Skip to main content

Local Average Treatment Effect and Regression-Discontinuity-Design

  • Chapter
  • 3934 Accesses

Part of the book series: Advanced Studies in Theoretical and Applied Econometrics ((ASTA,volume 49))

Abstract

This chapter addresses two different but related approaches, both widely used within the literature on the econometrics of program evaluation: the Local average treatment effect (LATE) and the Regression-discontinuity-design (RDD). Considered as nearly quasi-experimental methods, these approaches have recently been the subject of a vigorous interest as tools for detecting treatment effects within special statistical settings. The first part of the chapter covers the theory behind LATE, thus illustrating how such approach can be embedded within the setting of a randomized experiment with imperfect compliance. The discussion then goes on to present the Wald estimator of LATE, and to extend LATE to the case of multiple instruments and multiple treatments. The second part of the chapter illustrates the RDD econometric theoretical background; in particular, it discusses separately sharp RDD and fuzzy RDD, and suggests a protocol for the empirical implementation of such approaches. The chapter ends with some illustrative empirical implementation of both LATE and RDD performed using Stata on both real and simulative examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The econometrics of LATE provided in these subsections draws mainly on: Imbens and Angrist (1994); Angrist and Imbens (1995); Angrist and Pischke (2008, Chap. 4); Wooldridge (2010, Chap. 21).

  2. 2.

    For kernel regressions, the optimal bandwidth in interior points is O(h 2) and is proportional to N –1/5 (Härdle and Marron 1985), so that 1/5 = 0.2 is the speed of convergence of the bias to zero; at boundaries, however, we saw that such convergence rate becomes O(h) that is proportional to (N –1/5)1/2, that is, half time the usual rate of convergence in interior points. This questions seriously the use of kernel regressions at boundaries.

  3. 3.

    Observe that variables’ mean at which predictions are calculated using margins are in this case weighted means; for instance, for variable “agem1” this weighted mean can be got by typing: sum agem1[iweight=Ek] returning exactly 30.83818.

References

  • Abadie, A. (2003). Semiparametric instrumental variable estimation of treatment response models. Journal of Econometrics, 113, 231–263. doi:10.1016/S0304-4076(02)00201-4.

    Article  Google Scholar 

  • Abadie, A., Angrist, J., & Imbens, G. (2002). Instrumental variables estimates of the effect of subsidized training on the quantiles of trainee earnings. Econometrica, 70, 91–117. doi:10.1111/1468-0262.00270.

    Article  Google Scholar 

  • Angrist, J. D. (1990). Lifetime earnings and the Vietnam era draft lottery: Evidence from social security administrative records. American Economic Review, 80, 313–336.

    Google Scholar 

  • Angrist, J. D., & Evans, W. N. (1998). Children and their parents’ labor supply: Evidence from exogenous variation in family size. American Economic Review, 88, 450–477.

    Google Scholar 

  • Angrist, J. D., & Imbens, G. W. (1995). Two-stage least squares estimation of average causal effects in models with variable treatment intensity. Journal of the American Statistical Association, 90, 431–442. doi:10.1080/01621459.1995.10476535.

    Article  Google Scholar 

  • Angrist, J. D., & Lavy, V. (1999). Using Maimonides’ rule to estimate the effect of class size on scholastic achievement. Quarterly Journal of Economics, 114, 533–575.

    Article  Google Scholar 

  • Angrist, J. D., & Pischke, J.-S. (2008). Mostly harmless econometrics: An empiricist’s companion. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Bloom, H. S. (1984). Accounting for no-shows in experimental evaluation designs. Evaluation Review, 8, 225–246. doi:10.1177/0193841X8400800205.

    Article  Google Scholar 

  • Cook, T. D. (2008). “Waiting for life to arrive”: A history of the regression-discontinuity design in psychology, statistics and economics. Journal of Econometrics, 142, 636–654. doi:10.1016/j.jeconom.2007.05.002.

    Article  Google Scholar 

  • Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications: Monographs on statistics and applied probability (Vol. 66). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica, 69, 201–209. doi:10.1111/1468-0262.00183.

    Article  Google Scholar 

  • Härdle, W. (1991). Applied nonparametric regression. Cambridge: Cambridge University Press.

    Google Scholar 

  • Härdle, W., & Marron, J. S. (1985). Optimal bandwidth selection in nonparametric regression function estimation. Annals of Statistics, 13, 1465–1481.

    Article  Google Scholar 

  • Imbens, G. W., & Angrist, J. D. (1994). Identification and estimation of local average treatment effects. Econometrica, 62, 467–475. doi:10.2307/2951620.

    Article  Google Scholar 

  • Imbens, G., & Kalyanaraman, K. (2012). Optimal bandwidth choice for the regression discontinuity estimator. Review of Economic Studies, 79, 933–959.

    Article  Google Scholar 

  • Imbens, G. W., & Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. Journal of Econometrics, 142, 615–635. doi:10.1016/j.jeconom.2007.05.001.

    Article  Google Scholar 

  • Lee, D. S., & Lemieux, T. (2009). Regression discontinuity designs in economics (NBER Working Paper No. 14723). National Bureau of Economic Research, Inc.

    Google Scholar 

  • Lee, D. S., Moretti, E., & Butler, M. J. (2004). Do voters affect or elect policies? Evidence from the U. S. House. Quarterly Journal of Economics, 119, 807–859.

    Article  Google Scholar 

  • Ludwig, J., & Miller, D. L. (2007). Does head start improve children’s life chances? Evidence from a regression discontinuity design. Quarterly Journal of Economics, 122, 159–208. doi:10.1162/qjec.122.1.159.

    Article  Google Scholar 

  • McCrary, J. (2008). Manipulation of the running variable in the regression discontinuity design: A density test. Journal of Econometrics, 142, 698–714.

    Article  Google Scholar 

  • Nichols, A. (2007). Causal inference with observational data: Regression discontinuity and related methods in Stata (North American Stata Users’ Group Meetings 2007 No. 2). Stata Users Group.

    Google Scholar 

  • Pagan, A., & Ullah, A. (1999). Nonparametric econometrics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Porter, J. (2003). Estimation in the regression discontinuity model. Dep. Econ. Univ. Wis. Mimeo.

    Google Scholar 

  • Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Annals of Statistics, 10, 1040–1053.

    Article  Google Scholar 

  • Thistlethwaite, D. L., & Campbell, D. T. (1960). Regression-discontinuity analysis: An alternative to the ex post facto experiment. Journal of Education & Psychology, 51, 309–317. doi:10.1037/h0044319.

    Article  Google Scholar 

  • Van Der Klaauw, W. (2002). Estimating the effect of financial aid offers on college enrollment: A regression-discontinuity approach. International Economic Review, 43, 1249–1287. doi:10.1111/1468-2354.t01-1-00055.

    Article  Google Scholar 

  • Van Der Klaauw, W. (2008). Regression-discontinuity analysis: A survey of recent developments in economics. Labour, 22, 219–245. doi:10.1111/j.1467-9914.2008.00419.x.

    Article  Google Scholar 

  • Wald, A. (1940). The fitting of straight lines if both variables are subject to error. Annals of Mathematical Statistics, 11, 284–300. doi:10.1214/aoms/1177731868.

    Article  Google Scholar 

  • Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. Cambridge, MA: MIT Press.

    Google Scholar 

  • Yang, M. (2013). Treatment effect analyses through orthogonality conditions implied by a fuzzy regression discontinuity design, with two empirical studies. Dep. Econ. Rauch Bus. Cent. Lehigh Univ., Bethlehem, PA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cerulli, G. (2015). Local Average Treatment Effect and Regression-Discontinuity-Design. In: Econometric Evaluation of Socio-Economic Programs. Advanced Studies in Theoretical and Applied Econometrics, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46405-2_4

Download citation

Publish with us

Policies and ethics