Skip to main content

Fundamentals of Structure Elucidator System

  • Chapter
  • First Online:
Computer–Based Structure Elucidation from Spectral Data

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 89))

  • 1135 Accesses

Abstract

This chapter starts with a concise description of the expert system Structure Elucidator flow diagram (selection of possible substructures → structure generation → selection of the most probable structure based on NMR spectrum prediction) and explains how the system works. The fundamental concepts making up the logical basis of spectroscopic structure elucidation are then described. Special attention is placed on an explanation of the axiomatic nature of the initial information used to logically infer the structure of an unknown. The following three groups of axioms (statements) are distinguished: (i) axioms of characteristic spectral features in 1D NMR and IR, (ii) axioms of 2D NMR (HSQC, HMBC, COSY, etc.), and (iii) axioms used for the assembly of a structure. The properties of the information used for structure elucidation from 2D NMR data are summarized. It is concluded that to solve real-world problems, Structure Elucidator must be capable of deducing correct structures from a fuzzy, incomplete, and frequently contradictory set of axioms composing the initial information. It is noted that an axiomatic approach is a cognitive basis not only for CASE, but also for organic qualitative analysis. The knowledge base of Structure Elucidator consisting of factual and axiomatic knowledge is described and three methods of NMR spectrum prediction included in the system (incremental, neural nets, and HOSE code based) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elyashberg ME, Blinov KA, Molodtsov SG, Williams AJ, Martin GE (2004) Structure elucidator: A versatile expert system for molecular structure elucidation from 1D and 2D NMR data and molecular fragments. J Chem Inf Comput Sci 44:771–792

    Article  CAS  Google Scholar 

  2. Lederberg J, Sutherland GL, Buchanan BG, Feigenbaum EA, Robertson AV, Duffield AM, Djerassi C (1968) Application of artificial intelligence to chemical inference. I. The number of possible organic compounds. Acyclic structures containing C, H, O and N. J Am Chem Soc 91:2973–2976

    Article  Google Scholar 

  3. Nelson DB, Munk ME, Gasli KB, Horald DL (1969) Alanylactinobicyclon. An application of computer techniques to structure elucidation. J Org Chem 34:3800–3805

    Article  CAS  Google Scholar 

  4. Sasaki SI, Abe H, Ouki T, Sakamoto M, Ochia SI (1968) Automated structure elucidation of several kinds of aliphatic and alicyclic compounds. Anal Chem 40:2220–2223

    Article  CAS  Google Scholar 

  5. Elyashberg ME, Gribov LA (1968) Formal logic method of infrared spectrum interpretation. Zh Prikl Spectrosk 8:296–300

    CAS  Google Scholar 

  6. Gribov LA, Elyashberg ME (1979) Computer-aided identification of organic molecules by their molecular spectra. Crit Rev Anal Chem 8:111–220

    Article  CAS  Google Scholar 

  7. Pretsch E, Bühlmann P, Affolter C (2000) Structure determination of organic compounds—tables of spectral data. Springer, Berlin

    Book  Google Scholar 

  8. Elyashberg ME, Williams AJ, Martin GE (2008) Computer-assisted structure verification and elucidation tools in NMR-based structure elucidation. Prog NMR Spectrosc 53(1, 2):1–104

    Article  CAS  Google Scholar 

  9. Elyashberg ME, Williams AJ, Blinov KA (2012) Contemporary computer-assisted approaches to molecular structure elucidation, vol 1. New developments in NMR. RSC Publishing, Cambridge

    Google Scholar 

  10. Reichenbächer M, Popp J (2012) Challenges in molecular structure determination. Springer, Heidelberg

    Book  Google Scholar 

  11. Elyashberg M, Blinov K, Molodtsov S, Smurnyy Y, Williams AJ, Churanova T (2009) Computer-assisted methods for molecular structure elucidation: realizing a spectroscopist’s dream. J Cheminform 1:3. doi:10.1186/1758-2946-1-3

    Article  Google Scholar 

  12. http://www.cas.org/content/chemical-suppliers

  13. Elyashberg ME, Gribov LA, Serov VV (1980) Molecular spectral analysis and computer (in Russian). Nauka, Moscow

    Google Scholar 

  14. Gray NAB (1986) Computer-assisted structure elucidation. Wiley, New York

    Google Scholar 

  15. Munk ME (1998) Computer-based structure determination: then and now. J Chem Inf Comput Sci 38:997–1009

    Article  CAS  Google Scholar 

  16. Gribov LA, Elyashberg ME (1970) Symbolic logic methods for spectrochemical investigations. J Mol Struct 5:179–198

    Article  CAS  Google Scholar 

  17. Stoll RR (1961) Sets, logic and axiomatic theories. W.H. Freeman and Company, San Francisco

    Google Scholar 

  18. Elyashberg ME, Williams AJ, Blinov KA (2010) Structural revisions of natural products by computer assisted structure elucidation (CASE) systems. Nat Prod Rep 48:571–574

    Google Scholar 

  19. Nicolaou KC, Snyder SA (2005) Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew Chem Int Ed 44:1012–1044

    Article  CAS  Google Scholar 

  20. Elyashberg ME, Blinov KA, Molodtsov SG, Williams AJ (2013) Structure revision of asperjinone using computer-assisted structure elucidation methods. J Nat Prod 76:113–116

    Article  CAS  Google Scholar 

  21. Elyashberg ME (1998) Infrared spectra Interpretation by the characteristic frequency approach. In: Schleyer PvR, Allinger NL, Clark T et al (eds) The encyclopedia of computational chemistry. Wiley, Chichester, pp 1307–1312

    Google Scholar 

  22. Blinov KA, Carlson DV, Elyashberg ME, Martin GE, Martirosian ER, Molodtsov SG, Williams AJ (2003) Computer-assisted structure elucidation of natural products with limited 2D NMR data: application of the StrucEluc system. Magn Reson Chem 41(5):359–372

    Article  CAS  Google Scholar 

  23. Blinov KA, Elyashberg ME, Martirosian ER, Molodtsov SG, Williams AJ, Sharaf MMH, Schiff PLJ, Crouch RC, Martin GE, Hadden CE, Guido JE, Mills KA (2003) Quindolinocryptotackieine: the elucidation of a novel indoloquinoline alkaloid structure through the use of computer-assisted structure elucidation and 2D NMR. Magn Reson Chem 41:577–584

    Article  CAS  Google Scholar 

  24. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia

    Book  Google Scholar 

  25. Molodtsov SG, Elyashberg ME, Blinov KA, Williams AJ, Martin GM, Lefebvre B (2004) Structure elucidation from 2D NMR spectra using the StrucEluc expert system: detection and removal of contradictions in the data. J Chem Inf Comput Sci 44:1737–1751

    Article  CAS  Google Scholar 

  26. Elyashberg ME, Blinov KA, Molodtsov SG, Williams AJ, Martin GE (2007) Fuzzy structure generation: a new efficient tool for computer-aided structure elucidation (CASE). J Chem Inf Model 47(3):1053–1066

    Article  CAS  Google Scholar 

  27. Elyashberg ME, Blinov KA, Williams AJ, Molodtsov SG, Martin GE (2006) Are deterministic expert systems for computer-assisted structure elucidation obsolete? J Chem Inf Model 46(4):1643–1656

    Article  CAS  Google Scholar 

  28. Weavers RT (2001) Laurenanes: fenestranes with a twist. J Org Chem 66:6453–6461

    Article  CAS  Google Scholar 

  29. Elyashberg ME (1999) Expert systems for the determination of structures of organic molecules by spectral methods. Russ Chem Rev 68(7):525–547

    Article  CAS  Google Scholar 

  30. Gribov LA, Orwille-Thomas WR (1988) Theory and methods of calculation of molecular spectra. Wiley, Chichester

    Google Scholar 

  31. Clerc J-T, Sommerauer HA (1977) A minicomputer program based on additivity rules for the estimation of 13C NMR chemical shifts. Anal Chim Acta 95:33–40

    Article  CAS  Google Scholar 

  32. Lodewyk MW, Siebert MR, Tantillo DJ (2012) Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev 112(3):1839–1862. doi:10.1021/cr200106v

    Article  CAS  Google Scholar 

  33. Paul EG, Grant DM (1963) Additivity relationships in carbon-13 chemical shift data for the linear alkanes. J Am Chem Soc 85:1701–1702

    Article  CAS  Google Scholar 

  34. Grant DM, Paul EG (1964) Carbon-13 magnetic resonance. II. Chemical shift data for the alkanes. J Am Chem Soc 86:2984–2990

    Google Scholar 

  35. Smurnyy YD, Blinov KA, Churanova TS, Elyashberg ME, Williams AJ (2008) Toward more reliable 13C and 1H chemical shift prediction: a systematic comparison of neural-network and least-squares regression based approaches. J Chem Inf Model 48(1):128–134

    Google Scholar 

  36. Blinov KA, Smurnyy ED, Curanova TS, Elyashberg ME, Williams AJ (2009) Development of a fast and accurate method of 13C NMR chemical shift prediction. Chemometr Intell Lab Syst 97:91–97. doi:10.1016/j.chemolab.2009.01.010

    Article  CAS  Google Scholar 

  37. Bremser W (1978) HOSE—a novel substructure code. Anal Chim Acta 103:355–365

    Article  CAS  Google Scholar 

  38. Zupan J, Gasteiger J (1993) Neural networks for chemists. VCH, Weinheim

    Google Scholar 

  39. Advanced Chemistry Development. ACD/NMR predictors. Prediction suite includes 1H, 13C, 15N, 19F, 31P NMR prediction. http://www.acdlabs.com

  40. Blinov KA, Smurnyy YD, Elyashberg ME, Churanova TS, Kvasha MP, Steinbeck C, Lefebvre BA, Williams AJ (2008) Performance validation of neural network based 13C NMR prediction using a publicly available data source. J Chem Inf Model 48(3):550–555

    Article  CAS  Google Scholar 

  41. Seco JM, Quinoa E, Riguera R (2004) The assignment of absolute configuration by NMR. Chem Rev 104:17–117

    Article  CAS  Google Scholar 

  42. Neuhaus D, Williamson M (2000) The nuclear overhauser effect in structural and conformational analysis, 2nd edn. Wiley, New York

    Google Scholar 

  43. Berger S, Braun S (2004) 200 and more NMR experiments: a practical course. Wiley, New York

    Google Scholar 

  44. Smurnyy YD, Elyashberg ME, Blinov KA, Lefebvre B, Martin GE, Williams AJ (2005) Computer-aided determination of relative stereochemistry and 3D models of complex organic molecules from 2D NMR spectra. Tetrahedron 61:9980–9989

    Article  CAS  Google Scholar 

  45. Mitchell M (1999) An introduction to genetic algorithms. MIT Press, Cambridge

    Google Scholar 

  46. Elyashberg ME, Blinov KA, Williams AJ (2009) The application of empirical methods of 13C NMR chemical shift prediction as a filter for determining possible relative stereochemistry. Magn Reson Chem 47:333–341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail E. Elyashberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elyashberg, M.E., Williams, A.J. (2015). Fundamentals of Structure Elucidator System. In: Computer–Based Structure Elucidation from Spectral Data. Lecture Notes in Chemistry, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46402-1_1

Download citation

Publish with us

Policies and ethics