Skip to main content

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 103))

  • 4818 Accesses

Abstract

In this chapter, we discuss some problems that can be efficiently solved via convex relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This code snippet was developed by Dr. Jifeng Dai at Department of Automation, Tsinghua University.

References

  1. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43(2–3), 471–484 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Megretski, A.: Relaxations of quadratic programs in operator theory and system analysis. In: Borichev, A.A., Nikolski, N.K. (eds.) Systems, Approximation, Singular Integral Operators, and Related Topics, pp. 365–392. Birkhäuser, Boston (2001)

    Chapter  Google Scholar 

  3. Luo, Z., Ma, W., So, A.M.-C., Ye, Y., Zhang, S.: Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20–34 (2010)

    Article  Google Scholar 

  4. Adams, W.P., Sherali, H.D.: A tight linearization and an algorithm for zero-one quadratic programming problems. Manag. Sci. 32(10), 1274–1290 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  6. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  7. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thacher, J.W. (eds.) Complexity of Computer Computation, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  8. Goemans, M.X., Williamson, D.P.:.879-approximation algorithms for MAX CUT and MAX 2SAT. In: Proceedings of 26th Annual ACM Symposium on the Theory of Computing, Montral, pp. 422–431 (1994)

    Google Scholar 

  9. Sudoku, from Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Sudoku

  10. McGuire, G., Tugemann, B., Civario, G.: There is no 16-Clue Sudoku: Solving the Sudoku Minimum Number of Clues Problem (2013). http://arxiv.org/abs/1201.0749

  11. Babu, P., Pelckmans, K., Stoica, P., Li, J.: Linear systems, sparse solutions, and Sudoku. IEEE Signal Process. Lett. 17(1), 40–42, (2010)

    Article  Google Scholar 

  12. Magic Square, from Wikipedia, the free encyclopedia (2013). http://en.wikipedia.org/wiki/Magic_square

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, L. (2015). Convex Relaxation. In: Selected Applications of Convex Optimization. Springer Optimization and Its Applications, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46356-7_6

Download citation

Publish with us

Policies and ethics