Skip to main content

Introduction

  • Chapter
  • First Online:
Microscopic Imaging Through Turbid Media

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 878 Accesses

Abstract

The physical foundation of imaging through tissue is light scattering by small particles because a tissue medium is a diffusing turbid medium that consists of many scatterers such as cells and nuclei. A light beam incident upon a tissue-like turbid medium can be multiply scattered by small particles. As a result, methods for investigating the light-tissue interaction process and the performance of imaging systems such as an optical microscope are different from those based on Fourier optics (Born and Wolf, Principles of optics, 1980; Goodman, Introduction to fourier optics, 1968; Gu, Advanced optical imaging theory, 2000; Wilson and Sheppard, Theory and practice of scanning optical microscopy, 1984; Gu, Principles of three-dimensional imaging in confocal microscopes, 1996). In this introductory chapter, we first describe the physical property of a scattered light beam in Sect. 1.1. In Sect. 1.2, a particular method for investigating light-tissue interaction, called Monte Carlo simulation, is briefly introduced. The main issues related to microscopic imaging through turbid media are summarized in Sect. 1.3. Section 1.4 discusses the two aspects of microscopic imaging through turbid media, the direct and inversed approaches. Finally, the structure of this book is outlined in Sect. 1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980)

    Google Scholar 

  2. J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968)

    Google Scholar 

  3. M. Gu, Advanced Optical Imaging Theory (Springer, Heidelberg, 2000)

    Book  Google Scholar 

  4. T. Wilson, C.J.R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984)

    Google Scholar 

  5. M. Gu, Principles of Three-dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996)

    Book  Google Scholar 

  6. B. Tromberg, A. Yodh, E. Sevick, D. Pine, Diffusing photons in turbid media: introduction to the feature. Appl. Opt. 36, 9 (1997)

    Article  ADS  Google Scholar 

  7. A. Yodh, B. Tromberg, E. Sevick-Muraca, D. Pine, Introduction to the special issue on diffusing photons in turbid media. J. Opt. Soc. Am. A 14, 136 (1997)

    Article  Google Scholar 

  8. E.B. de Haller, Time-resolved transillumination and optical tomography. J. Biomed. Opt. 1, 7 (1996)

    Article  Google Scholar 

  9. C.F. Bohern, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  10. H.P. Baltes, Inverse Source Problems in Optics (Springer, Berlin, 1978)

    Book  MATH  Google Scholar 

  11. D.G. Papaioannou, G.W. t Hooft, J.J.M. Baselman, M.J.C. van Gemert, Image quality in time-resolved transillumination of highly scattering medium. Appl. Opt. 34, 6144 (1995)

    Article  ADS  Google Scholar 

  12. J.G. Fujimoto, S. De Silvestri, E.P. Ippen, C.A. Puliafito, R. Margolis, A. Oseroff, Femtosecond optical ranging in biological systems. Opt. Lett. 3, 150 (1986)

    Article  ADS  Google Scholar 

  13. S.L. Jacques, Time resolved propagation of ultrashort laser pulses within turbid tissue. Appl. Opt. 28, 2223 (1989)

    Google Scholar 

  14. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flott, K. Gregory, C.A. Pulianfito, J.G. Fujimoto, Optical coherent tomography. Science 254, 1178 (1991)

    Article  ADS  Google Scholar 

  15. M.J. Yadlowsky, J.M. Schmitt, R.F. Bonner, Multiple scattering in optical coherence microscopy. Appl. Opt. 34, 5699 (1995)

    Article  ADS  Google Scholar 

  16. S.G. Demos, R.R. Alfano, Optical polarization imaging. Appl. Opt. 36, 150 (1997)

    Article  ADS  Google Scholar 

  17. S.P. Morgan, M.P. Khong, M.G. Somekh, Effects of polarization state and scatterer concentration on optical imaging through scattering media. Appl. Opt. 36, 1560 (1997)

    Article  ADS  Google Scholar 

  18. K.M. Yoo, R.R. Alfano, Time-resolved coherent and incoherent components of forward light scattering in random media. Opt. Lett. 15, 320 (1990)

    Article  ADS  Google Scholar 

  19. S. Anderson-Engels, R. Berg, O. Jarlmann, S. Svanberg, Time-resolved transillumination for medical diagnostics. Opt. Lett. 15, 1179 (1990)

    Article  ADS  Google Scholar 

  20. Q.Z. Wang, X. Liang, L. Wang, P.P. Ho, R.R. Alfano, Fourier spatial filter acts as a temporal gating for light propagating through a turbid medium. Opt. Lett. 20, 1498 (1995)

    Article  ADS  Google Scholar 

  21. M. Minsky, Microscopy apparatus, US patent 3012467, 1961

    Google Scholar 

  22. M. Kempe, W. Rudolph, E. Welsch, Comparative study of confocal and heterodyne microscopy for imaging through scattering media. J. Opt. Soc. Am. A 13, 46 (1996)

    Article  ADS  Google Scholar 

  23. J.M. Schmitt, A. Knuttel, M. Yadlowsky, Confocal microscopy in turbid media. J. Opt. Soc. Am. A 11, 2226 (1994)

    Article  ADS  Google Scholar 

  24. M. Gu, T. Tannous, C.J.R. Sheppard, Effect of an annular pupil on confocal imaging through highly scattering media. Opt. Lett. 21, 312 (1996)

    Article  ADS  Google Scholar 

  25. M. Kempe, A.Z. Genack, W. Rudolph, P. Dorn, Ballistic and diffuse light detection in confocal and heterodyne imaging systems. J. Opt. Soc. Am. A 14, 216 (1997)

    Article  ADS  Google Scholar 

  26. J.F. de Boer, T.E. Miller, M.J.C. van Gemert, J.S. Nelson, Two-dimensional birefringence imaging in biological tissue by polarisation-sensitive optical coherence tomography. Opt. Lett. 22, 934 (1997)

    Article  ADS  Google Scholar 

  27. W.J. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73 (1990)

    Article  ADS  Google Scholar 

  28. B.R. Masters, P.T.C. So, E. Gratton, Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72, 2405 (1997)

    Article  ADS  Google Scholar 

  29. V. Daria, C.M. Blanca, O. Nakamura, S. Kawata, C. Saloma, Image contrast enhancement for two-photon fluorescence microscopy in a turbid medium. Appl. Opt. 37, 7960 (1998)

    Google Scholar 

  30. C.M. Blanca, C. Saloma, Monte Carlo analysis of two-photon fluorescence imaging through a scattering medium. Appl. Opt. 37, 8092 (1998)

    Article  ADS  Google Scholar 

  31. Y. Guo, Q.Z. Wang, N. Zhadin, F. Liu, S. Demos, D. Calistru, A. Tirksliunas, A. Katz, Y. Budansky, P.P. Ho, R.R. Alfano, Two-photon excitation of fluorescence from chicken tissue. Appl. Opt. 36, 968 (1997)

    Google Scholar 

  32. A.K. Dunn, V.P. Wallace, M. Coleno, M.W. Berns, B.J. Tromberg, Influence of optical properties on two-photon fluorescence imaging in turbid samples. App. Opt. 39, 1194 (2000)

    Google Scholar 

  33. X. Gan, S. Schilders, M. Gu, Combination of annular aperture and polarisation-gating methods for efficient microscopic imaging through a turbid medium: theoretical Analysis. Microsc. Microanal. 3, 495 (1997)

    Google Scholar 

  34. X. Gan, M. Gu, Temporal, angular and spatial distribution of photon migration through a highly scattering medium. Optik 108, 129 (1998)

    Google Scholar 

  35. S.P. Schilders, X.S. Gan, M. Gu, Efficient suppression of diffusing photons using polarising annular objectives for microscopic imaging through turbid media. Bioimaging 6, 92 (1998)

    Article  Google Scholar 

  36. S.P. Schilders, X.S. Gan, M. Gu, Microscopic imaging through a turbid medium using annular objectives for angle-gating. Appl. Opt. 37, 5320 (1998)

    Article  ADS  Google Scholar 

  37. X. Gan, S. Schilders, M. Gu, Image formation in a turbid medium under a microscope. J. Opt. Soc. Am. A 15, 2052 (1998)

    Article  ADS  Google Scholar 

  38. S.P. Schilders, X.S. Gan, M. Gu, Resolution improvement in microscopic imaging through turbid media based on differential polarisation. Appl. Opt. 37, 4300 (1998)

    Article  ADS  Google Scholar 

  39. S.P. Schilders, X. Gan, M. Gu, Image enhancement in a reflection optical microscope by suppression of diffusing photons using polarising annular objectives. Microsc. Microanal. 4, 415 (1998)

    Article  ADS  Google Scholar 

  40. S.P. Schilders, X. Gan, M. Gu, Effect of scatterer size on microscopic imaging in turbid media based on differential polarization gating. Opt. Commun. 157, 238 (1998)

    Article  ADS  Google Scholar 

  41. X. Gan, S. Schilders, M. Gu, Image enhancement through turbid media under a microscope using polarization gating methods. J. Opt. Soc. Am. A 16, 2177 (1999)

    Article  ADS  Google Scholar 

  42. X. Gan, M. Gu, Effective point spread function for fast image modelling and processing in microscopic imaging through turbid media. Opt. Lett. 24, 741 (1999)

    Article  ADS  Google Scholar 

  43. S. Schilders, M. Gu, Three-dimensional autofluorescence spectroscopy of rat skeletal muscle tissue under two-photon excitation. Appl. Opt. 38, 720 (1999)

    Article  ADS  Google Scholar 

  44. S. Schilders, M. Gu, Limiting factors on image quality in imaging through turbid media under single-photon and two-photon excitation. Microsc. Microanal. 6, 156 (2000)

    ADS  Google Scholar 

  45. M. Gu, S. Schilders, X. Gan, Two-photon fluorescence imaging of microspheres embedded in turbid media. J. Mod. Opt. 47, 959 (2000)

    Article  ADS  Google Scholar 

  46. X. Gan, M. Gu, Spatial distribution of single-photon and two-photon fluorescence light in scattering media: Monte Carlo simulation. Appl. Opt. 39, 1580 (2000)

    Article  ADS  Google Scholar 

  47. X. Gan, M. Gu, Fluorescence microscopic imaging through tissue-like turbid media. J. Appl. Phys. 87, 3214 (2000)

    Article  ADS  Google Scholar 

  48. M. Gu, X. Gan, A. Kisteman, M. Xu, Comparison of penetration depth between single-photon excitation and two-photon excitation in imaging through turbid tissue media. Appl. Phys. Lett. 77, 1551 (2000)

    Article  ADS  Google Scholar 

  49. M. Xu, E.D. Williams, E.W. Thompson, M. Gu, Effect of handling and fixation processes on fluorescence spectroscopy of rat skeletal muscles under two-photon excitation. Appl. Opt. 39, 6312 (2000)

    Google Scholar 

  50. X. Deng, E.D. Williams, E.W. Thompson, X. Gan, M. Gu, Second-harmonic generation from biological tissues: effect of excitation wavelength. Scanning 24, 175 (2002)

    Google Scholar 

  51. X. Deng, X. Gan, M. Gu, Multi-photon fluorescence microscopic imaging through double-layered turbid tissue media. J. Appl. Phys. 91, 4659 (2002)

    Article  ADS  Google Scholar 

  52. X. Gan, M. Gu, Microscopic image reconstruction through tissue-like turbid media. Opt. Commun. 207, 149 (2002)

    Article  ADS  Google Scholar 

  53. X. Gan, M. Gu, Image reconstruction through turbid media under a transmission-model microscope. J. Biomed. Opt. 7, 372 (2002)

    Article  ADS  Google Scholar 

  54. X. Deng, X. Gan, M. Gu, Monte-Carlo simulation of multi-photon fluorescence microscopy imaging through inhomogeneous tissue-like turbid media. J. Biomed. Opt. 8, 400 (2003)

    Google Scholar 

  55. X. Deng, M. Gu, Penetration depth of single-, two- and three-photon fluorescence microscopic imaging through human cortex structures: Monte-Carlo simulation. Appl. Opt. 42, 3321 (2003)

    Google Scholar 

  56. X. Deng, X. Gan, M. Gu, Effective Mie scattering of a spherical aggregate and its application in turbid media. Appl. Opt. 43, 2925 (2004)

    Article  ADS  Google Scholar 

  57. Q. Lu, X. Gan, M. Gu, Q. Luo, Monte Carlo modeling of optical coherence tomography imaging through turbid media. Appl. Opt. 43, 1628 (2004)

    Google Scholar 

  58. M. Gu, X. Gan, in Image Reconstruction Through a Tissue-Like Turbid Medium Under a Fluorescence Microscope, Optics Within Life Sciences, ed. by C.J.R. Sheppard (Springer, Heidelberg, 2000)

    Google Scholar 

  59. R. Alfano, S. Demos, Advances in optical imaging of biomedical media. Ann. NY Acad. Sci. 820, 248 (1997)

    Article  ADS  Google Scholar 

  60. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978)

    Google Scholar 

  61. W.F. Cheong, S.A. Prahl, A.J. Walsh, A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26, 2166 (1990)

    Article  ADS  Google Scholar 

  62. Y. Kuga, A. Ishimaru, Modulation transfer function of layered inhomogeneous random media using the small-angle approximation. Appl. Opt. 25, 4328 (1986)

    Google Scholar 

  63. P. Bruscaglioni, G. Milloni, G. Zazzanti, On the contribution of multiple scattering to lidar returns from homogeneous fogs and its dependence on the receiver angular aperture. Opt. Acta 27, 1229 (1980)

    Article  ADS  Google Scholar 

  64. M.S. Patterson, B. Chance, B.C. Wilson, Time-resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28, 2331 (1989)

    Article  ADS  Google Scholar 

  65. J.M. Schmitt, K. Ben-Letaief, Efficient Monte Carlo simulation of confocal microscopy in biological tissue. J. Opt. Soc. Am. A 13, 952 (1996)

    Article  ADS  Google Scholar 

  66. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE Press, Bellingham, 2002)

    Google Scholar 

  67. J. Spanier, E.M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, Reading, 1969)

    Google Scholar 

  68. I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, 1991)

    Google Scholar 

  69. A. Dunn, C. DiMarzio, Efficient computation of time-resolved transfer functions for imaging in turbid media. J. Opt. Soc. Am. A 13, 65 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gu, M., Gan, X., Deng, X. (2015). Introduction. In: Microscopic Imaging Through Turbid Media. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46397-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46397-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46396-3

  • Online ISBN: 978-3-662-46397-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics