Skip to main content

Monte Carlo Simulation for an Optical Microscope

  • Chapter
  • First Online:
Microscopic Imaging Through Turbid Media

Abstract

This chapter covers the basic principles that are used in Monte Carlo simulation for investigation into microscopy imaging through tissue media. Section 3.1 summarizes the basic formula in a conventional Monte Carlo simulation process. The implementation of this method in reflection and transmission optical microscopes is given in Sect. 3.2. The effect of the polarization states and pulsed illumination of a beam are described in Sects. 3.3 and 3.4. Sections 3.53.8 are dedicated to dealing with the various features of turbid media including the effect of the boundary, scatterer size, and aggregation . In Sects. 3.9 and 3.10, Monte Carlo simulation methods for multi-photon fluorescence and coherent imaging processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.T. Flock, M.S. Patterson, B.C. Wilson, D.R. Wyman, Monte Carlo modeling of light propagating in highly scattering tissues—I: model predictions and comparison with diffusion theory. IEEE Trans. Biomed. Eng. 36, 1162 (1989)

    Article  Google Scholar 

  2. J.M. Schmitt, A. Knuttel, M. Yadlowsky, Confocal microscopy in turbid media. J. Opt. Soc. Am. A 11, 2226 (1994)

    Article  ADS  Google Scholar 

  3. X. Gan, M. Gu, Modified Monte Carlo simulation of multi-dimensional photon distribution for microscopic imaging. Optik 108, 129 (1998)

    Google Scholar 

  4. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980)

    Google Scholar 

  5. S.T. Flock, B.C. Wilson, M.S. Patterson, Total attenuation coefficients and scattering phase functions of tissue and phantom materials at 633 nm. Med. Phys. 14, 835 (1987)

    Article  Google Scholar 

  6. S. Schilders, Microscopic Imaging in Turbid Media, Ph.D. thesis, Victoria University (1999)

    Google Scholar 

  7. X. Gan, S. Schilders, M. Gu, Image enhancement through turbid media under a microscope using polarization gating methods. J. Opt. Soc. Am. A 16, 2177 (1999)

    Article  ADS  Google Scholar 

  8. X. Gan, S. Schilders, M. Gu, Combination of annular aperture and polarisation gating methods for efficient microscopic imaging through a turbid medium: theoretical analysis. Microsc. Microanal. 3, 495 (1997)

    Google Scholar 

  9. M. Gu, Advanced Optical Imaging Theory (Springer, Heidelberg, 2000)

    Google Scholar 

  10. S.L. Jacques, L.H. Wang, Monte Carlo modeling of light transport in tissues, in Optical Thermal Response of Laser Irradiated Tissue, ed. by A.J. Welch, M.J.C. van Gemert (Plenum Press, New York, 1995), pp. 73–100

    Chapter  Google Scholar 

  11. L.H. Wang, S.L. Jacques, L.Q. Zheng, MCML—Monte Carlo modeling of photon transport in multi-layered tissues. Comput. Methods Programs Biomed. 47, 131 (1995)

    Article  Google Scholar 

  12. A.G. Loewy, P. Siekevitz, Cell Structure and Function (A Holt International, New York, 1971)

    Google Scholar 

  13. W. Ganong, Review of Medical Physiology, 16th edn. (Appleton and Lange, Norwalk, 1993)

    Google Scholar 

  14. C.F. Bohern, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  15. X. Deng, X. Gan, M. Gu, Monte-Carlo simulation of multi-photon fluorescence microscopy imaging through inhomogeneous tissue-like turbid media, J. Biomedical Opt. 8, 400 (2003)

    Google Scholar 

  16. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978)

    Google Scholar 

  17. A. Wax, C.H. Yang, V. Backman, K. Badizadegan, C.W. Boone, R.R. Dasari, M.S. Feld, Cellular organization and substructure measured using angle-resolved low-coherence interferometry. Biophy. J. 82, 2256 (2002)

    Article  Google Scholar 

  18. A. Wax, C. Yang, M. Müller, R. Nines, C.W. Boone, V.E. Steele, G.D. Stoner, R.R. Dasari, M.S. Feld, In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry. Cancer Res. 63, 3556 (2003)

    Google Scholar 

  19. R. Jullien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987)

    MATH  Google Scholar 

  20. A. Dogariu, J. Uozumi, T. Asakura, Enhancement of the backscattered intensity from fractal aggregates. Waves Random Media 2, 259 (1992)

    Article  ADS  Google Scholar 

  21. Y.L. Xu, Electromagnetic scattering by an aggregate of spheres. Appl. Opt. 34, 4573 (1995)

    Article  ADS  Google Scholar 

  22. K. Ishii, T. Iwai, J. Uozumi, T. Asakura, Optical free-path-length distribution in a fractal aggregate and its effect on enhanced backscattering. Appl. Opt. 37, 5014 (1998)

    Article  ADS  Google Scholar 

  23. X. Deng, X. Gan, M. Gu, Effective Mie scattering of a spherical aggregate and its application in turbid media. Appl. Opt. 43, 2925 (2004)

    Article  ADS  Google Scholar 

  24. M. Göppert-Mayer, Über Elementarakte mit zwei quantensprüngen. Ann. Phys. Lpz 9, 273 (1931)

    Article  Google Scholar 

  25. W.J. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73 (1990)

    Article  ADS  Google Scholar 

  26. B. Masters, Multiphoton Excitation Microscopy (SPIE, Bellingham, 2003)

    Google Scholar 

  27. G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, J.G. Fujimoto, In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037 (1997)

    Article  Google Scholar 

  28. P.J. Campagnola, L.M. Loew, Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotech. 21, 1356 (2003)

    Article  Google Scholar 

  29. L. Qiang, X. Gan, Q. Luo, Monte Carlo modeling of optical coherence tomography imaging through turbid media. Appl. Opt. 43, 1628 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gu, M., Gan, X., Deng, X. (2015). Monte Carlo Simulation for an Optical Microscope. In: Microscopic Imaging Through Turbid Media. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46397-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46397-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46396-3

  • Online ISBN: 978-3-662-46397-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics