OpenCV WebCam Applications in an Arduino-Based Rover

  • Valeria Loscrí
  • Nathalie MittonEmail author
  • Emilio Compagnone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8629)


In this work we design and implement Arduino-based Rovers with characteristics of re-programmability, modularity in terms of type and number of components, communication capability, equipped with motion support and capability to exploit information both from the surrounding and from other wireless devices. These latter can be homogeneous devices (i.e. others similar rovers) and heterogeneous devices (i.e. laptops, smartphones, etc.). We propose a Behavioral Algorithm that is implemented on our devices in order to supply a proof-of-concept of the effectiveness of Detection task. Specifically, we implement “Object Detection” and “Face Recognition” techniques based on OpenCV and we detail the modifications necessary to work on embedded devices. We show the effectiveness of controlled mobility concept in order to accomplish a task, both in a centralized way (i.e. driven by a central computer that assign the task) and in a totally distributed fashion, in cooperation with other Rovers. We also highlight the limitations of similar devices required to accomplish specific tasks and their potentiality.


Rover OpenCV WebCam applications 


  1. 1. Accessed 23 August 2013
  2. 2.
    Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  3. 3.
    Blzovics, L., Csorba, K., Forstner, B., Hassan, C.: Target tracking and surrounding with swarm robots. In: 2012 IEEE 19th International Conference and Workshops on Engineering of Computer-Based Systems, pp. 135–141 (2012)Google Scholar
  4. 4.
  5. 5.
  6. 6.
    Hyytiä, E., Virtamo, J.: Random waypoint model in n-dimensional space. Oper. Res. Lett. 33(6), 567–571 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Jinasena, K.K., Meegama, R.G.N.: Design of a low-cost autonomous mobile robot. Int. J. Robot. Autom. (IJRA) 2(1) (2011)Google Scholar
  8. 8.
    Kuntze, H.-B., Frey, C.W., Tchouchenkov, I., Staehle, B., Rome, E., Pfeiffer, K., Wenzel, A., Wollenstein, J.: SENEKA - sensor network with mobile robots for disaster management. In: Proceedings of IEEE Conference on Technologies for Homeland Security (HST), pp. 13–15, November 2012Google Scholar
  9. 9.
    Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: IEEE ICIP 2002, vol. 1, pp. 900–903, September 2002.
  10. 10.
    Lundh, R., Karlsson, L., Saffiotti, A.: Autonomous functional configuration of a network robot system. Robot. Auton. Syst. 56, 819–830 (2008)CrossRefGoogle Scholar
  11. 11.
    Nagi, J., Di Caro, G.A., Giusti, A., Gambardella, L.: Convolutional support vector machines for quantifyingl the visual learning and recognition progress in swarm robotic systems. In: Proceedings of the 11th International Conference on Machine Learning and Applications (ICMLA 2012), Boca Raton, Florida, 12–15 December 2012Google Scholar
  12. 12.
  13. 13.
    Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Stirling, T., Gutierrez, A., Gambardella, L.M., Dorigo, M.: ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, USA, 25–30 September 2011Google Scholar
  14. 14.
    Sanfeliu, A., Hagita, N., Saffiotti, A.: Robotics and autonomous systems. Elsevier Robot. Auton. Syst. 56, 793–797 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Valeria Loscrí
    • 1
  • Nathalie Mitton
    • 1
    Email author
  • Emilio Compagnone
    • 2
  1. 1.InriaVilleneuve-d’AscqFrance
  2. 2.University of CalabriaRendeItaly

Personalised recommendations