk RJ, Joosten B, et al. A panel of candidate tumor antigens in colorectal cancer revealed by the serological selection of a phage displayed cDNA expression library. J Immunol. 2002;169:2772–80.

    CAS  PubMed  Google Scholar 

  142. Line A, Slucka Z, Stengrevics A, et al. Characterisation of tumor-associated antigens in colon cancer. Cancer Immunol Immunother. 2002;51:574–82.

    CAS  PubMed  Google Scholar 

  143. Josefowicz SZ, Lu L-F, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.

    CAS  PubMed  Google Scholar 

  144. de Leeuw RJ, Kost SE, Kakal JA, Nelson BH. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res. 2012;18:3022–9.

    Google Scholar 

  145. Ladoire S, Martin F, Ghiringhelli F. Prognostic role of FoxP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother. 2011;60:909–18.

    CAS  PubMed  Google Scholar 

  146. Kryczek I, Liu R, Wang G, et al. FOXP3 defines regulatory T cells in human tumor and autoimmune disease. Cancer Res. 2009;69:3995–4000.

    CAS  PubMed  Google Scholar 

  147. Chaput N, Louafi S, Bardier A, et al. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer. Gut. 2009;58:520–9.

    CAS  PubMed  Google Scholar 

  148. Erdman SE, Poutahidis T, Tomczak M, et al. CD4+CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol. 2003;162:691–702.

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Izhak L, Ambrosino E, Kato S, et al. Delicate balance among three types of T cells in concurrent regulation of tumor immunity. Cancer Res. 2013;73:1514–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Cavallo F, De Giovanni C, Nanni P, et al. The immune hallmarks of cancer. Cancer Immunol Immunother. 2011;60:319–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Gattinoni L, Powell Jr DJ, Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol. 2006;6:383–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Marcus A, Waks T, Eshhar Z. Redirected tumor-specific allogeneic T cells for universal treatment of cancer. Blood. 2011;118:975–83.

    CAS  PubMed  Google Scholar 

  154. Hindley JP, Jones E, Smart K, et al. T-cell trafficking facilitated by high endothelial venules is required for tumor control after regulatory T-cell depletion. Cancer Res. 2012;72:5473–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Brudvik KW, Henjum K, Aandahl EM, et al. Regulatory T-cell-mediated inhibition of antitumor immune responses is associated with clinical outcome in patients with liver metastasis from colorectal cancer. Cancer Immunol Immunother. 2012;61:1045–53.

    CAS  PubMed  Google Scholar 

  156. Bauer K, Nelius N, Reuschenbach M, et al. T cell responses against microsatellite instability-induced frameshift peptides and influence of regulatory T cells in colorectal cancer. Cancer Immunol Immunother. 2013;62:27–37.

    CAS  PubMed  Google Scholar 

  157. Jamieson T, Clarke M, Steele CW. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest. 2012;122:3127–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Kirchberger S, Royston DJ, Boulard O, et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med. 2013;210(5):917–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Galluzzi L, Vacchelli E, Fridman WH, et al. Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunology. 2012;1:28–37.

    PubMed Central  PubMed  Google Scholar 

  160. Hurvitz SA, Allen HJ, Moroose RL, et al. A phase II trial of docetaxel with bevacizumab as first-line therapy for HER2- negative metastatic breast cancer (TORI B01). Clin Breast Cancer. 2010;10:307–12.

    CAS  PubMed  Google Scholar 

  161. Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666–76.

    CAS  PubMed  Google Scholar 

  162. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–50.

    CAS  PubMed  Google Scholar 

  163. Weiner LM, Belldegrun AS, Crawford J, et al. Dose and schedule study of panitumumab monotherapy in patients with advanced solid malignancies. Clin Cancer Res. 2008;14:502–8.

    CAS  PubMed  Google Scholar 

  164. Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol. 2007;7:790–802.

    CAS  PubMed  Google Scholar 

  165. Turriziani M, Fantini M, Benvenuto M, et al. Carcinoembryonic antigen (CEA)-based cancer vaccines: recent patents and antitumor effects from experimental models to clinical trials. Recent Pat Anticancer Drug Discov. 2012;7:265–96.

    CAS  PubMed  Google Scholar 

  166. Schwaab T, Schwarzer A, Wolf B, et al. Clinical and immunologic effects of intranodal autologous tumor lysate-dendritic cell vaccine with Aldesleukin (Interleukin 2) and IFN-alpha-2a therapy in metastatic renal cell carcinoma patients. Clin Cancer Res. 2009;15:4986–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  167. Emens LA. Re-purposing cancer therapeutics for breast cancer immunotherapy. Cancer Immunol Immunother. 2012;61:1299–305.

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Galluzzi L, Senovilla L, Vacchelli E, et al. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology. 2012;1:1111–34.

    PubMed Central  PubMed  Google Scholar 

  169. Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell. 2006;124:849–63.

    CAS  PubMed  Google Scholar 

  170. Goutagny N, Estornes Y, Hasan U. Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol. 2012;7:29–54.

    PubMed  Google Scholar 

  171. Sims GP, Rowe DC, Rietdijk ST, et al. 1HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28:367–88.

    CAS  PubMed  Google Scholar 

  172. Fagone P, Shedlock DJ, Bao H, et al. Molecular adjuvant HMGB1 enhances anti-influenza immunity during DNA vaccination. Gene Ther. 2011;18:1070–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Mansilla C, Berraondo P, Durantez M, et al. Eradication of large tumors expressing human papillomavirus E7 protein by therapeutic vaccination with E7 fused to the extra domain a from fibronectin. Int J Cancer. 2012;131:641–51.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar J. Cordero PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varela-Calviño, R., Cordero, O.J. (2015). Immunology and Immunotherapy of Colorectal Cancer. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46410-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46410-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46409-0

  • Online ISBN: 978-3-662-46410-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics